首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stratospheric polar vortex (SPV), which is an important factor in subseasonal-to-seasonal climate variability and climateprediction, exhibited a remarkable transition from weak in early winter to strong in late winter in 1987/88 (most significant on the interannual timescale during 1979–2019). Therefore, in this study, the subseasonal predictability of this transition SPV case in 1987/88 was investigated using the hindcasts from a selected model (that of the Japan Meteorological Agency) in the Subseasonal-to-Seasonal Prediction project database. Results indicated that the predictability of both weak and strong SPV stages in winter 1987/88, especially near their peak dates, exhibited large sensitivity to the initial condition, which derived mainly from the sensitivity in capturing the 100-hPa eddy heat flux anomalies. Meanwhile, the key tropospheric precursory systems with respect to the occurrence and predictability of this transition SPV case were investigated. The Eurasian teleconnection wave trains might have been a key precursor for the weak SPV stage, while significant tropospheric precursors for the strong SPV stage were not found in this study. In addition, positive correlation (r = 0.41) existed between the forecast biases of the SPV and the NAO in winter 1987/88, which indicates that reducing the forecast biases of the SPV might help to improve the forecasting of the NAO and tropospheric weather.摘要平流层极涡作为冬季次季节尺度上一个重要的可预测性来源, 其强度在1987/88年冬季表现为1979–2019年最显著的转折, 即在前 (后) 冬极端偏弱 (强). 因此在本文中选取这一个例研究了该年冬季平流层极涡在次季节尺度上的可预测性. 结果表明弱极涡和强极涡事件的预测与模式能否准确预测上传行星波的强度紧密相关. 同时, 发现前期对流层欧亚遥相关波列可能是弱极涡事件发生的关键预兆信号. 此外, 模式对平流层极涡强度和北大西洋涛动预测误差之间存在显著正相关关系, 表明模式减少平流层极涡的预测误差可能可以提高北大西洋涛动及相关对流层气候预测.  相似文献   

2.
The North China Plain has been suffering from severe haze pollution in the past few decades. In addition to rapid urbanization and intensive anthropogenic emissions, the complex terrain in this region greatly influences the atmospheric circulation, thereby weakening the ventilation of air pollutants. Nevertheless, the vertical responses of surface-emitted pollutants to the gradient of the terrain and its impact on secondary aerosol formation, as well as its interaction with boundary layer meteorology, have not yet been fully understood. Here, in-situ observations and satellite retrievals together with meteorology–chemistry coupled modeling are integrated to shed light on the terrain effects on atmospheric chemistry and its interaction with physical processes. It is found that the blocking effect of the terrain can result in haze accumulation over the plains and updrafts of pollution along the mountains. Long-term averaged PM2.5 concentrations show that nearly 70% of plain stations exceeded 75 µg m−3, compared with only 12% of high-altitude stations. In the highly polluted month of January 2018, the pollution layer was simulated to be elevated to an altitude of over 2 km. A higher oxidizing capacity in the upper boundary layer tends to accelerate secondary aerosol formation. Furthermore, the elevated pollution layer and the intense secondary formation due to the terrain effects jointly enhanced the aerosol–boundary layer interaction, weakening the vertical dispersion and further deteriorating the air pollution. This study highlights that there are intensified interactions between atmospheric chemistry and physics near complex terrain, which may substantially contribute to haze pollution in China.摘要华北平原地区冬季雾霾污染频发, 本研究结合地面观测, 卫星反演和大气动力-化学耦合模拟发现, 该地区复杂地形加剧了细颗粒物污染及其与大气边界层之间的相互作用. 一方面, 复杂地形导致污染在山麓平原积聚, 加强迎风坡上升气流. 在污染事件中, 污染层易被抬升至1–2公里高度, 高空较强的氧化能力利于二次气溶胶生成; 另一方面, 地形导致的污染层抬升和二次生成进一步加强气溶胶-边界层相互作用, 削弱垂直扩散并加剧近地面大气污染.  相似文献   

