首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
台风作为一种灾害性天气,其破坏性大小与自身强度有很大的关系.因此,本项研究利用NCEP-NCAR和MERRA再分析数据,考查了北大西洋,西北太平洋,东北太平洋台风强度峰值与对流层温度的关系.台风强度峰值与大气温度的相关系数,以及极大和极小台风强度峰值下大气温度的差值,共同显示:北大西洋台风强度峰值受到对流层顶低温和对流...  相似文献   

2.
Using reanalysis data and model simulations, this study reveals an increase in September landfalling North Atlantic tropical cyclones (TCs) during years that have a strengthened Saharan dust plume, and the related physical processes are investigated by analyzing the relationship of dust aerosol optical depth with TC track, intensity, and the related meteorological environment. Suppression of the sea surface temperature (SST) by the Saharan dust plume can hinder TC tracks over the central tropical North Atlantic, inducing westward development of TC tracks to the western tropical North Atlantic with higher SST, which is more conducive to TCs forming major hurricanes. This physical process increases TC landfalls in North America, especially major hurricane landfalls in the continental United States, leading to greater potential destructiveness.摘要本项研究利用再分析数据和模式模拟数据分析了沙尘的气溶胶光学厚度与台风的登陆, 轨迹, 强度及相关气象环境参数的关系, 揭示了9月北大西洋台风的登陆次数会在撒哈拉沙尘较强的年份中增加, 以及这一现象的物理机制. 撒哈拉沙尘对热带北大西洋中部海表温度具有抑制作用, 会阻碍该地区的台风活动, 因此台风只能向西移动进入海表温度较高的热带北大西洋西部, 从而更易于形成强台风. 这一物理过程将导致台风登陆北美大陆的频次增加, 特别是强台风登陆美国的可能性增强, 产生更大的潜在破坏性.  相似文献   

3.
The effect of the Tibetan Plateau (TP) on the Intertropical Convergence Zone (ITCZ) was investigated using a coupled Earth system model. The location of the ITCZ (in this work represented by the center of the tropical precipitation maximum) over the tropical Atlantic was found to be sensitive to the existence of the TP. Removing the TP led to a remarkable sea surface temperature (SST) cooling (warming) in the Northern (Southern) Hemisphere, which manifested clearly in the Atlantic rather than the Pacific. The locations of maximum precipitation and SST moved southwards clearly in the tropical Atlantic, forcing a southward shift of the atmospheric convection center, and thus the ITCZ. The shift in the ITCZ was also supported by the latitudinal change in the ascending branch of the tropical Hadley Cell, which moved southwards by about 2° in the boreal summer in response to the TP's removal. From the viewpoint of the energy balance between the two hemispheres, the cooling (warming) in the Northern (Southern) Hemisphere requires an enhanced northward atmospheric heat transport across the equator, which can be realized by the southward displacement of the ITCZ. This study suggests that the presence of the TP may have played an important role in the climatology of the ITCZ, particularly its location over the tropical Atlantic.摘要本文利用耦合地球气候系统模式研究了青藏高原对热带辐合带 (ITCZ) 的影响. 我们研究发现热带大西洋ITCZ的位置对青藏高原存在与否有明显的敏感性. 与目前真实情况相比, 移除青藏高原会导致北半球海面降温, 南半球海面升温. 这种海面温度变化在大西洋表现得尤为明显, 导致热带大西洋最大海温中心向南移动, 从而迫使大气对流中心向南移动, 即表现为ITCZ的南移. 相应地, 夏季热带大气Hadley环流的上升支也发生明显南移. 北 (南) 半球海洋变冷 (变暖) 这种态势要求增强跨赤道向北的大气经向热量输送, 从而维持各个半球的能量平衡, 而这需要ITCZ位置的南移才能实现. 本文研究表明, 青藏高原的存在在现今ITCZ气候态的形成中可能扮演了重要角色.  相似文献   

