首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

2.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

3.

Coal mining has serious impacts on local environment, including damage to the land and soil by subsidence, damage to ground-water systems through the fracturing and subsiding of overlying rocks, contamination of surface waters with acid mine drainage, and pollution of the atmosphere by release of toxic gases. The damage to ground water and its consequent impacts on the regional environment is the core of research of the coal mining from the perspective of environment protection. The present paper focuses on the changes of surface vegetation coverage, the pollutants released from pit coal power plants, and the damages to the ground aquifers induced by mining activities in arid Eastern Junggar coalfield of China. At first, the authors investigated the changes of surface vegetation coverage, since mining began in the 2000s using Landsat data. Results show that the low surface vegetation coverage (grade 1 plus grade 2) in the southern part of the region decreased from 11.62?×?108 m2 in 2003 to 9.57?×?108 m2 in 2017 (?17.6%), while it increased from 11.58?×?108 m2 in 2003 to 12.70?×?108 m2 in 2017 (+?9.7%) in the eastern part. The high surface vegetation coverage (grade 3 plus grade 4) in the southern part increased from 1.94?×?108 m2 in 2003 to 4.00?×?108 m2 in 2017 (+?106.2%), while it decreased from 4.39?×?108 m2 in 2003 to 3.26?×?108 m2 in 2017 (?25.74%) in the eastern part. The data of annual precipitation during the same period in this area show that the changes of surface vegetation coverage have less relationship with the annual precipitation, which indicates that the mining activities is probably the major factor for that. Second, a statistic of air pollutants generated from pit coal power plants was made based on data of references. Results show that the estimated gaseous pollutant emissions increased as 865.23 tons of smoke particles, 5940.73 tons of SO2, and 7584.48 tons of NO2 in 2013, which increased rapidly with 9.73 times the smoke particle, 21.69 times the SO2, and 9.24 times the NO2 than that of 2007. And then, the physical and numerical simulation of the damage of mining activities to aquifers was made to show the permeability of the reference points of overlying aquifers varies associated with mining activities. Results show that the porous rock matrix permeability has a negative relationship with fluctuation during mining, while the fracture permeability shows a positive one. Finally, a case investigation in southern area surrounding this coalfield was illustrated. Result shows that the local ground-water level decreased by 16 m difference from the altitude level of?+?774 m in 2003 to?+?758 m in 2013. Data and results from this study presented the already and the potential pollutions and damages to local environment induced by the mining activities in this region.

  相似文献   

4.
The rate of aerobic oxidation of methane was calculated based on average profiles of the tritiumhelium age of the Baikal waters and concentrations of the dissolved methane in the water column. In the deep lake zone (>200 m), the intensity of oxidation vertically decreases and is (2–0.3) × 10?2 nl CH4l?1 days?1 in southern and central Baikal and (2.8–1.0) × 10?2 nl CH4 l?1 days?1 in northern Baikal. The effective coefficient of the oxidation rate in the lake depressions is 3.6 × 10?4, 3.3 × 10?4, and 3.7 × 10?4 days?1, respectively. At current methane concentrations in the water column, about 80 t of methane is oxidized per year. Oxidation of the dissolved methane in the water column was estimated at a possible increase of its concentration.  相似文献   

