首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-dependent neutrino transport out of an optically thick neutronized stellar core is calculated to study the effects of neutrino degeneracy and of source depletion. Neutrino trapping inhibits further neutrino emission until neutrinos peel out of the outer zones of the core, exposing successively inner zones. This inwardly propagating neutrino rarefaction wave can lead toe +pv+n oscillations in chemical composition. The effect of neutrino Fermi statistics is to retard considrably and disperse neutrino leakage out of the core, making neutrino transport insignificant during fast stages of core collapse.Supported in part by the U.S. Department of Energy under Contract EY-76-C-02-3071.  相似文献   

2.
Cosmological scenarios with massive unstable neutrinos are discussed. Restrictions on the mass and the lifetime of the unstable neutrino are derived from (a) age and mass density of the universe and (b) the growth of primordial fluctuations. It will not be possible to accommodate unstable neutrinos with masses above ∼ 1 ke V in standard cosmology unless they have exceedingly small lifetime: Τ <5 × 108 s.  相似文献   

3.
The effect of Fermi-Dirac neutron degeneracy on the collapse process is studied. Two computations of a spherically symmetric quasi-one-dimensional model are considered: the case with a full allowance for neutrino deposition and the case with total transparency of the star to neutrino emission. The hindering character of neutron degeneracy with respect to collapse has been revealed quantitatively. A weak sensitivity of both thermodynamics and neutrino characteristics of a rotating collapsar to this effect has been established. However, the hydrostatically equilibrium neutron star obtained is composed of a strongly degenerate neutron gas by more than half. This undoubtedly confirms that the performed computations of a quasi-one-dimensional model with neutron degeneracy are topical.  相似文献   

4.
Typically collapsing supernova hydrodynamic computations assume LTE neutrino transport andimpose photon-like behavior, i.e., fix the neutrino chemical potentials at zero. The validity of the latter condition is investigated in the diffusion approximation to transport. A coupled system of diffusion equations for energy and lepton number is solved in a collapsing supernova ambience. The results indicate a substantial growth in the neutrino chemical potential for densities above 1012 gm cm?3. The rate of energy transport is affected significantly by the concomitant increases in Fermi integrals and gradients in chemical potential counter to those of temperature. It is found that the extent of neutrino particle/antiparticle interaction also affects energy diffusion rates. Thus the photon-like condition on neutrino transport may misrepresent supernova energetics substantially. An extension of the usual Sn transport to include lepton characteristics is deemed necessary for a definitive answer to the neutrino transport supernova question.  相似文献   

5.
Primordial helium abundance in the universe was determined based on spectral observations of low-metallicity blue compact dwarf galaxies. The intensities of the observed emission lines were corrected for several mechanisms, including stellar absorption and collisional excitation of the helium and hydrogen emission spectra. Parameters that were necessary for correcting the deviations of the emission lines?? intensities from their recombination values were determined using the Monte Carlo method. The obtained value of primordial helium of 0.2557 ± 0.0014 is higher by 3% than the value obtained from the analysis of the microwave background radiation fluctuations under the assumption of the standard model of primordial nucleosynthesis. This points to the existence of new types of neutrino in the primordial nucleosynthesis epoch, in addition to the three known ones.  相似文献   

6.
E. N. Parker 《Solar physics》1985,100(1-2):599-619
The future of solar physics is founded on the existing fundamental unsolved problems in stellar physics. Thus, for instance, the physics of stellar interiors has been called into serious question by the very low-measured neutrino flux. The 71Ga neutrino detection experiment is the next step in unravelling this mystery. If that experiment should find the expected neutrino flux from the basic p-p reaction in the Sun, then astrophysics is in a difficult situation, because the most likely explanation for the low neutrino flux found in the 37Cl experiment would be an error in our calculation of the opacity or an error in our understanding of the elemental abundances in stellar interiors, with serious implications for present ideas on stellar structure and the age of the galaxy.The new methods of helioseismology, for probing the interior of the Sun, have already found the primordial rapid rotation of the central core. The forthcoming world-wide helioseismology observing network will permit fuller exploitation of the method, promising to provide the first direct sounding of the interior of a star, hitherto known to us only through theoretical inference and the discrepant neutrino emission.The activity of all stars involves much the same phenomena as make up the activity of the Sun. The effects are too complex, and too foreign to the familiar dynamics in the terrestrial laboratory, to be deciphered by theoretical effort alone. It has become clear through the observational and theoretical work of the past decade or two that much of the essential dynamics of the activity of the atmosphere takes place on scales of the order of 102 km. Thus, an essential step in developing the physics of stellar activity will be the Solar Optical Telescope (presently planned by NASA to be launched early in the next decade) to permit a microscopic examination of the surface of the Sun to study the source of the action. The activity and X-ray emission of other stars depend on much the same effects, so that the study is essential to determining the significance of the X-ray emission from other stars.This work was supported in part by the National Aeronautics and Space Administration under grant NGL-14-001-001.  相似文献   

