首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SHRIMP U-Pb ages of detrital zircon from the oldest Mesozoic strata, the Fanghushan Fomation, in the Hefei Basin range from 200 Ma to ca. 2500 Ma, which indicates that the Dabie Orogen as the early Jurassic sedimentary provenance was complex. The composition of the Dabie Orogen includes: the Triassic high pressure-ultrahigh pressure metamorphic rocks, of which the detrital zircon ages are from 234 Ma to 200 Ma; the rocks possibly related to the Qinling and Erlangping Groups representing the southern margin of the Sino-Korean craton in the Qinling and Dabie area, of which the detrital zircon has an age of 481-378 Ma; the Neo-proterozoic rocks originated from the Yangtze croton, of which the detrital zircon ages are 799-721 Ma old; and the rocks with the detrital zircon ages of ca. 2000 Ma and ca. 2500 Ma, which could be the old basement of the Yangtze craton.  相似文献   

2.
High-pressure mafic granulites occurring as lenticular bodies within garnet-amphibolites in Kangxiwar Fault have been first reported in this paper. The P-T conditions of two metamorphic stages were ob-tained using calibrated geothermal barometers and ThermoCalc Program. The peak metamorphic con-dition of these high-pressure granulites is about 760―820℃,1.0―1.2 GPa and the retrograde meta-morphic condition is about 620―720℃,0.7―0.8 GPa. The petrological studies show that they have a near-isobaric cooling P-T...  相似文献   

3.
The Western Kunlun Range in northern Qinghai-Tibet Plateau is composed of the North Kunlun Terrane,the South Kunlun Terrane and the Karakorum-Tianshuihai Terrane. Here we report zircon SHRIMP and LA-ICP-MS U-Pb ages of some metamorphic and igneous rocks and field observations in order to pro-vide a better understanding of their Precambrian and Palaeozoic-early Mesozoic tectonic evolution. Based on these data we draw the following conclusions: (1) The paragneisses in the North Kunlun Terrane are likely of late Mesoproterozoic age rather than Palaeoproterozoic age as previously thought,representing tectonothermal episodes at 1.0―0.9 Ga and ~0.8 Ga. (2) The North Kunlun Terrane was an orogenic belt accreted to the southern margin of Tarim during late Mesoproterozoic to early Neopro-terozoic,the two episodes of metamorphisms correspond to the assemblage and breakup of Rodinia respectively. (3) The Bulunkuole Group in western South Kunlun Terrane,which was considered to be the Palaeoproterozoic basement of the South Kunlun Terrane by previous studies,is now subdivided into the late Neoproterzoic to early Palaeozoic paragneisses (khondalite) and the early Mesozoic metamorphic volcano-sedimentary series; the paragneisses were thrust onto the metamorphic vol-cano-sedimentary series from south to north,with two main teconothermal episodes (i.e.,Caledonian,460―400 Ma,and Hercynian-Indosinian,340―200 Ma),and have been documented by zircon U-Pb ages. (4) In the eastern part of the South Kunlun Terrane,a gneissic granodiorite pluton,which intruded the khondalite,was crystallized at ca. 505 Ma and metamorphosed at ca. 240 Ma. In combination with geochronology data of the paragneiss,we suggest that the South Kunlun Terrane was a Caledonian accretionary orogenic belt and overprinted by late Paleozoic to early Mesozoic arc magmatism.  相似文献   

4.
Timing of the intermediate-basic igneous rocks developed in the area of Kuhai-A'nyêmaqên along the southern east Kunlun tectonic belt is a controversial issue. This paper presents new zircon SHRIMP U-Pb dating data for igneous zircons from the Kuhai gabbro and the Dur'ngoi diorite in the Kuhai-A'nyemaqen tectonic belt, which are 555±9 Ma and 493±6 Ma, respectively. The trace element geochemical features of the Kuhai gabbro and the Dur'ngoi diorite are similar to those of ocean island basalts (OIB) and island arc basalts (IAB), respectively. Thus, the Kuhai gabbro with the age of 555±9 Ma and OIB geochemical features is similar to the Yushigou oceanic ophiolite in the North Qilian orogen, whereas the Dur'ngoi diorite with the age of 493±6 Ma and IAB geochemical features is similar to the island arc volcanic rocks developed in the north Qaidam. The Late Neoproterozoic to Early Ordovician ophiolite complex in the area of Kuhai-A'nyêmaqên suggests that the southern margin of the "Qilian-Qaidam-Kunlun" archipelagic ocean in this period was located in the southern east Kunlun tectonic belt. Therefore, the southern east Kunlun tectonic belt in the early Paleozoic is not comparable to the Mianlüe tectonic belt in the Qinling orogenic belt.  相似文献   