5.
Mine water samples collected from different mines of the North Karanpura coalfields were analysed for pH, electrical conductivity, total dissolved solids (TDS), total hardness (TH), major anions, cations and trace metals to evaluate mine water geochemistry and assess solute acquisition processes, dissolved fluxes and its suitability for domestic, industrial and irrigation uses. Mine water samples are mildly acidic to alkaline in nature. The TDS ranged from 185 to 1343 mg L?1 with an average of 601 mg L?1. Ca2+ and Mg2+ are the dominant cations, while SO4 2? and HCO3 ? are the dominant anions. A high concentration of SO4 2? and a low HCO3 ?/(HCO3 ? + SO4 2?) ratio (<0.50) in the majority of the water samples suggest that either sulphide oxidation or reactions involving both carbonic acid weathering and sulphide oxidation control solute acquisition processes. The mine water is undersaturated with respect to gypsum, halite, anhydrite, fluorite, aluminium hydroxide, alunite, amorphous silica and oversaturated with respect to goethite, ferrihydrite, quartz. About 40% of the mine water samples are oversaturated with respect to calcite, dolomite and jarosite. The water quality assessment shows that the coal mine water is not suitable for direct use for drinking and domestic purposes and needs treatment before such utilization. TDS, TH, F?, SO4 2?, Fe, Mn, Ni and Al are identified as the major objectionable parameters in these waters for drinking. The coal mine water is of good to suitable category for irrigation use. The mines of North Karanpura coalfield annually discharge 22.35 × 106 m3 of water and 18.50 × 103 tonnes of solute loads into nearby waterways.  相似文献   

6.
Twenty groundwater samples were collected from Enugu metropolis over two seasonal periods in order to characterize the groundwater and to determine its quality for domestic and irrigation purposes. The results show that groundwater of the area is strongly acidic to slightly alkaline in nature and varied from “soft water” to “moderately hard” water type. The major ionic trend is in the order Cl> Na> HCO3 ? > K> Mg2+ > Ca2+ > SO4 2?and Mg2+ > Cl> Na> K> Ca2+ > HCO 3 > SO4 2? in abundance for dry and rainy seasons, respectively. The results also reveal that there is an increase in trend of the ionic concentrations during the dry season, which arises from weathering of the host rocks and anthropogenic activities. Two hydrochemical facies were identified, namely, Na+ –K+ –Cl? –SO4 2?and Ca2+ –Mg2+ –Cl? –SO4 2? , with Na+ –K+ –Cl? –SO4 2? as the dominant facies for the two seasons. Groundwater quality ranges from “very poor water” to “good water” and “water unsuitable for drinking purposes” to “good water” for the dry season and rainy season investigations, respectively. The groundwater is suitable for irrigation purposes for the two seasons.  相似文献   

7.
Atmospheric dust is considered to be the major cause of poor air quality due to its contribution to high particulate levels, but their interaction with the acidic gases helps in controlling the level of SO2 and NO2 through ambient neutralization reactions. In the present study, the interaction of acidic gases such as SO2 and NO2 with alkaline dust was investigated during October, 2013–July, 2014 at a site named as Babarpur located at the Trans-Yamuna region of Delhi. The concentration of SO2 ranged from 10 to 170 μg/m3 with an average of 36 μg/m3 while that of NO2 ranged from 15 to 54 μg/m3 with an average of 26?±?8 μg/m3. The results were observed to be well within the National Ambient Air Quality Standard (NAAQS) limits prescribed by the Central Pollution Control Board (CPCB). The average concentrations of SO2 during day and night time were recorded as 31?±?18 and 43?±?53 μg/m3 respectively while the mean concentrations of NO2 during day and night time were recorded as 26?±?7 and 27?±?12 μg/m3 respectively. A positive correlation between SO42? and NO3? was also observed indicating their secondary aerosol formation. In aerosol phase, average concentrations of SO42? during day and night time were 3.9?±?0.3 and 6.5?±?2.3 μg/m3 respectively while that of NO3? were 9.5?±?1.5 and 7.3?±?0.5 μg/m3 respectively. Molar ratios of Ca2+/SO42?, NH4+/SO42?, and NH4+/NO3? were observed as 8, 5, and 1.7 during daytime and 1.5, 0.4, and 0.8 during nighttime respectively. Such molar ratios confirmed high concentrations of sulphate (SO4)2? and low concentrations of nitrate (NO3?) during night time, thereby indicating different pathway of aerosol formation during day and night time. Surface morphology and elemental composition of aerosol samples showed various oval, globular, and platy shapes where the diameter varied from few nm to ~5 μm depending on their precursors. There were certain shapes like grossularite, irregular aggregate, grape-like, triangular, and flattened which indicate the crustal origin of aerosols and their possible role in SO2 and NO2 adsorption.  相似文献   

