首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the influence of scattering and geometry on the attenuation curve in disc galaxies. We investigate both qualitatively and quantitatively which errors are made by either neglecting or approximating scattering, and which uncertainties are introduced as a result of a simplification of the star–dust geometry. We find that the magnitude of these errors depends on the inclination of the galaxy and, in particular, that, for face-on galaxies, the errors due to improper treatment of scattering dominate those due to imprecise star–dust geometry. Therefore we argue that, in all methods aimed at determining the opacity of disc galaxies, scattering should be taken into account in a proper way.  相似文献   

2.
3.
4.
Traditionally, it has been believed that extinction effects due to dust within the interstellar medium of external galaxies are rather small and can largely be ignored. Over the last 10 years, however, considerable doubt has been cast over the evidence to support this comfortable idea, and it has become clear that a more detailed analysis is required. Here, a new technique for mapping the extinction in disc galaxies with high resolution is presented.
This technique has been applied to the Sc galaxy NGC 6946. The results show that dust extinction significantly affects both the overall brightness and appearance of the galaxy. The total extinction is found to be AB =0.45 – somewhat larger than the value of AB =0.2 usually quoted for an Sc galaxy. When corrected for dust the morphology more closely resembles that of an Sb galaxy rather than an Sc galaxy.
The most surprising result of this work is finding interarm regions that suffer high extinction. It appears that these regions appear faint because of the high extinction and not as a result of low stellar density. There are also interarm regions that suffer little extinction; these are therefore truly regions of low stellar density.  相似文献   

5.
Radiative transfer (RT) simulations are now at the forefront of numerical astrophysics. They are becoming crucial for an increasing number of astrophysical and cosmological problems; at the same time their computational cost has come within reach of currently available computational power. Further progress is retarded by the considerable number of different algorithms (including various flavours of ray tracing and moment schemes) developed, which makes the selection of the most suitable technique for a given problem a non-trivial task. Assessing the validity ranges, accuracy and performances of these schemes is the main aim of this paper, for which we have compared 11 independent RT codes on five test problems: (0) basic physics; (1) isothermal H  ii region expansion; (2) H  ii region expansion with evolving temperature; (3) I-front trapping and shadowing by a dense clump and (4) multiple sources in a cosmological density field. The outputs of these tests have been compared and differences analysed. The agreement between the various codes is satisfactory although not perfect. The main source of discrepancy appears to reside in the multifrequency treatment approach, resulting in different thicknesses of the ionized-neutral transition regions and the temperature structure. The present results and tests represent the most complete benchmark available for the development of new codes and improvement of existing ones. To further this aim all test inputs and outputs are made publicly available in digital form.  相似文献   

6.
7.
8.
We present 3D hydrodynamical simulations of ram-pressure stripping of a disc galaxy orbiting in a galaxy cluster. In this paper, we focus on the properties of the galaxies' tails of stripped gas. The galactic wakes show a flaring width, where the flaring angle depends on the gas disc's cross-section with respect to the galaxy's direction of motion. The velocity in the wakes shows a significant turbulent component of a few     . The stripped gas is deposited in the cluster rather locally, i.e. within     from where it was stripped. We demonstrate that the most important quantity governing the tail density, length and gas mass distribution along the orbit is the galaxy's mass-loss per orbital length. This in turn depends on the ram pressure as well as the galaxy's orbital velocity.
For a sensitivity limit of     in projected gas density, we find typical tail lengths of     . Such long tails are seen even at large distances (0.5 to     ) from the cluster centre. At this sensitivity limit, the tails show little flaring, but a width similar to the gas disc's size.
Morphologically, we find good agreement with the H  i tails observed in the Virgo cluster by Chung et al. 2007 . However, the observed tails show a much smaller velocity width than predicted from the simulation. The few known X-ray and Hα tails are generally much narrower and much straighter than the tails in our simulations. Thus, additional physics like a viscous intracluster medium (ICM), the influence of cooling and tidal effects may be needed to explain the details of the observations.
We discuss the hydrodynamical drag as a heat source for the ICM but conclude that it is not likely to play an important role, especially not in stopping cooling flows.  相似文献   

9.
10.
11.
12.
The results of a three-dimensional model for disc–halo interaction are presented here. The model considers explicitly the input of energy and mass by isolated and correlated supernovae in the disc. Once disrupted by the explosions, the disc never returns to its initial state. Instead it approaches a state where a thin H  i disc is formed in the Galactic plane, overlaid by thick H  i and H  ii gas discs with scaleheights of 500 pc and 1–1.5 kpc, respectively. The upper parts of the thick H  ii disc (the diffuse ionized medium) act as a disc–halo interface, and its formation and stability are directly correlated to the supernova rate per unit area in the simulated disc.  相似文献   

13.
14.
N -body simulations argue that the inner haloes of barred galaxies should not be spherical, nor even axisymmetric, but triaxial. The departure from sphericity is the strongest near the centre and decreases outwards; typical axial ratios for the innermost parts are of the order of 0.8. The halo shape is prolate-like in the inner parts up to a certain radius and then turns to oblate-like. I call this inner halo structure the 'halo bar' and analyse here in depth its structure and kinematics in a representative model. It is always considerably shorter than the disc bar. It lags the disc bar by only a few degrees at all radii and the difference between the two bar phases increases with distance from the centre. The two bars turn with roughly the same pattern speed. This means that the halo bar is a slow bar, since its corotation radius is much larger than its length. The bisymmetric component in the halo continues well outside the halo bar in the form of an open spiral, trailing behind the disc bar. The inner parts of the halo display some mean rotation in the same sense as the disc rotation. This is more important for particles nearer to the equatorial plane and decreases with increasing distance from it, but is always much smaller than the disc rotation.  相似文献   

15.
16.
17.
18.
This series of papers is devoted to multiple scattering of light in plane parallel, inhomogeneous atmospheres. The approach proposed here is based on Ambartsumyan's method of adding layers. The main purpose is to show that one can avoid difficulties with solving various boundary value problems in the theory of radiative transfer, including some standard problems, by reducing them to initial value problems. In this paper the simplest one dimensional problem of diffuse reflection and transmission of radiation in inhomogeneous atmospheres with finite optical thicknesses is considered as an example. This approach essentially involves first determining the reflection and transmission coefficients of the atmosphere, which, as is known, are a solution of the Cauchy problem for a system of nonlinear differential equations. In particular, it is shown that this system can be replaced with a system of linear equations by introducing auxiliary functions P and S. After the reflectivity and transmissivity of the atmosphere are determined, the radiation field in it is found directly without solving any new equations. We note that this approach can be used to obtain the required intensities simultaneously for a family of atmospheres with different optical thicknesses. Two special cases of the functional dependence of the scattering coefficient on the optical thickness, for which the solutions of the corresponding equations can be expressed in terms of elementary functions, are examined in detail. Some numerical calculations are presented and interpreted physically to illustrate specific features of radiative transport in inhomogeneous atmospheres.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号