4.
Based on reanalysis data from 1979 to 2016, this study focuses on the sea surface temperature (SST) anomaly of the tropical North Atlantic (TNA) in El Niño decaying years. The TNA SST exhibits a clear warm trend during this period. The composite result for 10 El Niño events shows that the TNA SST anomaly reaches its maximum in spring after the peak of an El Niño event and persists until summer. In general, the anomaly is associated with three factors—namely, El Niño, the North Atlantic Oscillation (NAO), and a long-term trend, leading to an increase in local SST up to 0.4°C, 0.3°C, and 0.35°C, respectively. A comparison between 1983 and 2005 indicates that the TNA SST in spring is affected by El Niño, as well as the local SST in the preceding winter, which may involve a long-term trend signal. In addition, the lead–lag correlation shows that the NAO leads the TNA SST by 2–3 months. By comparing two years with an opposite phase of the NAO in winter (i.e., 1992 and 2010), the authors further demonstrate that the NAO is another important factor in regulating the TNA SST anomaly. A negative phase of the NAO in winter will reinforce the El Niño forcing substantially, and vise versa. In other words, the TNA SST anomaly in the decaying years is more evident if the NAO is negative with El Niño. Therefore, the combined effects of El Niño and the NAO must be considered in order to fully understand the TNA SST variability along with a long-term trend.摘要基于1979年到2016年多种再分析资料, 本文分析了El Niño衰减年热带北大西洋的海温异常. 结果表明, 热带北大西洋海温在此期间呈显著变暖趋势. 10次El Niño事件的合成结果表明热带北大西洋海温异常在El Niño事件峰值之后的春季达到最大值, 并持续到夏季. 一般而言, 这种异常与三个因子有关, 即El Niño, 北大西洋涛动和长期趋势, 能分别导致局地海温上升0.4°C, 0.3°C和0.35°C. 1983年和2005年的对比分析表明, 尽管El Niño强度对春季北大西洋海温起到决定性作用, 与长期趋势密切相关的前冬海温也很重要. 此外, 超前-滞后相关结果表明北大西洋涛动超前海温约2–3个月. 比较两个冬季相反位相北大西洋涛动的年份 (即1992年和2010年) , 表明北大西洋涛动也能调制北大西洋海温异常. 冬季负位相北大西洋涛动能显著增强El Niño的强迫影响, 反之亦然. 换言之, 如果北大西洋涛动与El Niño位相相合, 衰减年北大西洋海温异常才更为显著. 因此, 为全面理解热带北大西洋海温变化, 除长期趋势外, 还必须考虑El Niño和北大西洋涛动的综合影响.  相似文献   

5.
This study investigates the variability of annual tropical cyclone (TC) frequency and intensity over six major ocean basins from 1980 to 2021. Statistical change-point and trend analyses were performed on the TC time series to detect significant decadal variation in TC activities. In the middle of the last decade of the 20th century, the frequency of TC genesis in the North Atlantic basin (NA) and North Indian Ocean (NIO) increased dramatically. In contrast, the frequency in the western North Pacific (WNP) decreased significantly at the end of the century. The other three basins—the East Pacific, southern Indian, and South Pacific—all experienced a declining trend in annual TC frequency. Over recent decades, the average TC intensity has decreased in the East Pacific and the NA, whereas it has risen in the other ocean basins. Specifically, from 2013 to 2021, the average peak TC intensity in the NIO has enhanced significantly. The magnitude of the Genesis Potential Index exhibits fluctuation that is consistent with large-scale parameters in the NIO, NA, and WNP, emphasizing the enhancing and declining trends in TCs. In addition, a trend and correlation analysis of the averaged large-scale characteristics with TCs revealed significant associations between the vertical wind shear and TC frequency over the NIO, NA, and WNP. Therefore, global TC trends and decadal variations associated with environmental parameters deserve further investigation in the future, mainly linked to the significant climate modes.摘要研究发现在1980–2021期间全球6个海域每年热带气旋的发生频次和强度具有显著年代际变化规律, 最近几十年, 北大西洋和北印度洋的热带气旋发生频次明显增加, 但西北太平洋的热带气旋却显著下降. 另外三个海域, 东太平洋, 南印度洋和南太平洋发现所生成的热带气旋有减少趋势. 但在过去十几年, 平均热带气旋的强度除了在东太平洋和北大西洋有所减弱但在其他几个海域有所加强, 特别是在 2013–2021期间, 北印度洋的平均热带气旋的强度增强明显. 热带气旋的潜在生成指数 (GPI) 增加或减少趋势变化与北印度洋, 北大西洋和西太平洋热带气旋变化相关的大尺度环流一致. 另外, 北印度洋, 北大西洋和西太平洋上空的垂直风切变是影响其区域热带气旋发生频次变化的主要因子, 不同的气候模态也可能对全球热带气旋的趋势变化和年代际变化有影响, 值得进一步研究.  相似文献   