3.
The authors’ previous study identified the wave trains of intraseasonal oscillations, which are mainly in the band of 10–30 days, over the North Pacific during summer. The wave trains are zonally oriented and trapped along the upper-tropospheric westerly jet, and accordingly gain energy mainly through baroclinic energy conversion. In this study, the authors investigate the distinct features of the wave trains between early summer (1 June to 7 July) and late summer (8 July to 31 August), considering that the westerly jet experiences a remarkable subseasonal variation over the North Pacific during summer—that is, the jet is much stronger in early summer than late summer. The results indicate that the wave trains are stronger in early summer compared with late summer. Further analysis suggests that, in early summer, the wave trains can obtain energy more efficiently from the basic flow; or more exactly, stronger westerlies through baroclinic energy conversion.摘要我们之前的研究工作表明, 夏季北太平洋上空存在主导周期为10-30天的季节内波列, 波列纬向分布于上层西风急流带中, 并通过斜压能量转换从基本气流获取能量得到发展和维持. 由于西风急流在前夏(6月1日–7月7日)明显强于后夏(7月8日–8月31日), 因而, 在本研究中, 我们着重研究了波列在前, 后夏的不同特征. 研究结果表明, 波列强度在前夏明显强于后夏, 其原因在于波列在前夏能够通过斜压能量转换从更强的西风中获取更多的能量.  相似文献   

4.
To evaluate the downscaling ability with respect to tropical cyclones (TCs) near China and its sensitivity to the model physics representation, the authors performed a multi-physics ensemble simulation with the regional Climate–Weather Research and Forecasting (CWRF) model at a 30 km resolution driven by ERA-Interim reanalysis data. The ensemble consisted of 28 integrations during 1979–2016 with varying CWRF physics configurations. Both CWRF and ERA-Interim can generally capture the seasonal cycle and interannual variation of the TC number near China, but evidently underestimate them. The CWRF downscaling and its multi-physics ensemble can notably reduce the underestimation and significantly improve the simulation of the TC occurrences. The skill enhancement is especially large in terms of the interannual variation, which is most sensitive to the cumulus scheme, followed by the boundary layer, surface and radiation schemes, but weakly sensitive to the cloud and microphysics schemes. Generally, the Noah surface scheme, CAML(CAM radiation scheme as implemented by Liang together with the diagnostic cloud cover scheme of Xu and Randall(1996)) radiation scheme, prognostic cloud scheme, and Thompson microphysics scheme stand out for their better performance in simulating the interannual variation of TC number. However, the Emanuel cumulus and MYNN boundary layer schemes produce severe interannual biases. Our study provides a valuable reference for CWRF application to improve the understanding and prediction of TC activity.摘要为评估CWRF模式的降尺度能力和其热带气旋模拟对物理参数化方案的敏感性, 本文利用ERI再分析资料驱动CWRF在30km网格上对1982-2016年中国近海热带气旋开展了一次集合模拟.结果表明:CWRF与ERI均能模拟出热带气旋的季节变化和年际变化形势且均存在低估, 但相较ERI, CWRF的降尺度技术和集合模拟可以再现更多的热带气旋, 显著减少低估.年际变化结果提升最为明显, 它对积云方案最为敏感, 其次是边界层, 陆面和辐射方案, 对云和微物理方案较弱.该研究为应用CWRF理解和预报热带气旋提供了参考.  相似文献   

5.
Southeast China has comparable stratus cloud to that over the oceans, especially in the cold seasons (winter and spring), and this cloud has a substantial impact on energy and hydrological cycles. However, uncertainties remain across datasets and simulation results about the long-term trend in low-cloud cover in Southeast China, making it difficult to understand climate change and related physical processes. In this study, multiple datasets and numerical simulations were applied to show that low-cloud cover in Southeast China has gone through two stages since 1980—specifically, a decline and then a rise, with the turning point around 2008. The regional moisture transport plays a crucial role in low-cloud cover changes in the cold seasons and is mainly affected by the Hadley Cell in winter and the Walker Circulation in spring, respectively. The moisture transport was not well simulated in CMIP6 climate models, leading to poor simulation of the low-cloud cover trend in these models. This study provides insights into further understanding the regional climate changes in Southeast China.摘要中国东南地区在冬春冷季节盛行低云, 对局地能量平衡和水文循环有重要的作用. 本研究使用多套数据和数值模拟结果, 分析这一地区冷季节内低云云量在1980年至2017年的长期变化. 结果表明, 低云云量经历了先下降后上升的趋势变化, 转折点出现在2008年左右. 局地水汽通量输送在影响低云云量的变化中起着至关重要的作用, 其在冬季和春季分别受到哈德莱环流和沃克环流的影响. CMIP6中的气候模式对水汽通量输送的模拟能力欠佳, 影响了对低云云量的模拟结果.  相似文献   

