首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Lanthanide tetrad effects are often observed in REE patterns of more highly evolved Variscan peraluminous granites of mid-eastern Germany (Central Erzgebirge, Western Erzgebirge, Fichtelgebirge, and Northern Oberpfalz). The degree of the tetrad effect (TE1,3) is estimated and plotted vs. K/Rb, Sr/Eu, Eu/Eu1, Y/Ho, and Zr/Hf. The diagrams reveal that the tetrad effect develops parallel to granite evolution, and significant tetrad effects are strictly confined to highly differentiated samples. Mineral fractionation as a cause for the tetrad effect is not supported by a calculated Rayleigh fractionation, which also could not explain the fractionation trends of Sr/Eu and Eu/Eu1. The strong decrease of Eu concentrations in highly evolved rocks suggests that Eu fractionates between the residual melt and a coexisting aqueous high-temperature fluid. Mineral fractionation as a reason for the tetrad effect is even more unlikely as REE patterns of accessory minerals display similar tetrad effects as the respective host rocks. The accessory minerals inherit the REE signature of the melt and do not contribute to the bulk-rock tetrad effect via mineral fractionation. These results point in summary to significant changes of element fractionation behavior in highly evolved granitic melts: ionic radius and charge, which commonly control the element distribution between mineral and melt, are no longer the exclusive control. The tetrad effect and the highly fractionated trace element ratios of Y/Ho and Zr/Hf indicate a trace element behavior that is similar to that in aqueous systems in which chemical complexation is of significant influence. This distinct trace element behavior and the common features of magmatic-hydrothermal alteration suggest the increasing importance of an aqueous-like fluid system during the final stages of granite crystallization. The positive correlation of TE1,3 with bulk-rock fluorine contents hints at the importance of REE fluorine complexation in generating the tetrad effect. As the evolution of a REE pattern with tetrad effect (M-type) implies the removal of a respective mirroring REE pattern (W-type), the tetrad effect identifies open system conditions during granite crystallization.  相似文献   

2.
佛冈高分异I型花岗岩的成因:来自Nb-Ta-Zr-Hf等元素的制约   总被引:12,自引:8,他引:4  
陈璟元  杨进辉 《岩石学报》2015,31(3):846-854
华南南岭地区发育有大面积的与钨锡成矿相关的侏罗纪花岗岩,然而其中有些花岗岩的成因类型却难以确定。本文以佛冈岩体为例,结合前人已发表数据,对佛冈花岗岩体中Nb、Ta、Zr和Hf等元素的迁移特征及其原理进行探讨,并对佛冈花岗岩的成因类型进行了厘定。随着分异程度增加,佛冈花岗岩Nb和Ta含量增加,Nb/Ta(3.6~15.3)和Zr/Hf(17.3~38.9)比值降低并发生分异。随着Zr含量的降低,佛冈花岗岩的Zr/Hf比值降低,这一特征表明锆石的分离结晶作用使得佛冈花岗岩的Zr/Hf比值分异。Nb/Ta比值分异可能与角闪石和黑云母的分离结晶作用有关。随着Nb/Ta比值降低,Y/Ho比值增加,这一特征表明佛冈花岗岩Nb/Ta比值的分异也和岩浆演化后期的流体有关。佛冈花岗岩不含原生的富铝矿物,为准铝质到弱过铝质岩石。随着分异程度增加,佛冈花岗岩P2O5含量降低,表明它不是S型花岗岩。随着Y/Ho比值增加和Nb/Ta和Zr/Hf比值降低,佛岗花岗岩Ga/Al和Fe OT/Mg O比值增加,从典型I型花岗岩特征演化到类似A型花岗岩的地球化学特征。因此,我们认为佛冈花岗岩不是A型花岗岩而是高分异的I型花岗岩。区域上与成矿相关的流体和花岗质岩浆的相互作用和分离结晶作用,使得华南南岭地区的花岗岩地球化学特征复杂,所以其成因类型也变的难以确定。  相似文献   