6.
The authors explore the response of the Northern African (NAF) monsoon to orbital forcing in the Last Interglacial (LIG) compared with its response to greenhouses gas (GHG) forcing under the SSP5-8.5 scenario simulated in CMIP6. When the summer surface air temperature increases by 1 °C over the Northern Hemisphere, the NAF monsoon precipitation and its variability during the LIG increase by approximately 51% and 22%, respectively, which is much greater than under SSP5-8.5 (2.8% and 4.3%, respectively). GHG forcing enhances the NAF monsoon mainly by increasing the atmospheric moisture, while the LIG's orbital forcing intensifies the NAF monsoon by changing the monsoon circulation. During the LIG, models and data reconstructions indicate a salient hemispheric thermal contrast between the North and South Atlantic, strengthening the mean-state NAF monsoon precipitation. The interhemispheric temperature contrast enhances atmosphere–ocean interaction and the covariability of the northward sea surface temperature gradient and Saharan low, strengthening the NAF monsoon variability.摘要与人为强迫引起的全球变暖相比, 末次间冰期是轨道强迫引起的过去80万年来最暖的一个间冰期, 但鲜有人研究末次间冰期中北非季风的响应. 因此, 本文基于CMIP6多模式模拟结果对比研究了末次间冰期和SSP5–8.5情景下北非季风的响应, 发现末次间冰期下北非季风平均降水及其降水变率均远大于SSP5–8.5情景下的结果. 轨道强迫导致的北大西洋暖于南大西洋增加了北非季风环流和平均降水, 同时, 南北大西洋海温梯度变化通过增强热带北大西洋的海气相互作用增大了海温梯度和撒哈拉低压的变率, 从而增强了北非季风降水变率.  相似文献   

7.
China has been frequently suffering from haze pollution in the past several decades. As one of the most emission-intensive regions, the North China Plain (NCP) features severe haze pollution with multiscale variations. Using more than 30 years of visibility measurements and PM2.5 observations, a subseasonal seesaw phenomenon of haze in autumn and early winter over the NCP is revealed in this study. It is found that when September and October are less (more) polluted than the climatology, haze tends to be enhanced (reduced) in November and December. The abrupt turn of anomalous haze is found to be associated with the circulation reversal of regional and large-scale atmospheric circulations. Months with poor air quality exhibit higher relative humidity, lower boundary layer height, lower near-surface wind speed, and southerly anomalies of low-level winds, which are all unfavorable for the vertical and horizontal dispersion and transport of air pollutants, thus leading to enhanced haze pollution over the NCP region on the subseasonal scale. Further exploration indicates that the reversal of circulation patterns is closely connected to the propagation of midlatitude wave trains active on the subseasonal time scale, which is plausibly associated with the East Atlantic/West Russia teleconnection synchronizing with the transition of the North Atlantic SST. The seesaw relation discussed in this paper provides greater insight into the prediction of the multiscale variability of haze, as well as the possibility of efficient short-term mitigation of haze to meet annual air quality targets in North China.摘要中国近几十年来频受雾霾污染问题困扰, 其中华北平原作为排放最密集的区域之一, 常遭遇不同尺度的严重雾霾污染. 本文利用30余年的能见度和颗粒物 (PM2.5) 观测数据, 发现了华北平原地区在秋季和早冬时雾霾污染在次季节尺度上“跷跷板式”反向变化的关系. 研究发现, 当9–10月污染较轻 (重) 时, 11–12月的污染倾向于加重 (减轻) . 这种突然的变化与局地和大尺度环流的反向变化有关. 污染较重的月份常伴随有更高的相对湿度, 更低的边界层高度和近地面风速以及低层的南风异常, 均不利于污染的垂直和水平扩散和传输, 从而导致了次季节尺度上霾污染的加重. 进一步的研究发现环流场的突然转向与在次季节尺度上活跃的中纬度波列的传播密切相关, 而此波列可能主要与大西洋海温转变及引起的EA/WR遥相关型有关. 这一次季节反向变化为霾污染多尺度变率预测提供了新的理解, 同时为华北地区年度空气质量达标的短期目标提供了具有可行性的参考方法.  相似文献   

8.
In November 2020, the eastern Arctic experienced an extensive extreme warm anomaly (i.e., the second strongest case since 1979), which was followed by extreme cold conditions over East Asia in early winter. The observed Arctic warm anomaly in November 2020 was able to extend upwards to the upper troposphere, characterized as a deep Arctic warm anomaly. In autumn 2020, substantial Arctic sea-ice loss that exceeded the record held since 1979, accompanied by increased upward turbulent heat flux, was able to strongly warm the Arctic. Furthermore, there was abundant northward moisture transport into the Arctic from the North Atlantic, which was the strongest in the past four decades. This extreme moisture intrusion was able to enhance the downward longwave radiation and strongly contribute to the warm conditions in the Arctic. Further analysis indicated that the remote moisture intrusion into the Arctic was promoted by the large-scale atmospheric circulation patterns, such as the wave train propagating from the midlatitude North Atlantic to the Arctic. This process may have been linked to the warmer sea surface temperature in the midlatitude North Atlantic.摘要2020年11月北极东部显著偏暖, 表面气温暖异常为1979年以来第二强, 且北极表层偏暖可以延伸至对流层上层. 本文进一步研究了此次北极极端偏暖的可能原因. 2020年秋季北极海冰大幅减少, 11月从北大西洋向北极的水汽输送显著增加, 且二者的变化幅度均超过了1979年以来的最高纪录, 进而导致北极出现极端暖异常. 此外, 从中纬度向北极的Rossby波传播有利于向极水汽输送增加, 且此过程可能与北大西洋中纬度海温异常有关.  相似文献   