6.
Decadal–centennial hydroclimate variability over eastern China during the last millennium is investigated using the product of Paleo Hydrodynamics Data Assimilation (PHYDA). Results reveal that the PHYDA depicts a more homogeneous temporal pattern during the early part of the Little Ice Age with other reconstructions than those during the other periods, and could also identify the droughts of 1352–90 AD, 1445–98 AD, 1580–94 AD, and 1626–65 AD during this period. On centennial time scales, the PHYDA shows that the linkage between the Palmer drought severity index over eastern China and the Atlantic Multidecadal Oscillation (AMO) index is more marked than that with the El Niño–Southern Oscillation and the location of the intertropical convergence zone over the Asian–Australian monsoon area during the period after the 1350s. For the decadal droughts, the PHYDA suggests most of the drought events during the last millennium were linked to the El Niño–like mean states and the negative AMO states.摘要利用古水文动力同化数据 (PHYDA) 研究了过去千年中国东部年代际-百年尺度干湿变化特征.结果表明, 对比其它重建数据PHYDA在百年尺度上对小冰期前期中国东部干湿变化的再现能力最好, 其对这一时期发生的年代际干旱事件包括1352–90年,1445–98年,1580–94年和1626–65年干旱事件的再现能力也最强.通过与强迫因子的对比和回归分析, 发现1350年后中国东部百年尺度干事变化主要受北大西洋年代际振荡影响, 而年代际干旱事件的主导因子则是厄尔尼诺和负位相的北大西洋年代际振荡.  相似文献   

7.
In this study, the impact of environmental factors on tropical cyclone (TC) outer-core size was investigated for both migrating and local TCs in the South China Sea during the period 2001–2019. Among all the thermodynamic and dynamic factors, the low-level environmental helicity showed the strongest positive correlation with TC outer-core size. Large helicity favors the development and organization of convection in TCs, and the corresponding strong inflow and large angular momentum fluxes into the system is beneficial for the maintenance and enlargement of TC outer-core size. Besides, the asymmetric distribution of helicity may account for the asymmetry of TC outer-core size. Therefore, the environmental helicity, as an integrated dynamic factor, can provide an alternative view on TC outer-core size.摘要本文利用2001–2019年间的ERA5再分析数据集和热带气旋 (TC) 最佳路径观测, 分析了中国南海TC的外围尺度与环境变量之间的关系. 研究发现, 低层环境螺旋度与TC外围尺度具有显著的正相关. 大的环境螺旋度有利于TC外围对流的增强和组织化, 与之对应的径向入流和角动量输送有利于TC外围尺度的维持或扩张. 此外, 螺旋度的非对称分布与TC外围尺度的非对称性结构也密切相关. 环境螺旋度作为一个包含TC外围对流强度和组织化程度等信息的综合动力因子, 为理解TC外围尺度变化提供了不同的视角.  相似文献   

8.
The relationship between North Atlantic tropical cyclone (TC) peak intensity and subsurface ocean temperature is investigated in this study using atmospheric and ocean reanalysis data. It is found that the peak intensity of basin-wide strong TCs (Categories 4 and 5) is positively correlated with subsurface ocean temperature in the extratropical North Atlantic. A possible physical mechanism is that subsurface ocean temperature in the extratropical North Atlantic can affect local sea surface temperature (SST); on the other hand, the moisture generated by the warming SST in the extratropical North Atlantic is transported to the main region of TC development in the tropics by a near-surface anticyclonic atmospheric circulation over the tropical North Atlantic, affecting TC peak intensity. Moreover, coastal upwelling off Northwest Africa and southern Europe can affect subsurface ocean temperature in the extratropical North Atlantic. Therefore, the peak intensity of strong TCs is also found to be directly correlated with the water temperature in these two upwelling regions on an interdecadal timescale.摘要利用大气与海洋再分析数据等相关资料, 本项研究发现, 北大西洋强台风 (Saffir–Simpson分类中的第4和第5类) 的最大强度与亚热带北大西洋的次表层海温呈正相关. 由于亚热带北大西洋的次表层海温会影响当地的海表温度, 该地区海面产生的水汽通过近地面的反气旋大气环流可被输送到位于热带的台风主要发展区域, 进而影响台风的最大强度. 与此同时, 位于西非北部和南欧的近岸涌升流会影响亚热带北大西洋的次表层海温. 因此, 强台风的最大强度也被发现与上述两个涌升流区域的海温具有相关性, 但是这种相关性主要体现在年代际时间尺度上.  相似文献   