5.
History of tectono-magmatic evolution in the Western Kunlun Orogen   总被引:3,自引:0,他引:3  
Based on the statistical and analytical data on more than 170 isotopic ages published since the 1980s of magmatic rocks, metamorphic rocks, tectonites and ores from the Western Kunlun Orogen, and the characteristics of sedimentation, magmatism, metamorphism and tectonic activities in the region studied in conjunction with geological field investigations and necessary supplementary isotope data, five stages of tectono-magmatic evolution, i.e. Ar3-Pt 2 1 tectono-magmatic active stage (I), pt 2 2 stable stage (II), Pt 3 1 -p2 active stage (III), T1-T2 stable stage (IV), and T3-Q active stage (V) can be distinguished in the Western Kunlun Orogen. Moreover, the tectono-magmatic active style and general trend, the characteristics of tectonic settings, etc. of each stage and substage in the region studied are also discussed. Project supported by the State Key Science and Technology Program (No. 305) for the Ninth Five-Year Plan Period of China.  相似文献   

6.
A great deal of practical data in recent years have proved that the East Kunlun orogenic belt and even the China central orogenic belt are complex orogenic belts that underwent polycycle orogenic evolvement[1―7]. Each orogenic cycle has left a compositional print, the multi-period ophiolites[4―6] and various types of tec-tono-magmatic production in the same orogenic belt. There is a suite of shallow metamorphic volcanic rocks in the Nuomuhong area in the east part of the East Kunlun orogen…  相似文献   

7.
The SHRIMP zircon U-Pb geochronology of three typical samples, including two monzo nitic granites from the Lincang batholith and a rhyolite from the Manghuai Formation are presented in the southern Lancangjiang, western Yunnan Province. The analyses of zircons for the biotite monzonitic granites from the northern (02DX-137) and southern (20JH-10) Lincang batholith show the single and tight clusters on the concordia, and yield the weighted mean 206Pb/238U ages of 229.4 ± 3.0 Ma and 230.4 ± 3.6 Ma, respectively, representing the crystallized ages of these granites. The zircons for the rhyolitic sample (02DX-95) from the Manghuai Formation give a weighted mean 206Pb/238U age of 231.0 ± 5.0 Ma. These data suggest that the igneous rocks from the Lincang granitic batholith and Manghuai Formation have a similar crystallized age. In combination with other data, it is inferred that both were generated at a narrow age span (~230 Ma) and were originated from the postcollisional tectonic regime. An early Proterozoic 206Pb/238U apparent age of 1977±44 Ma is additionally obtained from one zircon from the biotite monzonitic granite (southern Lincang batholith), indicative of devel- opment of the early Proterozoic Yangtze basement in the region. These precisely geochronological data provide important constraints on better understanding the Paleozoic tectonic evolution of the Tethys, western Yunnan Province.  相似文献   