7.
It is shown that certain anomalies connected with the primordial abundances of light nuclei may be resolved if it is assumed that the Universe oscillates between phases of finite densities. Since general relativity does not produce bouncing models of the Universe, such models are obtained through the introduction of a negative energy scalar field of zero rest mass. It is shown that all the relevant parameters of the dynamics of the model and the nucleosynthesis in it are determined by observations and that a self-consistent picture emerges. The model is capable of admitting more than three neutrino flavours without an embarrassingly high primordial helium content. It is also shown that the calculations could be adapted to described production of light nuclei in compact massive bouncing objects.  相似文献   

8.
One of the light elements created during the big bang nucleosynthesis is 7Be which then decays to 7Li by electron capture when recombination becomes effective but well before the Saha equilibrium recombination is reached. This means that 7Be should wait until its recombination epoch even though the half-life of the hydrogenic beryllium atom is only 106.4 days. We calculate when the conversion from primordial 7Be to 7Li occurs taking into account the population of the hyperfine structure sublevels and solving the kinetic equations for recombination, photoionization and conversion rate. We also calculate the energies and the spectrum of two narrow neutrino lines from 7Be decay.  相似文献   

9.
The neutrinos from the Big Bang or the Cosmic Neutrino Background (CNB) carry precious information from the early epoch when our universe was only 1 s old. Although not yet directly detected, CNB may be revealed indirectly through cosmological observations due to neutrino important cosmological influence.We review the cosmological role of neutrinos and the cosmological constraints on neutrino characteristics. Namely, we discuss the impact of neutrinos in the early universe: the cosmic expansion, neutrino decoupling, the role of neutrinos in the primordial production of light elements, leptogenesis, etc. We briefly discuss the role of neutrino at later stages of the universe.Due to the considerable cosmological influence of neutrinos, cosmological bounds on neutrino properties from observational data exist. We review the cosmological constraints on the effective number of neutrino species, neutrino mass and mixing parameters, lepton number of the universe, presence of sterile neutrino, etc.  相似文献   

10.
We have performed 2-dimensional MHD simulations of collapsars with magnetic fields and neutrino cooling/heating processes. It is found that explosion energy of a hypernova is not obtained from the neutrino heating process. However, strong jet is found when magnetic fields are included, and total energy of the jet component can be of the order of 1052 erg, which is comparable to the one of a hypernova.  相似文献   

11.
Expressions for the source and collision terms of the neutrino transport equation relevant to the neutrino transport supernova model are derived in the framework of the theory of neutral currents. In particular we study the capture and emission of neutrini (and anti-neutrini) by free nucleos, the inelastic scattering by free nucleons, the coherent scattering by nuclei, as well as the corresponding muonic processes.We also derive an analytical formula for the neutrino scatteringrate on electrons, valid for large electron degeneracy.  相似文献   

12.
The effect of positron capture on the ordinary URCA neutrino luminosity in a zero magnetic field is investigated for several values of the degeneracy parameter and the range of temperatures 5×108K–5×1010K. The rate for this process is then compared with those in large magnetic fields (on the order ofH c =m 2 c 3/eh=4.414×1010 G). The results indicate that positron capture reduces the effect of large magnetic fields on this process at high temperatures.  相似文献   

13.
According to the suggestion of T. J. Mazurek (1979) neutrino oscillations occuring during the dynamic stellar collapse (M ≥ 10M) could be result in a transfer of leptonic zero-point energy to baryons. Then the adiabatic index increases above γ ≥ 4/3, and such an increase is necessary to reverse the collapse. From the theory of neutrino oscillations of B. Pontekorvo (1967) we derive the oszillation length L of neutrinos in vacuum and the characteristic oscillation lengh L* of neutrinos taking into consideration the refraction index ne of neutron star matter. The comparison of both oscillation lenghts shows that for electron densities, characteristically of neutron star matter, the oscillation lenght L is considerable larger than the oscillation lenght L*. Therefore neutrino oscillations cannot influence the scenario for neutrino emission of the neutron star.  相似文献   