9.
The authors explore the response of the Northern African (NAF) monsoon to orbital forcing in the Last Interglacial (LIG) compared with its response to greenhouses gas (GHG) forcing under the SSP5-8.5 scenario simulated in CMIP6. When the summer surface air temperature increases by 1 °C over the Northern Hemisphere, the NAF monsoon precipitation and its variability during the LIG increase by approximately 51% and 22%, respectively, which is much greater than under SSP5-8.5 (2.8% and 4.3%, respectively). GHG forcing enhances the NAF monsoon mainly by increasing the atmospheric moisture, while the LIG's orbital forcing intensifies the NAF monsoon by changing the monsoon circulation. During the LIG, models and data reconstructions indicate a salient hemispheric thermal contrast between the North and South Atlantic, strengthening the mean-state NAF monsoon precipitation. The interhemispheric temperature contrast enhances atmosphere–ocean interaction and the covariability of the northward sea surface temperature gradient and Saharan low, strengthening the NAF monsoon variability.摘要与人为强迫引起的全球变暖相比, 末次间冰期是轨道强迫引起的过去80万年来最暖的一个间冰期, 但鲜有人研究末次间冰期中北非季风的响应. 因此, 本文基于CMIP6多模式模拟结果对比研究了末次间冰期和SSP5–8.5情景下北非季风的响应, 发现末次间冰期下北非季风平均降水及其降水变率均远大于SSP5–8.5情景下的结果. 轨道强迫导致的北大西洋暖于南大西洋增加了北非季风环流和平均降水, 同时, 南北大西洋海温梯度变化通过增强热带北大西洋的海气相互作用增大了海温梯度和撒哈拉低压的变率, 从而增强了北非季风降水变率.  相似文献   

10.
Extending the atmospheric model top to high altitude is important for simulation of upper atmospheric phenomena, such as the stratospheric quasi-biennial oscillation. The high-top version of the Institute of Atmospheric Physics Atmospheric General Circulation Model with 91 vertical layers (IAP-AGCML91) extends to the mesopause at about 0.01 hPa (~80 km). The high-top model with a fully resolved stratosphere is found to simulate a warmer stratosphere than the low-top version, except near the South Pole, thus reducing its overall cold bias in the stratosphere, and significantly in the upper stratosphere. This sensitivity is shown to be consistent with two separate mechanisms: larger shortwave heating and larger poleward stratospheric meridional eddy heat flux in the high-top model than in the low-top model. Results indicate a significant influence of vertical resolution and model top on climate simulations in IAP-AGCM.摘要提高大气环流模式的模式顶层高度对中高层大气 (如平流层准两年振荡) 的准确模拟至关重要. 本研究将IAP大气环流模型 (IAP-AGCM) 延伸至中层大气顶 (~0.01 hPa, ~80 km) 并提高垂直方向分辨率 (91层) , 发展了一个中高层大气环流模型 (IAP-AGCML91) . 结果表明, 与低层模式相比, 该中高层大气模式在整体上显著减小了平流层尤其是上平流层的冷偏差.研究发现这种改善与两种机制有关:与低层模式相比, 高层模式模拟的短波加热更大, 极区平流层附近的经向涡动热通量更大.上述结果表明, 垂直分辨率和模式顶层高度对IAP-AGCML91的气候模拟有重要影响.  相似文献   

11.
Topography as well as its attributes are fundamental factors during precipitation generation. Various models with different complexity have been established to interpret the topography–precipitation relationship. In this study, the topography–precipitation relationships simulated by two dynamical downscaling models (DDMs) at the kilometer-scale and traditional quarter-degree resolution in eastern China are evaluated by utilizing multi-scale geographically weighted regression with station precipitation observations as reference. The precipitation simulated by the kilometer-scale DDM had a higher agreement with observations than the quarter-degree simulation. For the effects of topography on precipitation, observations revealed a dominant role played by the topographical relief in the precipitation distribution at most stations in the study region. The kilometer-scale DDM generally reflected this dominant role of topographical relief. However, the quarter-degree DDM showed an excessive dependency of the precipitation distribution on the topographical elevation. This research highlights the key role of underground sub-grid variations on the precipitation in eastern China, which implies a potential way forward for precipitation simulation improvements.摘要与传统的1/4度 (≈25-30 km) 动力降尺度模拟相比, 公里尺度模拟的降水空间分布与观测结果更为接近. 为了研究这一差异原因, 本研究以华东地区为例, 探究了地形因子在观测和模拟的降水中的作用. 为了更好地体现地形因子对降水分布非均匀性的影响, 以及不同地形因子作用的尺度差异, 本研究采用多尺度地理加权回归模型, 对五个主要地形因子与公里尺度和1/4度分辨率模拟的降水的关系进行了评估. 基于观测数据的研究结果显示地形起伏度, 地形高程和离海岸线距离对华东地区降水分布的非均匀性都有重要影响, 其中地形起伏度在研究区大部分站点降水分布中起主导作用; 公里尺度模拟结果基本反映了地形起伏度的主导作用; 而1 / 4度模拟结果表现出降水对地形高程的过度依赖. 本研究揭示了公里尺度地形分布对中国东部降水的非均匀分布的关键作用, 研究结果可以为改进降水模拟提供新的思路.  相似文献   