3.
东南沿海分布大面积的白垩纪晚期侵入岩。这些岩石可分为两期:其中115~100Ma以钙碱性系列岩石为主,岩石组合为辉长岩-闪长岩-花岗闪长岩-二长花岗岩-碱性长石花岗岩;而100~86Ma的岩石为碱性系列,岩石组合为石英二长斑岩-正长斑岩-碱性长石花岗岩。115~100Ma的辉长岩以角闪辉长岩为主,具有极高的CaO、MgO和Al_(2)O_(3)含量,具有极低的SiO_(2)(42.9%~53.8%)、全碱(K_(2)O+Na_(2)O:0.86%~5.28%)、Ba、Nb、Th、Rb和Zr含量,也具有极低的FeO^(T)/MgO、La/Yb和Zr/Hf比值,较高的Eu/Eu^(*)、Sr/Y比值和Sr含量,为基性-超基性堆晶岩。与辉长岩同期的闪长岩和细粒暗色包体具有较高的SiO_(2)(50.34%~63.68%),较低的CaO、P_(2)O_(5)、MgO、Al_(2)O_(3)含量,相对低的Eu/Eu^(*)和Sr/Y比值,变化较大的La/Yb和Zr/Hf比值,代表了从基性岩浆储库中抽取的富硅熔体。115~100Ma的花岗闪长岩和二长花岗岩类岩石为准铝质岩石,SiO_(2)含量变化较大(61.7%~75.3%),具有较低的FeO^(T)/MgO、Ga/Al比值和Nb、Zr及Nb+Zr+Ce+Y元素含量,显示出典型I型花岗岩的特征。这些花岗岩具有相对高的La/Yb、Eu/Eu^(*)和Zr/Hf比值和高的Sr、Ba和Zr含量。结合岩相学特征,这些花岗岩为堆晶花岗岩。而115~100Ma的碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),低的Eu/Eu^(*)、La/Yb、Zr/Hf和Sr/Y比值,具有低的Ba、Sr和Zr含量和高的Rb、Nb、Y和Th含量和Rb/Sr比值,表明这些花岗岩是由富硅岩浆储库中抽离的高硅熔体侵入地壳形成。100~86Ma期间形成的二长斑岩和正长斑岩具有极高的全碱含量,可以达到8%~12%,其SiO_(2)主要集中在60%~70%,具有极高的Zr、Sr和Ba含量和Eu/Eu^(*)、La/Yb和Sr/Y比值,显示出堆晶花岗岩的特征。而100~86Ma期间形成的大部分碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),并显示出A型花岗岩的特征,具有高的Rb/Sr比值和高的Rb、Y和Th和低的Ba、Sr含量和低的Zr/Hf、La/Yb、Eu/Eu^(*)和Sr/Y比值,表明它们是由富硅岩浆储库抽离的高硅熔体侵入浅部地壳形成。东南沿海高硅花岗岩的形成和穿地壳岩浆系统密切相关,高硅花岗岩是由浅部地壳内晶体-熔体分异产生的熔体侵入地壳所形成,而高硅花岗岩的地球化学特征与岩浆储库的水及挥发份含量密切相关。115~100Ma期间,从富水的岩浆储库抽离的熔体形成具有低高场强元素含量和低Rb/Sr比值的高硅花岗岩,这一过程与古太平洋板块俯冲有关;100~86Ma期间,从富挥发份的岩浆储库抽离的熔体形成碱性特征、富含高场强元素和具有高的Rb/Sr比值的高硅花岗岩,这一过程和古太平洋板块回撤软流圈上涌有关。  相似文献   

4.
 The parameters which control the behaviour of isovalent trace elements in magmatic and aqueous systems have been investigated by studying the distribution of yttrium, rare-earth elements (REEs), zirconium, and hafnium. If a geochemical system is characterized by CHArge-and-RAdius-Controlled (CHARAC) trace element behaviour, elements of similar charge and radius, such as the Y-Ho and Zr-Hf twin pairs, should display extremely coherent behaviour, and retain their respective chondritic ratio. Moreover, normalized patterns of REE(III) should be smooth functions of ionic radius and atomic number. Basic to intermediate igneous rocks show Y/Ho and Zr/Hf ratios which are close to the chondritic ratios, indicating CHARAC behaviour of these elements in pure silicate melts. In contrast, aqueous solutions and their precipitates show non-chondritic Y/Ho and Zr/Hf ratios. An important process that causes trace element fractionation in aqueous media is chemical complexation. The complexation behaviour of a trace element, however, does not exclusively depend on its ionic charge and radius, but is additionally controlled by its electron configuration and by the type of complexing ligand, since the latter two determine the character of the chemical bonding (covalent vs electrostatic) in the various complexes. Hence, in contrast to pure melt systems, aqueous systems are characterized by non-CHARAC trace element behaviour, and electron structure must be considered as an important additional parameter. Unlike other magmatic rocks, highly evolved magmas rich in components such as H2O, Li, B, F, P, and/or Cl often show non-chondritic Y/Ho and Zr/Hf ratios, and “irregular” REE patterns which are sub-divided into four concave-upward segments referred to as “tetrads”. The combination of non-chondritic Y/Ho and Zr/Hf ratios and lanthanide tetrad effect, which cannot be adequately modelled with current mineral/melt partition coefficients which are smooth functions of ionic radius, reveals that non-CHARAC trace element behaviour prevails in highly evolved magmatic systems. The behaviour of high field strength elements in this environment is distinctly different from that in basic to intermediate magmas (i.e. pure silicate melts), but closely resembles trace element behaviour in aqueous media. “Anomalous” behaviour of Y and REEs, and of Zr and Hf, which are hosted by different minerals, and the fact that these minerals show “anomalous” trace element distributions only if they crystallized from highly evolved magmas, indicate that non-CHARAC behaviour is a reflection of specific physicochemical properties of the magma. This supports models which suggest that high-silica magmatic systems which are rich in H2O, Li, B, F, P, and/or Cl, are transitional between pure silicate melts and hydrothermal fluids. In such a transitional system non-CHARAC behaviour of high field strength elements may be due to chemical complexation with a wide variety of ligands such as non-bridging oxygen, F, B, P, etc., leading to absolute and relative mineral/melt or mineral/aqueous-fluid partition coefficients that are extremely sensitive to the composition and structure of this magma. Hence, any petrogenetic modelling of such magmatic rocks, which utilizes partition coefficients that have not been determined for the specific igneous suite under investigation, may be questionable. But Y/Ho and Zr/Hf ratios provide information on whether or not the evolution of felsic igneous rocks can be quantitatively modelled: samples showing non-chondritic Y/Ho and Zr/Hf ratios or even the lanthanide tetrad effect should not be considered for modelling. However, the most important result of this study is that Y/Ho and Zr/Hf ratios may be used to verify whether Y, REEs, Zr, and Hf in rocks or minerals have been deposited from or modified by silicate melts or aqueous fluids. Received: 4 September 1995 / Accepted: 30 October 1995  相似文献   