9.
北美偶极子(NAD)是热带北大西洋西部和北美东北部的南北向海平面气压异常偶极型模态.以往的观测研究表明,NAD可以有效地影响ENSO事件的爆发.本文利用全球耦合模式FGOALS-g2,评估了NAD与ENSO的关系.结果表明,该模式能较好地重现NAD模态.进一步的分析验证了冬季NAD可以通过强迫冬末春初副热带东北太平洋上空的反气旋和暖海温的出现,在随后的冬季触发El Ni?o事件.此外,在同化NAD实验中,发生El Ni?o事件的概率增加了将近一倍.相比之下,NAO未能在副热带东北太平洋上空引起表面风和海温的异常,因而不能有效地激发次年冬季ENSO事件.  相似文献   

10.
Observational data from satellite altimetry were used to quantify the performance of CMIP6 models in simulating the climatological mean and interannual variance of the dynamic sea level (DSL) over 40°S–40°N. In terms of the mean state, the models generally agree well with observations, and high consistency is apparent across different models. The largest bias and model discrepancy is located in the subtropical North Atlantic. As for simulation of the interannual variance, good agreement can be seen across different models, yet the models present a relatively low agreement with observations. The simulations show much weaker variance than observed, and bias is apparent over the subtropics in association with strong western boundary currents. This nearshore bias is reduced considerably in HighResMIP models. The underestimation of DSL interannual variance is at least partially due to the misrepresentation of ocean processes in the CMIP6 historical simulation with its relatively low resolution. The results identify directions for future model development towards a better understanding of the mean and interannual variability of DSL.摘要本研究采用卫星测高数据与第六次国际耦合模式比较计划 (CMIP6) 海平面动力进行对比, 重点针对40°S–40°N地区的动力海平面 (DSL) , 评估了模式对其平均态与年际变率的综合模拟能力. 结果表明, 对于DSL平均态的模拟, 模式与观测结果非常吻合, 模式之间的差异较小. 其中, 副热带北大西洋是模拟偏差和模式间差异较为显著的区域. 对于DSL年际变率的模拟, 模式之间保持较高的一致性, 但是, 模式与观测结果存在明显差异, 模式普遍低估了DSL的年际方差; 其中, 误差大值区域出现在副热带西边界流附近. 模式分辨率会影响CMIP6对中小尺度海洋过程的重现能力, 这可能是导致CMIP6历史模拟出现误差的原因之一.  相似文献   

11.
Many coupled models are unable to accurately depict the multi-year La Niña conditions in the tropical Pacific during 2020–22, which poses a new challenge for real-time El Niño–Southern Oscillation (ENSO) predictions. Yet, the corresponding processes responsible for the multi-year coolings are still not understood well. In this paper, reanalysis products are analyzed to examine the ocean–atmosphere interactions in the tropical Pacific that have led to the evolution of sea surface temperature (SST) in the central-eastern equatorial Pacific, including the strong anomalous southeasterly winds over the southeastern tropical Pacific and the related subsurface thermal anomalies. Meanwhile, a divided temporal and spatial (TS) 3D convolution neural network (CNN) model, named TS-3DCNN, was developed to make predictions of the 2020/21 La Niña conditions; results from this novel data-driven model are compared with those from a physics-based intermediate coupled model (ICM). The prediction results made using the TS-3DCNN model for the 2020–22 La Niña indicate that this deep learning–based model can capture the two-year La Niña event to some extent, and is comparable to the IOCAS ICM; the latter dynamical model yields a successful real-time prediction of the Niño3.4 SST anomaly in late 2021 when it is initiated from early 2021. For physical interpretability, sensitivity experiments were designed and carried out to confirm the dominant roles played by the anomalous southeasterly wind and subsurface temperature fields in sustaining the second-year cooling in late 2021. As a potential approach to improving predictions for diversities of ENSO events, additional studies on effectively combining neural networks with dynamical processes and mechanisms are expected to significantly enhance the ENSO prediction capability.摘要2020–22年间热带太平洋经历了持续性多年的拉尼娜事件, 多数耦合模式都难以准确预测其演变过程, 这为厄尔尼诺-南方涛动(ENSO)的实时预测带来了很大的挑战. 同时, 目前学术界对此次持续性双拉尼娜事件的发展仍缺乏合理的物理解释, 其所涉及的物理过程和机制有待于进一步分析. 本研究利用再分析数据产品分析了热带东南太平洋东南风异常及其引起的次表层海温异常在此次热带太平洋海表温度(SST)异常演变中的作用, 并构建了一个时空分离(Time-Space)的三维(3D)卷积神经网络模型(TS-3DCNN)对此次双拉尼娜事件进行实时预测和过程分析. 通过将TS-3DCNN与中国科学院海洋研究所(IOCAS)中等复杂程度海气耦合模式(IOCAS ICM)的预测结果对比, 表明TS-3DCNN模型对2020–22年双重拉尼娜现象的预测能力与IOCAS ICM相当, 二者均能够从2021年初的初始场开始较好地预测2021年末 El Niño3.4区SST的演变. 此外, 基于TS-3DCNN和IOCAS ICM的敏感性试验也验证了赤道外风场异常和次表层海温异常在2021年末赤道中东太平洋海表二次变冷过程中的关键作用. 未来将神经网络与动力 模式模式间的有效结合, 进一步发展神经网络与物理过程相结合的混合建模是进一步提高ENSO事件预测能力的有效途径.  相似文献   