14.
It is pointed out that the effect of neutrino emission process according to the photonneutrino coupling theory can be taken to interpret the observed ratio of C12/C13 abundance and other solar activities.  相似文献   

15.
We summarize the physical input and assumptions commonly adopted in modern standard solar models that also produce good agreement with solar oscillation frequencies. We discuss two motivations for considering non-standard models: the solar neutrino problem and surface lithium abundance problem. We begin to explore the potential for mixed core models to solve the neutrino problem, and compare the structure, neutrino flux, and oscillation frequency predictions for several models in which the inner 25% of the radius is homogenized, taking into account the effects of non-local equilibrium abundances of 3He. The results for the neutrino flux and helioseismic predictions are far from satisfactory, but such models have the potential to reduce the predicted 7Be/8B neutrino flux ratio, and further studies are warranted. Finally, we discuss how much the neutrino problem can be alleviated in the framework of the standard solar model by using reaction rates, abundances and neutrino capture cross-sections at the limits of their uncertainties, while still satisfying the constraints of helioseismology.  相似文献   

16.
Four operating neutrino observatories confirm the long standing discrepancy between detected and predicted solar neutrino flux. Among these four experiments the Homestake experiment is taking data for almost 25 years. The reliability of the radiochemical method for detecting solar neutrinos has been tested recently by the GALLEX experiment. All efforts to solve the solar neutrino problem by improving solar, nuclear, and neutrino physics have failed so far. This may also mean that the average solar neutrino flux extracted from the four experiments may not be the proper quantity to explain the production of neutrinos in the deep interior of the Sun. Occasionally it has been emphasized that the solar neutrino flux may vary over time. In this paper we do address relations among specific neutrino fluxes produced in the proton-proton chain that are imposed by the coupled systems of nonlinear partial differential equations of solar structure and kinetic equations by focusing our attention on a statistical interpretation of selected kinetic equations of PPII/PPIII branch reactions of the protonproton chain. A fresh look at the statistical implications for the outcome of kinetic equations for nuclear reactions may shed light on recent claims that the7 Be-neutrino flux of the Sun is suppressed in comparison to the pp- and8B neutrino fluxes and may hint at that the solar neutrino flux is indeed varying over time as shown by the Homestake experiment.  相似文献   

17.
We derive an expression for the scattering functions for electron-neutrino and electronanti-neutrino Compton scattering in a form suitable for a numerical solution of the neutrino transfer equations. An analytical expression is given for the case of large electron degeneracy. The modification due to possible neutral currents is discussed.  相似文献   

18.
Most current supernova theories state that this phenomenon lasts a few seconds and ends with a bigfinal explosion.However, these theories do not take into account several experimental results obtained with neutrino and gravitational wave detectors during the explosion of SN1987A, the only supernova observed in a nearby galaxy in modern age. According to these experimental results the phenomenon is much more complex that envisaged by current theories, and has a duration of several hours. Indeed, SN1987A exploded on February 23, 1987, and two neutrino bursts, separated by 4.7 hours were detected: the first one at 2h 52m UT and the second one at 7h 35m UT. Furthermore, correlations between the neutrino and two gravitational wave detectors, ignored by most of the scientific community, were observed during the longer collapse time. Since the current standard theories, based on some rough simplifications, are a clear example of an Aristotelian attitude, still present in our days, we believe that a more Galilean attitude is necessary, being the only correct way for the progress of science.  相似文献   

19.
本文讨论了有质量的Dirac粒子在宇宙磁场中的演化。宇宙磁场使空间度规出现各向异性。通过求解Dirac方程,得到了中微子在宇宙磁场中的表观磁矩。  相似文献   

20.
The neutrino bremsstrahlung process is studied here according to the photon-neutrino weak coupling theory by considering the electrons as relativistic and degenerate and by adding some lattice effects at high density. The neutrino energy loss rate due to the process is then compared with that obtained according to the current-current coupling theory. It is concluded that the process is important only in cases of high dense stars when the temperature is below 107K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号