5.
The Hizeh-Jan kaolin deposit(northwest of Varzeghan, East-Azarbaidjan Province, NW Iran) is a product of the alteration of Eocene andesitic rocks. Based on mineralogical examinations, kaolinite, quartz, smectite, pyrophyllite, muscovite-illite, alunite, calcite, diaspore, goethite and hematite are the most abundant mineral phases in this deposit. The geochemical indicators, such as Y/Ho and Zr/Hf, indicate the non-CHARAC(non-Charge-radius control) behavior of these pairs, which are likely to be due to the occurrence of the tetrad effect phenomenon in this deposit. Simultaneous concave and convex shapes in the chondrite-normalized REE distribution patterns are a remarkable feature of the kaolin samples. Bivariate diagrams of the size of the third tetrad effect(T_3) versus geochemical parameters such as Y/Ho, Nb/Ta and Zr/Hf ratios display two distinct populations for the kaolin samples. The first population is characterized by high T_3 values(>0.13), which are near or on the fault zone. The second population is characterized by low T_3 values(<0.13), and are farther from the fault zone. The obtained results from the geochemical data have furnished compelling evidence that fluidrock interaction, overprint of hypogene processes by supergene ones, and structural control, are key controlling factors for the occurrence of tetrad effects in REE distribution patterns in the Hizeh-Jan kaolin deposit.  相似文献   

6.
Geochemical and isotopic data were used for a comparative analysis of Late Mesozoic (150–120 Ma) granitoids in various geological structures of the upper Amur area. The granitoids are metaluminous high-potassic I-type rocks of the magnetite series. They have variable alkalinity and consist of the monzonite-granite and granosyenite-granite associations. The monzonite-granite association consists of calc-alkaline granitoids of normal alkalinity belonging to the Umlekan-Ogodzhinskaya volcanic-plutonic zone and the Tynda-Bakaran Complex of the Stanovoy terrane. The rocks are characterized by negative anomalies of U, Ta, Nd, Hf, and Ti (in patterns normalized to the primitive mantle), with Eu anomalies pronounced weakly in the granodiorites and quartz and monzodiorites and more clearly in the granites: Eu/Eu* = 0.37–0.95, and (La/Yb)n = 7–24, Tbn/Ybn = 1.4–3.2. The granosyenite-granite association comprises of moderately alkaline rocks, which are subdivided into three groups according to their geochemistry. The first group consists of phase-I granosyenites of the Uskalinskii Massif of the Umlekan-Ogodzhinskaya zone with the highest concentrations of Sc, V, Cr, Co, Ni, Cu, Cs, Rb, Sr, Y, Zr, Yb, and Th; negative anomalies at Ba, Ta, Sr, and Hf; Eu/Eu* = 0.50–0.58, (La/Yb)n = 15–16, and Tbn/Ybn = 1.8. The second group comprises of moderately alkaline granitoids of the Umlekan-Ogodzhinskaya zone and the Khaiktinskii Complex of the Baikal-Vitim superterrane. Geochemically, the granitoids of this group are generally similar to the monzodiorite-granite association and differ from it in having lower concentrations of REE and Y, Eu/Eu* = 6.2–1.0, (La/Yb)n = 28–63, and Tbn/Ybn = 2.1–4.5. The third group consists of granitoids of the Chubachinskii Complex of the Stanovoi terrane, which typically show negative Cs, Rb, Th, U, Ta, Hf, and Ti anomalies; the lowest concentrations of V, Cr, Co, and Ni; and the highest contents of Sr. The granosyenites of the first phase display clearly pronounced negative Eu anomalies (Eu/Eu* = 0.53–0.68), (La/Yb)n = 7–24, and Tbn/Ybn = 0.8–2.0. The granitoids of the second phase have (La/Yb)n = 51–84, no Eu anomalies, or very weak Eu anomalies (Eu/Eu* = 0.97–1.23). The silica-oversaturated leucogranites of the third phase are characterized by elevated concentrations of REE, clearly pronounced Eu anomalies (Eu/Eu* = 0.48), and flat REE patterns (Tbn/Ybn = 1.3). The diversity of the granitoids is demonstrated to have been caused largely by the composition of the Precambrian source, which was isotopically heterogeneous. The rocks of the monzodiorite-granite association and first-group granosyenites of the granosyenite-granite association of the Tynda-Bakaran Complex were supposedly derived from garnet-bearing biotite amphibolites. In contrast to these rocks, the source of the second-group granites of the granosyenite-granite association was of mixed amphibolite-metagraywacke composition. The third-group of granitoids were melted out of Early Proterozoic crustal feldspar-rich granulites of variable basicity, with minor amounts of Archean crustal material. The granitoids were emplaced in a collisional environment, perhaps, during the collision of the Amur superterrane and Siberian craton. This makes it possible to consider these rocks as components of a single continental volcanic-plutonic belt. Original Russian Text ? V.E. Strikha, 2006, published in Geokhimiya, 2006, No. 8, pp. 855–872.  相似文献   