8.
The chemistry of the rainwater indirectly reflects the composition of the ions in the atmosphere. The study of the rainwater gains its own importance as it forms the basis for the agricultural, domestic and drinking water. Twelve rainwater samples were collected along the southeastern coast of India during southwest monsoon. The samples were analyzed for the major anions (Cl?, SO4 2?, PO4 3? and HCO3 ?) and cations (Na+, K+, Ca2+ and Mg2+). The majority of the samples reflect acidic pH. The general dominance of the cations is in the order of Na+ > Ca2+ > K+ > Mg2+ and that of anions is HCO3 ? > Cl? > SO4 2? > PO4 3?. The water is classified as calcium bicarbonate to sodium bicarbonate type. The decrease of pH value also increases the pCO2. In order to study the impact of acidic and alkaline species on rainwater, correlation coefficients were determined for establishing the relationship between different ions. Good correlation was established between cations, and sulfate has no correlation with other ions and pH. Factor analysis reveals that land use pattern, marine source and methanogenesis from the tidal influenced mangroves play a major role in determining the rainwater chemistry of the region.  相似文献   

9.
Dissolved helium concentrations and 3He/4He ratios were measured for 18 groundwater samples collected from the Quaternary confined aquifers in the North China Plain (NCP). The dissolved helium concentrations ranged from 1 × 10−7 to 1 × 10−6 cm3STP·g−1 in the 14 samples from the central plain, but was approximately two orders of magnitude higher, between 6 × 10−6 and 9 × 10−5 cm3STP·g−1, in 4 samples from the coastal plain. Based on these concentrations and the corresponding 3He/4He ratios varying from 0.09 to 0.55 Ra (where Ra is the 3He/4He ratio of air), the dissolved helium in groundwater in the central plain was identified to be primarily a mixture of atmospheric helium with radiogenic helium and a representative radiogenic helium ratio was estimated to be 0.035 Ra. Despite the high fraction of terrigenic 4He in the samples from the coastal plain, their 3He/4He ratios were found to be significantly above this radiogenic value, ranging between 0.20 and 0.37 Ra, indicating the presence of a mantle-derived He component in this area. About 2–4% mantle helium was estimated to be present in the groundwater of the coastal plain, which probably is associated with the regional Cangdong fault and tectonic activities. Based on the radiogenic He component, 4He ages of the groundwater in the central plain were calculated by assuming either pure in situ production or an external helium flux J0 of 4.7 × 10−8 cm3STPcm−2a−1. The estimated 4He ages fall between 9.5 and 51.4 ka and are comparable to the 14C ages, suggesting that the results of 4He dating are reasonable and can be an effective tool to estimate groundwater residence times under suitable conditions.  相似文献   

10.
The δ13C values of dissolved HCO3? in 75 water samples from 15 oil and gas fields (San Joaquin Valley, Calif., and the Houston-Galveston and Corpus Christi areas of Texas) were determined to study the sources of CO2 of the dissolved species and carbonate cements that modify the porosity and permeability of many petroleum reservoir rocks. The reservoir rocks are sandstones which range in age from Eocene through Miocene. The δ13C values of total HCO3? indicate that the carbon in the dissolved carbonate species and carbonate cements is mainly of organic origin.The range of δ13C values for the HCO3? of these waters is ?20–28 per mil relative to PDB. This wide range of δ13C values is explained by three mechanisms. Microbiological degradation of organic matter appears to be the dominant process controlling the extremely low and high δ13C values of HCO3? in the shallow production zones where the subsurface temperatures are less than 80°C. The extremely low δ13C values (< ?10 per mil) are obtained in waters where concentrations of SO42? are more than 25 mg/l and probably result from the degradation of organic acid anions by sulfate-reducing bacteria (SO42? + CH3COO? → 2HCO3? + HS?). The high δ13C values probably result from the degradation of these anions by methanogenic bacteria (CH3COO? + H2OaiHCO3? + CH4).Thermal decarboxylation of short-chain aliphatic acid anions (principally acetate) to produce CO2 and CH4 is probably the major source of CO2 for production zones with subsurface temperatures greater than 80°C. The δ13C values of HCO3? for waters from zones with temperatures greater than 100°C result from isotopic equilibration between CO2 and CH4. At these high temperatures, δ13C values of HCO3? decrease with increasing temperatures and decreasing concentrations of these acid anions.  相似文献   