12.
2019 was one of the hottest years in recent decades, with widespread heatwaves over many parts of the world, including Africa. However, as a developing and vulnerable region, the understanding of recent heatwave events in Africa is limited. Here, the authors incorporated different climate datasets, satellite observations, and population estimates to investigate patterns and hotspots of major heatwave events over Africa in 2019. Overall, 2019 was one of the years that experienced the strongest heatwaves in terms of intensity and duration since 1981 in Africa. Heatwave hotspots were clearly identified across western-coastal, northeastern, southern, and equatorial Africa, where major cities and human populations are located. The proportion of urban agglomerations (population) exposed to extreme (99th percentile) heatwaves in the Northern Hemisphere and Southern Hemisphere rose from 4% (5 million people) and 15% (17 million people), respectively, in the baseline period of 1981–2010 to 36% (43 million people) and 57% (53 million people), respectively, in 2019. Heatwave patterns and hotspots in 2019 were related to anomalous seasonal change in atmospheric circulation and above-normal sea surface temperature. Without adaptation to minimize susceptibility to the effects of heatwave events, the risks they pose in populated areas may increase rapidly in Africa.摘要2019 年是近几十年来最热的年份之一, 包括非洲在内的全球许多地区都受到大范围的热浪侵袭. 然而, 非洲作为脆弱的发展中地区, 我们对其近年热浪事件的了解非常有限. 本研究中, 我们结合了不同的气候数据集, 卫星观测资料和人口数据, 研究了 2019 年非洲地区主要热浪事件发生的时空特征和热点分布区. 总体而言, 2019 年是非洲地区自 1981 年以来热浪强度最强, 持续时间最久的年份之一. 在主要城市和人口所在的非洲西海岸, 东北部, 南部和赤道地区是热浪发生的热点区. 位于赤道以北的非洲地区, 暴露于极端 (第 99 个百分位) 热浪的城市人口比例从 1981–2010 年基准期的 4% (500 万人) 上升至2019 年的 36% (4300 万人). 位于赤道以南地区, 暴露于极端热浪的城市人口则从基准期的15% (1700 万人) 上升至57% (5300 万人). 2019 年的热浪时空特征和热点分布与大气环流的季节变化异常和海温的暖异常有关. 如果不及时采取适应措施以尽量减少人口对热浪事件影响的敏感性, 热浪对非洲人口稠密地区构成的风险可能会迅速增加.  相似文献   

13.
Oceanic eddies are an omnipresent phenomenon of seawater flow and critical in transporting oceanic energy and material. Consequently, mastering and comprehending the characteristics of ocean eddies through detecting and recognizing eddies contributes to the understanding of oceanography. In traditional oceanography, a series of methods to identify eddies with physical or geometric characteristics have been developed. Deep learning frameworks have recently been applied in the eddy detection field. In this paper, a Dual-Pyramid UNet architecture that combines a pyramid split attention (PSA) module and atrous spatial pyramid pooling (ASPP) is proposed to identify oceanic eddies from remote sensing data. The encoder and decoder parts can effectively integrate low-level and high-level features, thus ensuring that feature information is not lost in large quantities after the nonlinear connection mode. In addition, the PSA and ASPP modules are introduced into the encoding, decoding, and skip connections to enhance feature extraction. Experiments were implemented in two typical study areas—the North Atlantic and South Atlantic. The recognition results demonstrate that Dual-Pyramid UNet can outperform four other competitive AI-based methods, especially for eddy edges and small-scale eddies.摘要海洋涡旋是大洋中重要的组成部分, 对海洋能量和物质的输送至关重要. 海洋涡旋的检测和表征无论是对于海洋气象学, 海洋声学还是海洋生物学等领域都具有重要的研究价值. 本文基于UNet架构, 并结合金字塔分割注意力(PSA)模块和空洞空间卷积池化金字塔(ASPP)构造了Dual-Pyramid UNet模型, 以平面异常和海表面温度数据中进行海洋涡旋的识别. 实验在北大西洋和南大西洋两个涡旋活跃区域进行并选用多个评价指标对识别结果进行评价以证明模型的优异性能.  相似文献   