12.
In recent years, the Cloud Imaging Probe (CIP) and Precipitation Imaging Probe (PIP) produced by Droplet Measurement Technologies (DMT) have been introduced by a number of meteorological research and operation centers in China. The supporting software provided by DMT, i.e., PADS (Particle Analysis and Display System), cannot output detailed information on each individual particle, which definitely limits the in-depth utilization of cloud and precipitation particle image data in China. In this paper, particle-by-particle information was extracted by decompressing the CIP and PIP original particle image data, based on which a new definition of the dimension for nonspherical particles is proposed by using the area of the convex hull enclosing a particle to obtain the equivalent diameter of a circle with equal area. Based on the data detected during one flight in Inner Mongolia, the particle size distribution obtained using the new particle size definition and that used by the other four existing definitions are compared. The results show that the particle number concentration calculated using different particle size definitions can vary by up to an order of magnitude. The result obtained based on the new particle size definition is closest to that calculated with the area-equivalent diameter definition.摘要 国内许多气象部门已引进美国DMT公司的云粒子图像探头 (CIP) 和降水粒子图像探头 (PIP) . 由于其配套软件不能输出逐个粒子的详细信息, 在很大程度上限制了对云降水粒子图像探测数据的深入挖掘. 通过解析CIP和PIP原始数据, 提出了一种基于包围粒子凸多边形的面积求取粒子尺度的新定义. 利用在内蒙古的一次航测数据, 对比分析了基于新定义及已有的四种粒子尺度定义求取的粒子尺度谱分布.  相似文献   

13.
During the Asian summer monsoon (ASM) season, the process of stratosphere–troposphere exchange significantly affects the concentration and spatial distribution of chemical constituents in the upper troposphere and lower stratosphere (UTLS). However, the effect of the intensity of the Asian summer monsoon anticyclone (ASMA) on the horizontal distribution of chemical species within and around the ASMA, especially on the daily time scale, remains unclear. Here, the authors use the MERRA-2 reanalysis dataset and Aura Microwave Limb Sounder observations to study the impact of ASMA intensity on chemical distributions at 100 hPa during the ASM season. The intraseasonal variation of ASMA is classified into a strong period (SP) and weak period (WP), which refer to the periods when the intensity of ASMA remains strong and weak, respectively. The relatively low ozone (O3) region is found to be larger at 100 hPa during SPs, while its mixing ratio is lower than during WPs in summer. In June, analysis shows that the O3 horizontal distribution is mainly related to the intensity of AMSA, especially during SPs in June, while deep convections also impact the O3 horizontal distribution in July and August. These results indicate that the intraseasonal variation of the ASMA intensity coupled to deep convection can significantly affect the chemical distribution in the UTLS region during the ASM season.摘要亚洲夏季风期, 平流层–对流层物质交换过程能显著影响上对流层下平流层化学成分的浓度变化和空间分布. 然而, 亚洲夏季风反气旋强度的季节内变化对其内部和周围地区化学成分水平分布的影响尚不清楚. 本文将亚洲夏季风反气旋划分为季节内强周期和弱周期, 发现当亚洲夏季风反气旋更强时, 100 hPa O3低值区的面积更大, O3浓度更低. 但是这种影响主要体现在6月份, 7, 8月的O3水平分布还受东南亚地区深对流的影响. 这些结果表明亚洲夏季风反气旋强度和深对流的季节内变化可以显著影响亚洲夏季风期上对流层下平流层的化学分布.  相似文献   

14.
西北涡是我国西北地区一类发生频率较高的中尺度涡旋,其所引发灾害的强度与西南低涡,高原涡相当,但相关研究却远远少于前两种涡旋.为了深化对西北涡的认识,本文利用水汽与环流收支对一次长生命史西北涡(其在西北地区引发了一系列暴雨过程,导致了严重的输电线路故障与城市内涝)进行了研究,发现,东海与渤海是此西北涡引发暴雨的主要水汽来...  相似文献   