7.
Late intrusive Tukureswari granitoids (TKG) and the Barbhita granitoids (BBG) of Goalpara district in western Assam constitute an important component of the continental crust of the Shillong Plateau. Thus, the geochemical study of these two granitoids involving their origin, classification and petrogenetic significance would be a contribution towards a better understanding of the evolution of continental crust of the Shillong Plateau.The major oxide and trace element geochemistry reveals several genetic issues on these two granitoids. The I-type affinity of the TKG is indicated from the geochemical features such as high TiO2, P2O5 and K2O contents, low normative corundum (< 1%), high Na2O/K2O ratios, and low concentrations of Ni, Co and Cr. Further, enriched LREE-LILE and HFSE depletion, as well as the normal calc-alkaline nature of arc affinity (e.g., enhanced LILE abundance and low HFSE/LILE ratios) of the TKG indicate subduction-related magmatism. TheTKG are also categorized as a deep-level pluton, being enriched in LREE and depleted in total REE and HFSE (Y, Nb, Ta, Zr, Hf). The high La/Nb ratio (1.9–8.6), negative Nb and Ti anomalies also suggest orogenic related magmatism.On the other hand, the geochemistry of the BBG reveal a high Niggli Si and Mg values, slightly high normative corundum values (2.16–3.41), high Th/Ta, Y/Nb, La/Nb, K2O/Na2O, and Rb/Sr ratios. It also shows ASI, K, Rb, and U contents, prominent depletion of Nb, Sr and Ti on the primitive mantle-normalized multi-element spider diagrams and a low concentrations of Cu, Cr, V and Na2O (> 3.2%). All these geochemical characteristics provide strong evidences in support of a sedimentary parentage for Barbhita granitoids (BBG) and are dominantly of S-type.  相似文献   

8.
Major, trace and rare earth elements (REE) concentrations in limestone beds of the Asu River Group within the Middle Benue Trough were measured to understand the depositional conditions, characteristics and source of REE. The limestone has high content of CaO (Average of 46.55%), followed by SiO2 (Average of 7.90 %), Fe2O3(t), MgO and Al2O3. The limestones are depleted in most of the trace elements (Co, V, Rb, Ba, Zr, Y, Nb, Hf and Th) when compared with the Post-Archean Australian Shale (PAAS). The observed large variations in ΣREE contents among various limestones of the present study (12.22 to 142.53ppm) are mainly due to the amount of terrigenous matter present in them. The characteristics of non-seawater-like REE patterns, elevated REE concentrations, high LaN/YbN ratios and low Y/Ho ratios, suggest that the observed variations in ΣREE contents are mainly controlled by the amount of detrital sediments in the limestones of the Asu River Group in the middle Benue trough. The observed variations in Ce contents and Ce anomalies in the studied samples resulted from detrital input. The limestones show positive Mn* values (0.30 to 0.78) and low contents of U (~0.60–3.20 ppm) suggesting that they were deposited under oxygen-rich environment.  相似文献   