14.
In this study, the relationship of tropical cyclone (TC) size change rate (SCR), within 24 hours, with size, intensity, and intensity change rate (ICR) are explored over the western North Pacific. TC size is defined as the azimuthally averaged radius of gale-force wind of 17 m s−1 (R17) based on the Multiplatform Tropical Cyclone Surface Winds Analysis data. The majority of SCRs are mainly distributed in the range from −20 to 80 km d−1. The correlation coefficients between SCR and size (SCR-R17), intensity, and ICR (SCR-ICR) are −0.43, −0.12, and 0.25, respectively. The sensitivity of the SCR-R17 and SCR-ICR relationships to size, intensity, and evolution stage are further examined. Results show that the SCR-R17 relationship is more sensitive to variations of size and evolution stage than that of intensity. The relationship of SCR-ICR is largely modulated by the evolution stage. The correlation coefficient of SCR-ICR can increase from 0.25 to 0.40 when only considering the lifetime stages concurrently before and after the lifetime maximum size (LMS) and lifetime maximum intensity. This demonstrates that ICR is a potential factor in predicting SCR during these evolution stages. Besides, the TC size expansion (shrinkage) is more likely to occur for TCs with smaller (larger) size and weaker (stronger) intensity. The complexity of size change during a TC's lifetime can be attributed to the fact that shrinkage or expansion could occur both before and after LMS.摘要为了进一步了解热带气旋 (TC) 尺度变化与其结构的相关关系, 本文基于多平台热带气旋表面风场资料, 通过相关分析得出西北太平洋上TC的24 h尺度变化率(SCR)与其尺度,强度以及强度变化率 (ICR) 的相关系数分别为–0.43, –0.12, 0.25.其中SCR-ICR的相关关系主要受不同发展阶段的影响, 在TC均达到/均未达到最大尺度和最强强度的阶段中, SCR-ICR的相关系数上升至0.40, 表明在这些阶段中ICR是预报SCR的潜在因子之一.当TC尺度较小 (大) 和强度较弱 (强) 时其尺度更易扩张 (收缩) .  相似文献   

15.
Previous studies have indicated that the stratospheric quasi-biennial oscillation (QBO) has a global impact on winter weather, but relatively less attention has been paid to its effect in summer. Using ERA5 data, this study reports that the QBO has a significant impact on the tropospheric circulation and surface air temperature (SAT) in the extratropics in Northeast Asia and the North Pacific in early summer. Specifically, a QBO-induced mean meridional circulation prevails from Northeast Asia to the North Pacific in the westerly QBO years, exhibiting westerly anomalies in 20°–35°N and easterly anomalies in 35°–65°N from the lower stratosphere to troposphere. This meridional pattern of zonal wind anomalies can excite positive vorticity and thus lead to anomalous low pressure and cyclonic circulation from Northeast Asia to the North Pacific, which in turn cause northerly wind anomalies and decreased SAT in Northeast Asia in June. Conversely, in the easterly QBO years, the QBO-related circulation and SAT anomalies are generally in an opposite polarity to those in the westerly QBO years. These findings provide new evidence of the impact of the QBO on the extratropical climate, and may benefit the prediction of SAT in Northeast Asia in early summer.摘要本文研究了平流层准两年振荡 (QBO) 对东北亚-北太平洋地区初夏对流层环流和地表气温的影响. 在QBO西风位相年, 东北亚至北太平洋地区存在一支由QBO引发的平均经向环流异常, 该经向环流异常可在东北亚至北太平洋地区激发正涡度, 并形成异常气旋式环流. 气旋左侧出现的异常偏北风导致6月东北亚地表气温下降. QBO东风位相年的结果与西风位相年大致相反. 这些结果为QBO对热带外地区天气,气候的影响提供了新的证据, 并为东北亚初夏地表气温的预测提供了新的线索.  相似文献   