11.
A workflow is described to estimate specific storage (S s) and hydraulic conductivity (K) from a profile of vibrating wire piezometers embedded into a regional aquitard in Australia. The loading efficiency, compressibility and S s were estimated from pore pressure response to atmospheric pressure changes, and K was estimated from the earliest part of the measurement record following grouting. Results indicate that S s and K were, respectively, 8.8?×?10?6 to 1.2?×?10?5 m?1 and 2?×?10?12 m s?1 for a claystone/siltstone, and 4.3?×?10?6 to 9.6?×?10?6 m?1 and 1?×?10?12 to 5?×?10?12 m s?1 for a thick mudstone. K estimates from the pore pressure response are within one order of magnitude when compared to direct measurement in a laboratory and inverse modelled flux rates determined from natural tracer profiles. Further analysis of the evolution and longevity of the properties of borehole grout (e.g. thermal and chemical effects) may help refine the estimation of formation hydraulic properties using this workflow. However, the convergence of K values illustrates the benefit of multiple lines of evidence to support aquitard characterization. An additional benefit of in situ pore pressure measurement is the generation of long-term data to constrain groundwater flow models, which provides a link between laboratory scale data and the formation scale.  相似文献   

12.
Fluxes of methane (CH4) and carbon dioxide (CO2) to the atmosphere at 52 sites within a salt marsh were measured by a dark static chamber technique from mid July to mid September. Mean CH4 fluxes ranged from 0.2 mg m?2 d?1 to 11.0 mg m?2 d?1, with an overall average of 1.6 mg m?2 d?1. Flux of CH4 was inversely correlated (r2=0.23, p = 0.001) with salinity of the upper porewater at the site, suggesting the dominant role of SO4 2? in inhibiting methanogenesis in salt-marsh sediments. The combination of salinity and water table position was able to explain only 29% of the variance in CH4 emission. Mean soil flux of CO2 ranged from 0.3 g m?2 d?1 to 3.7 g m?2 d?1, with an overall average of 2.5 g m?2 d?1; it was correlated with aboveground biomass (positive, r2=0.38, p = 0.001) and position of the water table (negative, r2 = 0.55, p = 0.001). The combination of biomass and water table position accounted for 63% of the variance in CO2 flux. There were high variations in gas flux within the six plant communities. The sequences were CH4: upland edge > panne > pool > middle marsh > low marsh > high marsh, and CO2: middle marsh > low marsh > upland edge > high marsh > panne > pool. Compared to other salt-marsh systems, this Bay of Fundy marsh emits small amounts of CH4 and CO2.  相似文献   