15.
This study investigates the variability of annual tropical cyclone (TC) frequency and intensity over six major ocean basins from 1980 to 2021. Statistical change-point and trend analyses were performed on the TC time series to detect significant decadal variation in TC activities. In the middle of the last decade of the 20th century, the frequency of TC genesis in the North Atlantic basin (NA) and North Indian Ocean (NIO) increased dramatically. In contrast, the frequency in the western North Pacific (WNP) decreased significantly at the end of the century. The other three basins—the East Pacific, southern Indian, and South Pacific—all experienced a declining trend in annual TC frequency. Over recent decades, the average TC intensity has decreased in the East Pacific and the NA, whereas it has risen in the other ocean basins. Specifically, from 2013 to 2021, the average peak TC intensity in the NIO has enhanced significantly. The magnitude of the Genesis Potential Index exhibits fluctuation that is consistent with large-scale parameters in the NIO, NA, and WNP, emphasizing the enhancing and declining trends in TCs. In addition, a trend and correlation analysis of the averaged large-scale characteristics with TCs revealed significant associations between the vertical wind shear and TC frequency over the NIO, NA, and WNP. Therefore, global TC trends and decadal variations associated with environmental parameters deserve further investigation in the future, mainly linked to the significant climate modes.摘要研究发现在1980–2021期间全球6个海域每年热带气旋的发生频次和强度具有显著年代际变化规律, 最近几十年, 北大西洋和北印度洋的热带气旋发生频次明显增加, 但西北太平洋的热带气旋却显著下降. 另外三个海域, 东太平洋, 南印度洋和南太平洋发现所生成的热带气旋有减少趋势. 但在过去十几年, 平均热带气旋的强度除了在东太平洋和北大西洋有所减弱但在其他几个海域有所加强, 特别是在 2013–2021期间, 北印度洋的平均热带气旋的强度增强明显. 热带气旋的潜在生成指数 (GPI) 增加或减少趋势变化与北印度洋, 北大西洋和西太平洋热带气旋变化相关的大尺度环流一致. 另外, 北印度洋, 北大西洋和西太平洋上空的垂直风切变是影响其区域热带气旋发生频次变化的主要因子, 不同的气候模态也可能对全球热带气旋的趋势变化和年代际变化有影响, 值得进一步研究.  相似文献   

16.
The regional air quality modeling system RAMS-CMAQ was applied to simulate the aerosol concentration for the period 2045–2050 over China based on the downscaled meteorological field of three RCP scenarios from CESM (NCAR's Community Earth System Model) in CMIP5. The downscaling simulation of the meteorological field of the three RCP scenarios showed that, compared with that under RCP2.6, the difference in near-surface temperature between North and South China is weakened and the wind speed increases over North and South China and decreases over central China under RCP4.5 and RCP8.5. Under RCP2.6, from 2045 to 2050, the modeled average PM2.5 concentration is highest, with a value of 40–50 µg m−3, over the North China Plain, part of the Yangtze River Delta, and the Sichuan Basin. Meanwhile, it is 30–40 µg m−3 over central China and part of the Pearl River Delta. Compared with RCP2.6, PM2.5 increases by 4–12 µg m−3 under both RCP4.5 and RCP8.5, of which the SO42− and NH4+ concentration increases under both RCP4.5 and RCP8.5; the NO3 concentration decreases under RCP4.5 and increases under RCP8.5; and the black carbon concentration changes very slightly, and organic carbon concentration decreases, under RCP4.5 and RCP8.5, with some increase over part of Southwest and Southeast China under RCP8.5. The difference between RCP4.5 and RCP2.6 and the difference between RCP8.5 and RCP2.6 have similar annual variation for different aerosol species, indicating that the impact of climate change on different species tends to be consistent.摘要基于来自于 CMIP5 中 CESM 模式的三种 RCP 情景下的气象场的降尺度模拟, 应用区域空气质量模式系统 RAMS-CMAQ 模拟 2045-2050 年中国地区气溶胶浓度.三种 RCP 情景下气象场的降尺度模拟表明, 与 RCP2.6 相比, 在 RCP4.5 和 RCP8.5 下, 华北和华南的近地表温度差减小, 风速在华北和华南地区增加, 在中部地区下降. RCP2.6 情景下, 模拟的 2045 年到 2050 年平均的 PM 2.5浓度在华北平原, 长三角的部分地区和四川盆地最高, 约为 40-50 µg m–3, 在中国中部和珠三角的部分地区约为 30-40 µg m–3. 与 RCP2.6 相比, 在 RCP4.5 和 RCP8.5 下, PM2.5增加了 4-12 µg m–3, 其中在 RCP4.5 和 RCP8.5 下, SO42–和 NH4+的浓度增加, 在 RCP4.5 下, NO3–浓度降低, 在 RCP8.5 下, NO3–浓度升高, 在 RCP4.5 和 RCP8.5 下, BC 浓度变化很小, 而 OC 浓度下降, 其中在 RCP8.5 下, 西南和东南部分地区的 OC 有所增加.不同的气溶胶物种浓度在 RCP4.5 和 RCP2.6 之间的差异以及 RCP8.5 和 RCP2.6 之间的差异具有相似的年度变化, 这表明气候变化对不同物种的影响趋于一致.  相似文献   