16.
The quasi-biennial oscillation (QBO), a dominant mode of the equatorial stratospheric (~100–1 hPa) variability, is known to impact tropospheric circulation in the middle and high latitudes. Yet, its realistic simulation in general circulation models remains a challenge. The authors examine the simulated QBO in the 69-layer version of the Institute of Atmospheric Physics Atmospheric General Circulation Model (IAP-AGCML69) and analyze its momentum budget. The authors find that the QBO is primarily caused by parameterized gravity-wave forcing due to tropospheric convection, but the downward propagation of the momentum source is significantly offset by the upward advection of zonal wind by the equatorial upwelling in the stratosphere. Resolved-scale waves act as a positive contribution to the total zonal wind tendency of the QBO over the equator with comparable magnitude to the gravity-wave forcing in the upper stratosphere. Results provide insights into the mechanism of the QBO and possible causes of differences in models.摘要平流层准两年振荡 (QBO) 是赤道平流层 (~100–1 hPa) 变率的主要模态, 可对中高纬地区的环流产生重要影响, 但目前利用通用大气环流模式 (GCM) 对其进行准确模拟仍然是一个挑战.本文利用IAP大气环流模式 (IAP-AGCM) 的中高层大气模式版本 (IAP-AGCML69) 对QBO进行模拟, 并对其动量收支情况进行分析.研究发现, QBO主要是由对流活动引起的重力波强迫 (参数化) 引起的, 但该动量强迫被平流层赤道上升流所引起的平流过程显著削弱.模式可分辨尺度的波动强迫对赤道上空的QBO的总纬向风倾向有正贡献, 在上平流层, 其量值大小与参数化的重力波强迫相当.以上结果提供了对QBO形成机制以及模式模拟差异可能原因的认识.  相似文献   

17.
The evaluation of East Asian summer monsoon (EASM) simulations could improve our understanding of Asian monsoon dynamics and climate simulations. In this study, by using Phase 6 of the Coupled Model Intercomparison Project (CMIP6) experiments of the Atmospheric Model Intercomparison Project (AMIP) and historical runs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) model, the model simulation skill for the interannual variability in the EASM was determined. According to multivariate empirical orthogonal function (MV-EOF) analysis, the major mode of the EASM mainly emerged as a Pacific-Japan pattern in the western Pacific accompanied by a local anticyclonic anomaly with a total variance of 24.6%. The historical experiment could suitably reproduce this spatial pattern and attained a closer total variance than that attained by the AMIP experiment. The historical experiment could also better simulate the time frequency of the EASM variability than the AMIP experiment. However, the phase of principal component 1 (PC1) was not suitably reproduced in the historical experiment since no initialization procedure was applied at the beginning of the integration in the historical simulation process, whereas the sea surface temperature (SST) was preset in the AMIP experiment. Further analysis revealed that air–sea interactions in the Indian Ocean and tropical western Pacific were important for the model to provide satisfactory EASM simulations, while El Niño–Southern Oscillation (ENSO) simulation was possibly related to the climate variability in the EASM simulations, which should be further analyzed.摘要对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解. 在这项研究中, 通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP)和历史(historical)试验, 明确了EASM的年际变率的模拟能力. 通过多变量经验正交函数(MV-EOF)分析发现, 观测的EASM的主导模态为西太平洋上的太平洋-日本模态, 并伴有局部反气旋异常. 主导模态的方差贡献率为24.6%. 历史(historical)试验可以基本再现这种空间模态, 其方差贡献率较AMIP试验更接近于观测. 与AMIP试验相比, 历史(historical)试验还能更好地模拟EASM变率的时间频率. 然而, 由于历史(historical)模拟没有在积分开始时应用初始化过程, 而AMIP试验受到海表面温度(SST)的约束, 因此主成分(PC1)的位相在历史(historical)试验中没有得到较好地再现. 进一步分析发现, 印度洋和西太平洋热带地区的海气相互作用对EASM的模拟非常重要, 而EASM气候变率的模拟可能与厄尔尼诺-南方涛动(ENSO)的模拟能力有关, 这值得进一步分析.  相似文献   