9.
张少颖  张华锋 《岩石学报》2017,33(6):1872-1892
热液蚀变过程中的元素活动性与流体性质对深入理解矿物稳定性和成矿作用具有重要的意义。本文以华北克拉通中北部山西五台地区的白云叶蜡石矿为例,研究了蚀变过程中元素迁移特征和流体性质。该矿体围岩以绿片岩相酸性火山岩为主,岩性为绢云钠长石英片岩并夹有少量的绿泥钠长片岩。矿区内蚀变分带明显,可分为早期的黄铁绢英岩化(绢云母-石英-黄铁矿)和晚期叠加的叶蜡石化(叶蜡石-伊利石-高岭石-石英),而金矿化则主要发育于黄铁绢英岩化带内。Log fo2-pH相图模拟结果显示,早期黄铁绢云岩化蚀变热液具有弱酸性至偏中性(pH=5.24~5.87)和较低氧逸度(位于黄铁矿+黄铜矿稳定相区内)特征;而引起叶蜡石化蚀变的热液具有强酸性(pH=2.07~2.20)和高氧逸度(位于HM缓冲线以上)特征。质量平衡迁移分析结果显示,随着叶蜡石化蚀变作用的增强,叶蜡石矿石中的Al2O3行为较稳定,SiO2、Na2O和K2O含量相对于围岩绢云钠长石英片岩呈不同程度的迁入,而其余氧化物大量活化迁出。微量元素Nb、Ta、Th、U、Rb和Ga含量相对升高,Th/U比值略有升高;Sr、Ba、Zr、Hf明显亏损,Zr/Hf比值从34~41下降到17~22。稀土元素均发生一定程度的活化迁移,且轻稀土迁出程度更高。Y/Ho比值(28~32)高于球粒陨石的Y/Ho(26~28),表明Y-Ho在叶蜡石化蚀变过程中表现出不同的地球化学行为。Eu负异常明显增大,这可能与长石的分解关系密切。围岩绢云钠长石英片岩中金属元素含量较高且Au与As含量之间呈明显正相关性,但在叶蜡石矿石中大部分金属元素含量均低于检出限,说明金属元素在叶蜡石化蚀变作用过程中发生了强烈的活化迁移,这与岩相学上叶蜡石矿石中可见港湾状细粒赤铁矿而缺乏黄铁矿的特征吻合。本文研究结果表明叶蜡石化过程中,大量的所谓不活动元素(如P、Ti、Zr、Hf、Y和Ho等)发生了显著迁移并导致Zr/Hf和Y/Ho比值的解耦,并伴随着大量金属元素的迁出,说明叶蜡石化不利于金矿化的形成。  相似文献   

10.
张辉  刘丛强 《地球化学》2001,30(4):323-334
新疆阿尔泰可可托海3号伟晶岩脉磷灰石矿物中稀土元素(REE)和其他微量元素的ICP-MS分析结果表明,Y/Ho,Zr/Hf和Nb/Ta明显偏离球粒陨石中对应的比值,并存在显著的REE“四分组效应”,REE“四分组效应”量化特征参数TE3,4主要与Y/Ho,Nb/Ta分异程度有关,与δEu负异常演化程度相一致,锰铝榴石也呈现REE“四分组效应”和Y/Ho,Nb/Ta显著分异,指示REE“四分组效应”是形成伟晶岩熔体的一个基本特征,并不是由富LREE矿物(如独居石)和富HREE矿物(如四榴子石)结晶引起的残余熔体REE含量的异常变化,其机制可能是富F,B和P的过铝质窝本与含水流体间相互作用,REE在流体相/熔体相的分配受温度,压力和流体相组成复合控制的综合结果。  相似文献   

11.
This paper focuses on reasons for the appearance of tetrad effects in chondrite-normalized REE distribution patterns of granitoids (Li-F granites, peralklaine granites, ongonites, fluorine-rich rhyolites, and granitic pegmatites). The analysis of published data showed that the alteration of such rocks by high- and/or low-temperature metasomatic processes does not result in most cases in the appearance or enhancement of M-type tetrad effects in REE patterns. These processes are accompanied by the removal or addition of lanthanides, a W-type sag appears between Gd and Ho, and negative or positive Ce anomalies develop sometimes in REE patterns. The formation conditions of peculiar rocks enriched in Ca and F from the Ary Bulak ongonite massif (eastern Transbaikalia) and the character of REE distribution in these rocks and melt inclusion glasses were discussed. Based on the obtained data and the analysis of numerous publications, it was concluded that REE tetrad effects in rare-metal granitoids are caused by fluoride-silicate liquid immiscibility and extensive melt differentiation in the accumulation chambers of fluorine-rich magmas. A considerable increase in fluorine content in a homogeneous granitoid melt can cause its heterogenization (liquation) and formation of fluoride melts of various compositions. The redistribution of lanthanides between the immiscible liquid phases of granitoid magma will result in the formation of M-type tetrad effects in the silicate melts, because the REE patterns of fluoride melts exhibit pronounced W-type tetrad effects. The maximum M-type tetrad effect between La and Nd, which is observed in many rare-metal granitoids, is related to the character of REE partitioning between fluoride and silicate melts and F- and Cl-rich magmatic fluids. The low non-chondritic Y/Ho ratio (<15) of many rare-metal granitoids may be indicative of a contribution of fluoride melts to the differentiation of F-rich silicic magmas, from which these rocks were formed. The influence of high-temperature F-Cl-bearing fluids on melts and/or granitoid rocks results in an increase in Y/Ho ratio owing to the elevated solubility of Ho in such fluids.  相似文献   