17.
Observations have shown a largely enhanced seasonal amplitude of northern atmospheric CO2 in the past several decades, and this enhancement is attributable to the increased seasonal amplitude of northern net ecosystem productivity (NEP amplitude). In the future, however, the changes in NEP amplitude are not clear, because of the uncertainties in climate change and vegetation dynamics. This study investigated the changes in NEP amplitude north of 45°N under future global warming by using a dynamic global vegetation model (DGVM). The authors conducted two sets of simulations: a present-day simulation (1981–2000) and future simulations (2081–2100) forced by RCP8.5 outputs from CMIP5. The results showed an overall enhanced northern NEP amplitude under the RCP8.5 scenario because of the increased maximum NEP and the decreased minimum NEP. The increases (decreases) in the maximum (minimum) NEP resulted from stronger (weaker) positive changes in gross primary production (GPP) than ecosystem respiration (ER). Changes in GPP and ER are both dominantly driven by surface air temperature and vegetation dynamics. This work highlights the key role of vegetation dynamics in regulating the northern terrestrial carbon cycle and the importance of including a DGVM in Earth system models.摘要观测显示过去几十年北半球大气二氧化碳季节幅度大幅增加, 这主要是由北半球陆地净生态系统生产力季节幅度的增加所致. 但是, 因为气候变化和植被动态的不确定性, 未来陆地净生态系统生产力季节幅度的变化还很不清楚. 本工作利用全球植被动力学模式研究了全球变暖背景下北纬45°以北陆地净生态系统生产力季节幅度的变化. 作者做了两大类试验: 当代试验 (1981−2000) 和CMIP5 RCP8.5 变暖情景驱动的未来试验 (2081−2100) . 结果显示, 在RCP8.5变暖情景下北半球中高纬陆地净生态系统生产力季节幅度整体增加, 这是因为陆地净生态系统生产力的月最大值增加且月最小值减小. 最大 (最小) 陆地净生态系统生产力的增加 (减小) 是由于总初级生产力的增加强 (弱) 于生态系统总呼吸. 总初级生产力和生态系统总呼吸的变化都主要受地表气温和植被动态的驱动. 本工作强调了植被动态对北半球中高纬陆地生态系统碳循环的关键调制作用, 也强调了在地球系统模式中包含全球植被动力学模式的重要性.  相似文献   