18.
To better understand the relationship between anticyclones in Siberia and cold-air activities and temperature changes in East Asia, this study proposes a 2D anticyclone identification method based on a deep-learning model, Mask R-CNN, which can reliably detect the changes in the morphological characteristics of anticyclones. Using the new method, the authors identified the southeastward-extending Siberian cold high (SEESCH), which greatly affects wintertime temperatures in China. This type of cold high is one of the main synoptic systems (45.7%) emerging from Siberia in winter. Cold air carried by SEESCH has a significant negative correlation with the temperature changes in the downstream area, and 52% of SEESCHs are accompanied by cold-air accumulation in North and East China, which has a significant impact on regional cooling. These results provide clues for studying the interconnection between SEESCHs and extreme cold events.摘要为了更好地研究西伯利亚地区反气旋与冷空气活动,东亚地区气温变化之间的关联, 本文提出一种基于Mask R-CNN的反气旋识别方法, 能够较为准确地刻画反气旋形态特征变化. 使用该方法能够识别对中国冬季气温具有较大影响的东南延伸型西伯利亚冷高压(SEESCH), 这种冷高压是冬季出现在西伯利亚地区的主要天气系统之一(45.7%). SEESCH携带的冷空气与下游地区温度变化呈显著负相关, 52%的SEESCH伴随着华北华东地区冷空气聚集, 对区域降温有显著影响. 这些结果为研究 SEESCH 与极端寒冷事件之间的联系提供线索.  相似文献   

19.
Over the past three decades, the drawdown of atmospheric CO2 in vegetation and soil has fueled net ecosystem production (NEP). Here, a global land-surface model (CABLE) is used to estimate the trend in NEP and its response to atmospheric CO2, climate change, biological nitrogen (N) fixation, and N deposition under future conditions from 2031 to 2100 in the Belt and Road region. The trend of NEP simulated by CABLE decreases from 0.015 Pg carbon (C) yr?2 under present conditions (1936–2005) to ?0.023 Pg C yr?2 under future conditions. In contrast, the trend in NEP of the CMIP6 ensemble changes from 0.014 Pg C yr?2 under present conditions to ?0.009 Pg C yr?2 under future conditions. This suggests that the trend in the C sink for the Belt and Road region will likely decline in the future. The significant difference in the NEP trend between present and future conditions is mainly caused by the difference in the impact of climate change on NEP. Considering the responses of soil respiration (RH) or net primary production (NPP) to surface air temperature, the trend in surface air temperature changes from0.01°C yr?1 under present conditions to 0.05°C yr?1 under future conditions. CABLE simulates a greater response of RH to surface temperature than that of NPP under future conditions, which causes a decreasing trend in NEP. In addition, the greater decreasing trend in NEP under future conditions indicates that the C–climate–N interaction at the regional scale should be considered. It is important to estimate the direction and magnitude of C sinks under the C neutrality target.摘要目前, 在区域尺度, NEP趋势变化的强度和影响机制还存在很大的不确定性. 针对这一问题, 我们选取了一带一路覆盖的区域为研究对象, 基于全球陆面模式 (CABLE)和第六次国际耦合模式比较计划 (CMIP6), 评估了历史和未来NEP趋势的变化, 分析了影响的机制. 从过去到未来, CABLE结果表明NEP的趋势从 0.015 Pg C yr?2 减少到 –0.023 Pg C yr?2; CMIP6结果为从0.014 Pg C yr?2转变为–0.009 Pg C yr?2. 气候变化是引起这一变化的主因. 我们的研究结果强调了碳-气候-氮相互作用的重要性, 这对碳中和目标下碳汇潜力的准确估算尤为重要.  相似文献   

20.
The influences of strong El Niño events (1997/98 and 2015/16) on summertime near-surface ozone (O3) concentrations over China are investigated using the GEOS-Chem model. The results show that near-surface O3 concentrations increased by a maximum of 6 ppb (parts per billion) during the summer of the developing phase of the 1997/98 El Niño in northeastern China, mainly due to the increased chemical production related to the hot and dry conditions. Besides, the O3 concentration increased by 3 ppb during the developing summer of both the 1997/98 and 2015/16 El Niño in southern China. It was linked to the weakened prevailing monsoon winds, which led to the accumulation of O3 in southern China. In contrast, in the summer of the decaying phase of the two El Niño events, O3 concentrations decreased over many regions of China when the El Niño reversed to the cooling phase. This highlights that El Niño plays an important role in modulating near-surface O3 concentrations over China.摘要利用全球大气化学三维模式 (GEOS-Chem) 模拟研究两次强厄尔尼诺事件 (1997/98和2015/16) 对中国夏季近地面臭氧 (O3) 浓度的影响. 结果表明1997/98年厄尔尼诺事件发展期夏季中国东北区域O3浓度升高, 最大值超过6ppb, 这主要归因于高温晴朗低湿等气象因素导致O3化学生成升高. 此外, 两次厄尔尼诺事件发展期夏季O3浓度在中国南部均增加了3ppb, 这与盛行季风减弱导致中国南方O3局地积累有关. 相反, 在两次强厄尔尼诺衰减期夏季, 中国大部分地区O3浓度下降伴随着海温模态转变为拉尼娜事件. 这表明厄尔尼诺在调节中国近地面O3浓度中发挥着重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号