12.
Early Palaeozoic granitoids in the South Qilian Belt, central China, record details of the tectonic evolution and crustal growth of the Qilian orogenic belt. Five representative granitoids from the western South Qilian Belt were sampled for zircon LA-ICPMS U–Pb dating, Lu–Hf isotopes, and whole-rock geochemical analyses. Zircon U–Pb dating of two porphyritic granodiorites and a porphyritic monzogranite yielded ages of 442.7 ± 3.5, 441.8 ± 4.3, and 435.4 ± 3.5 Ma, respectively. These granitoids exhibit a geochemical affinity to I-type granite, are metaluminous with a low aluminium saturation index (A/CNK = 0.75–1.15), have moderate Al2O3 and low MgO contents, high La/Yb and low Sr/Y ratios, and are depleted in Nb, Ta, P, and Ti, which suggests a subduction zone magmatic arc affinity, with mixing between a primary mantle-derived magma with lesser continental crustal material. The syenogranite and monzogranite from the South Qilian Belt, which yield U–Pb zircon ages of 440.4 ± 9.0 and 442.3 ± 1.2 Ma, respectively, have pronounced S-type geochemical affinities, are peraluminous with A/CNK values of 1.07–1.16, have relatively high SiO2, Al2O3, K2O, and Rb contents, low Y and Yb, low Sr/Y and La/Yb ratios, positive Th, U, and light Rare Earth Element (REE) anomalies, and depletions in Nb, Ta, Sr, and Ti. Their geochemical signature suggests derivation from partial melting of continental crust in a syn-collisional setting. The Hf isotopic data of zircons from the granitoids show a significant input of Paleoproterozoic crust in the crustal formation of the western South Qilian Belt in Palaeozoic. Compare the εHf(t) value of S-type granite with that of I-type granite, the former may have a comparatively homogeneous source. Together with regional evidence, it is proposed that a collisional event occurred between the South Qilian Belt and the Central Qilian Belt at ca. 442–435 Ma.  相似文献   

13.
Walegen Au deposit is closely correlated with granitic intrusions of Triassic age, which are composed of granite and quartz porphyries. Both granite porphyry and quartz porphyry consist of quartz, feldspar and muscovite as primary minerals. Weakly peraluminous granite porphyry(A/CNK=1.10–1.15) is enriched in LREE, depleted in HREE with Nb-Ta-Ti anomalies, and displays subduction-related geochemistry. Quartz porphyry is strongly peraluminous(A/CNK=1.64–2.81) with highly evolved components, characterized by lower TiO_2, REE contents, Mg~#, K/Rb, Nb/Ta, Zr/Hf ratios and higher Rb/Sr ratios than the granite porphyry. REE patterns of quartz porphyry exhibit lanthanide tetrad effect, resulting from mineral fractionation or participation of fluids with enriched F and Cl. LAICP-MS zircon U-Pb dating indicates quartz porphyry formed at 233±3 Ma. The ages of relict zircons from Triassic magmatic rocks match well with the detrital zircons from regional area. In addition, ε_(Hf)(t) values of Triassic magmatic zircons from the granite and quartz porphyries are -14.2 to -9.1(with an exception of +4.1) and -10.8 to -8.6 respectively, indicating a crustal-dominant source. Regionally, numerous Middle Triassic granitoids were previously reported to be formed under the consumption of Paleotethyan Ocean. These facts indicate that the granitic porphyries from Walegen Au deposit may have been formed in the processes of the closing of Paleotethyan Ocean, which could correlate with the arc-related magmatism in the Kunlun orogen to the west and the Qinling orogen to the east.  相似文献   

14.
Trace elements and rare earth elements (REEs) of Lias-aged cherts in the Gumushane area were studied in order to understand their origin and depositional environment. Twenty three chert samples from five stratigraphic sections were analysed by inductively coupled plasma-mass spectrometry, X-ray diffraction, and mineralogical investigation. Lias cherts in the study area are microcrystalline, cryptocrystalline quartz, and megaquartz depending on mineralogical content. Trace elements of the cherts were compared with PAAS, Co, Y, and Th had stronger depletions in the five sections, whereas V, Ni, Zr, Nb, and Hf had smaller depletions. The distribution of Zr, Hf, and Ta yields Zr/Hf, Zr/Ta and Hf/Ta ratios (25/645, 37/665, and 0.18/3, respectively) that differ from those of chondrites and average upper continental crust, suggesting that these elements are likely non-detrital but are sourced from seawater. Th/U ratios range from 0.04 to 0.45 and are lower than those of the upper continental crust (average: 3.9). Lias-aged cherts have low total REE abundances and stronger depletions in five sections of the PAAS and chondrite-normalised plots. The cherts are characterised by a positive Eu anomaly (average: 4.9) and LREE-enrichment (LaN/YbN = average: 3.5). In addition, about one-half of the cherts exhibit positive Ce anomaly (range: 0.25–2.58), chondritic Y/Ho values (range: 3.3–60), and low (La/Ce)N values (average: 1.8). REE and trace element abundance in Lias cherts indicate that these elements were likely derived from hydrothermal solutions, terrigenous sources, and seawater. The REE patterns of the cherts show that they were probably deposited close to a continental margin.  相似文献   