13.
Cochlodinium polykrikoides formed large blooms in the coastal waters of Oman from October 2008 through mid-January 2009, and satellite images from Aqua-MODIS and region-wide reports suggest that this bloom was found throughout the Arabian Gulf and Sea of Oman for more than 10 months. The unusual occurrence of this species appears to have supplanted the more regularly occurring bloom species, Noctiluca scintillans, in 2008–2009. For the first 2 weeks of the coastal Omani bloom, C. polykrikoides abundance was near monospecific proportions, with cell densities ranging from 4.6?×?103 to 9?×?106 cells L?1 and very high levels of chlorophyll a (78.0 μg L?1) were also recorded. The regional progression of the bloom likely began with stronger than normal upwelling along the Iranian and northern Omani coasts during the southwest monsoon in late summer, followed by discharge of unusually warm coastal plume water along the coast of Oman with the reversal of monsoonal winds in late October. The occurrence and persistence of high densities of C. polykrikoides in Oman coastal water were also significantly influenced by an elevated nutrient load and warmer than normal temperatures. Concentrations of nutrients, especially NH4 +, urea, PO4 3?, and organic nitrogen and phosphorus, were manyfold higher than observed in the year prior or since. These findings suggest that mesoscale features were important in bloom dynamics more regionally, but locally the bloom was sustained by nutrient enrichment supplemented by its mixotrophic capabilities.  相似文献   

14.
Yang  Heejun  Tawara  Yasuhiro  Shimada  Jun  Kagabu  Makoto  Okumura  Azusa 《Hydrogeology Journal》2021,29(6):2091-2105

The hydraulic conductivity of an unconfined carbonate aquifer at the uplifted atoll of Minami-Daito, Japan, was evaluated by a combination of cross-spectral analysis, analytical solution, and density-dependent groundwater modeling based on observed groundwater levels in 15 wells and at sea level. The island area was divided into 10 subregions based on island morphology and on inland propagation of ocean tides. The hydraulic conductivity was obtained for each subregion using analytical solutions based on phase lags of M2 constituents of ocean tides at each well by assuming two aquifer thicknesses (300 and 1,800 m) and two effective porosities (0.1 and 0.3). The density-dependent groundwater model evaluated the hydraulic conductivity of the subregions by reproducing observed groundwater levels. The hydraulic conductivity in the subregions was estimated as 3.46?×?10?3 to 6.35?×?10?2 m/s for aquifer thickness of 300 m and effective porosity of 0.1, and as 1.73?×?10?3 to 3.17?×?10?2 m/s for aquifer thickness of 1,800 m and the effective porosity of 0.3. It was higher in southern and northern areas, and higher in interior lowland than in the western and eastern areas. Fissures and dolomite distributions on the island control differences of the omnidirectional ocean tidal propagation and cause these differences in hydraulic conductivity. The method used for this study may also be applicable to other small islands that have few or no data for hydraulic conductivity.

  相似文献   

15.
Groundwater of the unconfined aquifer (1,100 sq. km) of a two-tier coastal aquifer located in the Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran, is classified into fresh and brackish water types. Fresh groundwater (FGW) samples (n = 36) are characterized by Ca2+ > Na> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, values of the C-ratio (av. = 0.89) and CAI and values of the molar ratios of Ca2+/HCO3 ?, Ca2+/SO4 2?, Mg2+/HCO3 ? and Mg2+/SO4 2? indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicates, saline/sea water trapped in the aquifer sediments (now admixed with the groundwater) and ion exchange reactions. Values of the CAI and Na+/Cl? molar ratio suggest that the part of the Ca2+ (±Mg2+) content in 23 FGW samples is derived from clay minerals of the aquifer matrix, and part of the Na+ content in 20, 12, and 3 FGW samples is derived, respectively, from alkali feldspar weathering, clay minerals of the aquifer matrix and rain water and/or halite. Brackish groundwater (BGW) samples (n = 4) contain Cl? as the dominant anion and their average total ionic concentration (38.65 meq/L) is 1.79 times higher than that of the FGW samples (21.50 meq/L). BGW pockets were generated by non-conservative mixing of FGW with the upconed saline water from the underlying saline groundwater zone of the semi-confined aquifer along bore wells involved in excessive extraction of groundwater from the unconfined aquifer. Groundwater belongs essentially to “high salinity, low sodium” irrigation water class.  相似文献   

16.
The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ~300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2? reduction to methanogenesis. In particular, decreasing SO4 2? and increasing δ34S of SO4 2? along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2? reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.  相似文献   