18.
The ocean's thermal inertia is a major contributor to irreversible ocean changes exceeding time scales that matter to human society. This fact is a challenge to societies as they prepare for the consequences of climate change, especially with respect to the ocean. Here the authors review the requirements for human actions from the ocean's perspective. In the near term (~2030), goals such as the United Nations Sustainable Development Goals (SDGs) will be critical. Over longer times (~2050–2060 and beyond), global carbon neutrality targets may be met as countries continue to work toward reducing emissions. Both adaptation and mitigation plans need to be fully implemented in the interim, and the Global Ocean Observation System should be sustained so that changes can be continuously monitored. In the longer-term (after ~2060), slow emerging changes such as deep ocean warming and sea level rise are committed to continue even in the scenario where net zero emissions are reached. Thus, climate actions have to extend to time scales of hundreds of years. At these time scales, preparation for “high impact, low probability” risks — such as an abrupt showdown of Atlantic Meridional Overturning Circulation, ecosystem change, or irreversible ice sheet loss — should be fully integrated into long-term planning.摘要在全球变化背景下, 海洋的很多变化在人类社会发展的时间尺度上 (百年至千年) 具有不可逆转性, 海洋巨大的热惯性是造成该不可逆性的主要原因. 这个特征为人类和生态系统应对海洋变化提出一系列挑战. 本文从海洋变化的角度总结了人类应对气候变化的要求, 提出需要进行多时间尺度的规划和统筹. 在近期 (到2030年) , 实现联合国可持续发展目标至关重要. 在中期 (2050–2060年前后) , 全球需要逐步减排并实现碳中和目标. 同时, 适应和减缓气候变化的行动和措施必须同步施行; 全球海洋观测系统需要得以维持并完善以持续监测海洋变化. 在远期 (在2060年之后) , 即使全球达到净零排放, 包括深海变暖和海平面上升在内的海洋变化都将持续, 因此应对全球变化的行动需持续数百年之久. 在该时间尺度, 应对“低概率, 高影响”气候风险 (即发生的可能性较低, 但一旦发生影响极大的事件带来的风险, 例如: 大西洋经圈反转环流突然减弱, 海洋生态系统跨过临界点, 无可挽回的冰盖质量损失等) 的准备应充分纳入长期规划.  相似文献   

19.
The stratospheric ozone layer protects life on earth by preventing solar ultraviolet radiation from reaching the surface. Owing to the large population in the Northern Hemisphere and extreme ozone loss in the Arctic, changes in Arctic stratospheric ozone (ASO) and their causes have attracted broad attention recently. Using monthly mean data during the period 1980–2020 from MERRA-2, the relationship between the stratospheric polar vortex (SPV) and ASO, along with the relative contributions of chemical and dynamic processes associated with the SPV to changes in ASO, were examined in this study. Results showed that the ASO in March has a strong out-of-phase link with the strength of the SPV in March, with no obvious lead–lag correlations, i.e., an increase (decrease) in ASO corresponds to a weakened (strengthened) SPV. Further analysis suggested that the strong out-of-phase link between the SPV and ASO is related to changes in Brewer–Dobson circulation (BDC). Strong SPV events, accompanied by a low temperature condition and weakened upward propagation of planetary waves over the Arctic in the stratosphere, result in weakened BDC. The weakened downwelling at high latitudes tends to transport less ozone-rich air in the upper stratosphere at lower latitudes into the lower stratosphere at high latitudes, facilitating a decrease in ASO. The BDC's vertical velocity plays the dominant role in modulating ASO.摘要利用1980–2020年MERRA-2资料, 分析了平流层极涡 (Stratospheric polar vortex, SPV) 和北极臭氧 (Arctic stratospheric ozone, ASO) 的关系, 评估了与SPV相关的化学, 动力过程在其中的相对作用. 结果表明, 3月份ASO与同期SPV强度反相关最大. SPV-ASO二者反相关与平流层剩余环流 (Brewer-Dobson circulation, BDC) 变化密切相关. 强SPV伴随的北极平流层低温条件和行星波向上传播减弱, 导致BDC减弱, 减弱的BDC下沉支将低纬度平流层上层臭氧含量较低的空气输送到北极平流层低层, 从而导致ASO减少. BDC垂直速度在其中起主导作用.  相似文献   

20.
Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau (TP) as a major factor driving the East Asian summer monsoon (EASM) for its direct influence on the land–sea thermal contrast. Actually, the TP snow increased and decreased after the late 1970s and 1990s, respectively, accompanying the two major interdecadal changes in the EASM. Although studies have explored the possible mechanisms of the EASM interdecadal variations, and change in TP snow is considered as one of the major drivers, few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow. This study reveals a tripole pattern of change, with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s. Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation. The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region. These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation. Therefore, the positive–negative–positive winter precipitation anomalies around the TP are formed. This study improves the previously poor understanding of TP climate variation at interdecadal timescales.摘要在20世纪70年代和90年代末, 伴随着东亚夏季风的两次主要年代际变化, 高原积雪分别显著增加和减少. 尽管很多学者研究了东亚夏季风年代际变化的可能机制, 高原积雪变化也被认为是主要因素之一, 但是关于高原冬季积雪本身发生年代际变化的潜在机制尚鲜有研究. 本文揭示了20世纪90年代末高原及周边冬季降水的三极子变化特征: 高原主体上空主要为降水减少, 其南北两侧区域降水增加. 数值试验结果表明, 热带太平洋海温变化可以通过调节沃克环流和局地哈德莱环流, 对上述三极子降水变化型态产生显著影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号