15.
Intrusion of quartz‐monzodioritic igneous bodies of Oligocene age into Eocene lithic crystal tuffs and trachy‐basalts resulted in the occurrence of a widespread argillic alteration zone in the Jizvan district (northern Iran). Mineralogically, the argillic alteration zone includes minerals such as kaolinite, quartz, smectite, pyrophyllite, muscovite‐illite, alunite, rutile, calcite, feldspar, chlorite, hematite and goethite. Therefore, the non‐CHARAC behaviour for trace elements in the argillic samples is reflected in the non‐chondritic Y/Ho and Zr/Hf ratios and the irregular REE patterns, which appear related to the tetrad effect phenomenon. The chondrite‐normalized REE distribution patterns indicate both concave (W‐shaped) and convex (M‐shaped) tetrad effects in the argillic samples. Based on the field evidence and the results from geochemical studies, it can be concluded that the samples from the argillic alteration zone having high fourth tetrad effect values (>0.30) were developed in the fault and breccia zones. The results indicate that factors such as preferential scavenging by Mn‐oxides, crystallization of clay minerals, fluid‐rock interaction, overprint of hypogene mineral assemblage by supergene ones, and the structural control, have all played an important role in the occurrence of tetrad effects in samples of the argillic zone in the Jizvan district.  相似文献   

16.
广西苍梧社洞钨钼矿是与花岗岩类有关的矿床。矿区主要花岗岩类包括加里东期花岗闪长岩、花岗闪长斑岩和燕山晚期花岗斑岩。加里东期花岗闪长岩、花岗闪长斑岩具有低Si、K,富Na、Al和基性组分特征,属于强过铝质的正常钙碱性系列岩石;稀土总量低,轻重稀土分馏明显,弱负Eu异常(δEu=0.62~0.70);Ti、Nb、Ta亏损,Th、U、Pb、Zr、Hf富集,Rb/Sr平均值为0.78,明显富集W、Cu、Mo,属于I型花岗岩,为陆内造山带碰撞早期挤压背景下岩浆活动的产物,表现为对钨、钼、铜的成矿专属性。燕山晚期花岗斑岩具有高Si、K,贫Na、Ca和基性组分,属于强过铝质的高钾-中钾钙碱性系列岩石;稀土总量高,轻重稀土分馏不明显,强负Eu异常(δEu=0.03~0.06);Ti、Ba、K、Eu亏损,Th、U、Sm、Dy、Y、Ho、Yb、Lu富集程度更高,Rb/Sr平均值为7.56,明显富集Sn、Bi,属于燕山晚期岩浆演化程度较高的S型花岗岩,为碰撞后伸展环境的板内花岗岩,表现为对锡、金的成矿专属性。  相似文献   

17.
《International Geology Review》2012,54(16):1885-1905
Late Mesozoic granitoid plutons of four distinct ages intrude the lower plate of the Hohhot metamorphic core complex along the northern margin of the North China craton. The plutons belong to two main groups: (1) Group I, deformed granitoids (148 and 140 Ma subgroups) with high Sr, LREE, and Na2O, low Y and Yb contents, high Sr/Y and La/Yb ratios, weak or no Eu anomalies, low Rb/Ba ratios, similar initial 87Sr/86Sr values (0.7064–0.7071) and low Mg# (<37 mostly, 100?×?molar MgO/MgO + FeO t ); (2) Group II, non-deformed granitoids (132 and 114 Ma subgroups) with low Sr, relatively low Na2O, high Y and Yb contents, pronounced negative Eu anomalies, high Rb/Ba ratios, and initial 87Sr/86Sr values (0.7098–0.7161). The two groups share geochemical similarities in ?Nd(t) (–11.3 to –15.4) and T DM2 ages (1.85–2.18 thousand million years) as well as Hf isotopic ratios in zircons. Geochemical modelling (using the MELTS code) suggests that similar sources but different depths of magma generation produced the early, high-pressure low-Mg adakitic granitoids and late, low-pressure granitoids with A-type characteristics. The early granitoids likely represent a partially melted, deep-seated, thickened lower continental crust that involved a minor contribution from young materials, whereas the later group partially melted at shallower depths. This granitic magmatic evolution coincided with the tectonic transition from crustal contraction to extension.  相似文献   