17.
The structure of deuterated jarosite, KFe3(SO4)2(OD)6, was investigated using time-of-flight neutron diffraction up to its dehydroxylation temperature. Rietveld analysis reveals that with increasing temperature, its c dimension expands at a rate ~10 times greater than that for a. This anisotropy of thermal expansion is due to rapid increase in the thickness of the (001) sheet of [Fe(O,OH)6] octahedra and [SO4] tetrahedra with increasing temperature. Fitting of the measured cell volumes yields a coefficient of thermal expansion, α = α0 + α1 T, where α0 = 1.01 × 10−4 K−1 and α1 = −1.15 × 10−7 K−2. On heating, the hydrogen bonds, O1···D–O3, through which the (001) octahedral–tetrahedral sheets are held together, become weakened, as reflected by an increase in the D···O1 distance and a concomitant decrease in the O3–D distance with increasing temperature. On further heating to 575 K, jarosite starts to decompose into nanocrystalline yavapaiite and hematite (as well as water vapor), a direct result of the breaking of the hydrogen bonds that hold the jarosite structure together.  相似文献   

18.
19.
Significant amounts of SO42?, Na+, and OH? are incorporated in marine biogenic calcites. Biogenic high Mg-calcites average about 1 mole percent SO42?. Aragonites and most biogenic low Mg-calcites contain significant amounts of Na+, but very low concentrations of SO42?. The SO42? content of non-biogenic calcites and aragonites investigated was below 100 ppm. The presence of Na+ and SO42? increases the unit cell size of calcites. The solid-solutions show a solubility minimum at about 0.5 mole percent SO42? beyond which the solubility rapidly increases. The solubility product of calcites containing 3 mole percent SO42? is the same as that of aragonite. Na+ appears to have very little effect on the solubility product of calcites. The amounts of Na+ and SO42? incorporated in calcites vary as a function of the rate of crystal growth. The variation of the distribution coefficient (D) of SO42? in calcite at 25.0°C and 0.50 molal NaCl is described by the equation D = k0 + k1R where k0 and k1 are constants equal to 6.16 × 10?6 and 3.941 × 10?6, respectively, and R is the rate of crystal growth of calcite in mg·min?1·g?1 of seed. The data on Na+ are consistent with the hypothesis that a significant amount of Na+ occupies interstitial positions in the calcite structure. The distribution of Na+ follows a Freundlich isotherm and not the Berthelot-Nernst distribution law. The numerical value of the Na+ distribution coefficient in calcite is probably dependent on the number of defects in the calcite structure. The Na+ contents of calcites are not very accurate indicators of environmental salinities.  相似文献   

20.
In order to better understand the spatiotemporal variations and interrelationships of greenhouse gases (GHG), monthly surface fluxes and profile concentrations of GHG (CO2, N2O and CH4) in karst areas in the Guizhou Province, southwest China, were measured from June 2006 to May 2007. GHG fluxes showed high variability, with a range of 460.9?C1,281.2?mg?m?2?h?1 for CO2, ?25.4 to 81.5???g?m?2?h?1 for N2O and ?28.7 to ?274.9???g?m?2?h?1 for CH4, but no obvious seasonal change trends of the fluxes existed. Profile concentrations of CO2, N2O and CH4 varied between 0.5 and 31.5?mL?L?1, 0.273 and 0.734, and 0.1 and 3.5???L?L?1, respectively. In general, concentrations of CO2 and N2O increased with depth, while CH4 had an inverse trend. However, in October, November and January, the reversal of depth patterns of GHG concentrations took place below 15?cm, close to the soil?Crock interface. The spatiotemporal distribution of CO2 in soil profile was significantly positively correlated with that of N2O (p?<?0.05?C0.01) and negatively correlated with that of CH4 (p?<?0.01). The correlation analysis showed that soil temperature and moisture may be responsible for GHG dynamics in the soils, rather than the exchange of GHG between land and atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号