18.
《Chemical Geology》2003,193(1-2):109-125
Ilmenite separates from the floor (LS), roof (UBS), and wall (MBS) sequences of the Skaergaard Intrusion were analyzed for major and trace elements using DCP-AES and ICP-MS techniques. In all three sequences, FeO progressively increases, and MgO and Al2O3 progressively decrease with differentiation. Although trace element abundances are, in general, higher in UBS ilmenite than in MBS and LS ilmenite, all three sequences have similar trends for trace element abundance vs. crystallization. Ba, Cs, Rb, Sr, Th, U, Y, and the REEs are excluded elements in ilmenite, and remained at low abundances during differentiation. Cr, Ni, Sc, and V are included elements in ilmenite and other mafic phases, and decreased during differentiation. V contents in ilmenite, however, do not decrease significantly until the upper part of the middle zone, suggesting that magnetite did not begin to affect the magma differentiation trend until much later than when it first appears in the intrusion. Hf, Nb, Ta, and Zr, which are strongly excluded elements in silicates, are included elements in ilmenite. The element ratios Zr/Hf, Y/Ho, Nb/Ta, and U/Th are relatively constant in Skaergaard ilmenite from different parts of the intrusion, suggesting that fluid transport did not significantly effect these elements during differentiation or post-solidification cooling. Calculated partition coefficients for ilmenite in the Skaergaard Intrusion are similar to those reported from previous studies of lunar and terrestrial basalts and kimberlites, and for most elements are significantly lower than those reported for ilmenite in rhyolitic magma. Similar Di's for Zr, Hf, Nb, and Ta suggest that ilmenite crystallization did not significantly affect Zr/Nb or Hf/Ta in the Skaergaard magma, but the ratios of Zr, Hf, Nb, or Ta to other high field strength elements, such as Th, U, Y, or the REEs, may have been altered by ilmenite fractionation.  相似文献   

19.
Study of the concentration of major, trace, and rare earth elements (REE) in the Shahindezh karst bauxite deposit, northwestern Iran clarifies the relationship of the tetrad effect with geochemical parameters in the bauxite ores. The existence of irregular curves in the chondrite-normalized REE patterns as well as non-CHARAC behavior of geochemically isovalent pairs (Y/Ho) are related to the tetrad effect. The meaningful positive correlation between the sizes of the calculated T3 tetrad effect and some geochemical factors such as Y/Ho, ΣREE, La/Y, (La/Yb)N, and (LREE/HREE)N as well as some major oxides-based parameters like Al2O3 + LOI/SiO2 + Fe2O3, Al2O3/Fe2O3, Al2O3 + LOI, IOL, and SiO2 + Fe2O3 indicate that the studied bauxite horizon was likely deposited by different (acidic and/or alkalic) solutions at different stages. The lower part of the studied horizon with a thickness of ~4.7 m displays alkali characteristics whereas the upper parts of the horizon with a thickness of ~5.3 m are characterized by more acidic conditions. These results are fully supported by the co-occurrence of convex-concave tetrad effect curves in the chondrite-normalized REE patterns. Therefore, the tetrad effect phenomenon used in this study has proved to be a good and reliable geochemical proxy to assess the conditions of the depositional environment in the Shahindezh bauxite ores.  相似文献   

20.
Five Devonian plutons (West Charleston, Echo Pond, Nulhegan, Derby, and Willoughby) that constitute the Northeast Kingdom batholith in Vermont show wide ranges in elemental abundances and ratios consistent with major crustal contributions during their evolution. The batholith consists of metaluminous quartz gabbro, diorite and quartz monzodiorite, peraluminous granodiorite and granite, and strongly peraluminous leucogranite. Contents of major elements vary systematically with increasingSiO<2 (48 to 77 wt.%). The batholith has calc-alkaline features, for example a Peacock index of 57, and values for K<2O/Na2O (<1), K/Rb (60–350), Zr/Hf (30–50), Nb/Ta (2–22), Hf/Ta (up to 10), and Rb/Zr (<2) in the range of plutonic rocks found in continental magmatic ares. Wide diversity and high values of minor- and trace-element ratios, including Th/Ta (0.5–22), Th/Yb (0–27), Ba/La (0–80), etc., are attributed to intracrustal contributions. Chondrite-normalized REE patterns of metaluminous and relatively mafic intrusives have slightly negative slopes (La/Ybcn<10) and negative Eu anomalies are small orabsent. The metaluminous to peraluminous inter-mediate plutons are relatively enriched in the light REE (La/Ybcn>40) and have small negative Eu anomalies. The strongly peraluminous Willoughby leucogranite has unique trace-element abundances and ratios relative to the rest of the batholith, including low contents of Hf, Zr, Sr, and Ba, low values of K/Rb (80–164), Th/Ta (<9), Rb/Cs (7–40), K/Cs (0.1–0.5), Ce/Pb (0.5–4), high values of Rb/Sr (1–18) low to moderate REE contents and light-REE enriched patterns (with small negative Eu anomalies). Flat REE patterns (with large negative Eu anomalies) are found in a small, hydrothermally-altered area characterized by high abundances of Sn (up to 26 ppm), Rb (up to 670 ppm), Li (up to 310 ppm), Ta (up to 13.1 ppm), and U (up to 10 ppm). There is no single mixing trend, fractional crystallization assemblage, or assimilationscheme that accounts for all trace elementvariations from quartz gabbro to granite in the Northeast Kingdom batholith. The plutons originated by mixing mantle-derived components and crustal melts generated at different levels in the heterogeneous lithosphere in a continental collisional environment. Hybrid rocks in the batholith evolved by fractional crystallization and assimilation of country rocks (<50% by mass), and some of the leucogranitic rocks were subsequently disturbed by a mild hydrothermal event that resulted in the deposition of small amounts of sulfide minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号