8.
湘西南兰蓉岩体为一加里东期小侵入体,由黑云母二长花岗岩和二云母二长花岗岩组成.(443.5±8.1)Ma的锆石SHRIMP U Pb年龄表明花岗岩形成于早志留世早期.主量元素组成表明岩体总体属钙碱性高钾钙碱性系列强过铝质花岗岩类.该侵入体Ba、(Ta+Nb)、Sr、P、Ti强烈亏损,Rb、(Th+U+K)、(La+Ce)、Nd、(Zr+Hf+Sm)、(Y+Yb+Lu)等相对富集;稀土元素含量较高、轻稀土富集明显、Eu显著亏损;Isr值为0.71299,εSr(t)值为120,εNd (t)值为 8.11和-8.89,t2DM为1.82和1.84Ga.C/MF-A/MF图解显示其源岩为泥质岩和砂屑岩.上述地球化学特征表明兰蓉岩体为陆壳碎屑岩石部分熔融形成的S型花岗岩.基于岩石成因、构造环境判别以及区域构造演化过程,推断兰蓉岩体的具体形成机制为:奥陶纪末志留纪初的北流运动(板内造山运动)导致地壳增厚、升温,尔后在挤压减弱、应力松弛的后碰撞减压构造环境下,中、上地壳酸性岩石发生部分熔融并向上侵位而形成兰蓉岩体.  相似文献   

9.
The petrographic characteristics of Jingshan "migmatitic granite" and the occurrence of the magmatic zircons indicate that the granite was formed by normal crystallization of felsic melts. All zircons in the granite have inherited cores and fine-scale oscillatory zoning rims of magmatic origin. It is realized that the granite was formed at 160.2±1.3 Ma through dating magmatic zircons. The generation of the granitic magma could be related to the lithospheric mantle and/or lower crust delamination after the ultrahigh pressure metamorphism (UHPM) in Triassic. Most inherited zircons yield the ages of 217.1±6.6 Ma, which is consistent with the peak UHPM in the Dabie-Sulu orogenic belt. Some of the inherited zircons (433-722 Ma) constitute a discordia line with the upper intercept age of 850+85/-68 Ma and a lower intercept age of 261+100/-140 Ma. These ages imply that the granite could be derived from the partial melting of the crustal materials of the South China Block that was intensively superimposed by t  相似文献   

10.
1 Geological setting Hainan Island is situated in the conjunction region between the Euro-Asian plate, the Indian-Australian plate and the Pacific plate, its tectonic setting and evolution is implicated in understanding the continen-tal margin accretion and evolution of East Asia and the formation of the South China sea. The Jiusuo-Lingshui fault zone divides Hainan Island into the Yaxian Pa-leozoic massif in the south and the Qiongzhong Pa-leozoic massif in the north (Fig. 1), they con…  相似文献   

11.
The Dongjiahe ophiolite complex occurring in the western Bikou terrane that is composed chiefly of serpentinite, listwanitizational peridotite, gabbro, cumulus gabbro, and sub-alkaline meta-basalt, possesses a rock association of typical ophiolite sequence. The metaperidotite is depleted in light rare earth element (LREE), whereas the gabbro and meta-basalt from the studied ophiolite sequence, generated by the same parental magmas those have close affinity to the MORB (Mid-ocean ridge basalt), their REE and immobile elements patterns imply an ocean in the northern margin of the Yangtze plate during the Neoproterozoic period. The zircon LA-ICP-MS U-Pb dating for the gabbro yields a weighted mean age of 839.2±8.2Ma, suggesting that the basin occurred during the Neoproterozoic period.  相似文献   

12.
The basic dykes are widely distributed in the Tonghua area, among which the Chibaisong No.1 gabbro has attracted many geologists’ attention to the copper-nickel sulfide deposit within it. However, its formation time has been controversial all the time. Most geologists considered that it could be formed at the late Archean or the Paleoproterozoic[1]1), while some other geologists contended that it might be formed in early Yanshannian of Mesozoic2). The forming time of the basic dyke swarm i…  相似文献   

13.
A geochronological study of zircon U-Pb on the volcanic rocks from the stratotype section of the Qingshan Group within the Jiaozhou Basin, eastern Shandong Province, is presented. The zircons were analyzed using the method of in situ ablation of a 193 nm excimer laser system coupled with an up to date ICP-MS system. Among the three formations of the Qingshan Group, zircons recovered from the lowest part of the Houkuang Fm. were dated at 106±2 Ma (95% confidence, the same below), whereas those from the lower and upper parts of the Shiqianzhuang Fm. were given ages of 105±4 Ma and 98±1 Ma, respectively. A spatially decreasing trend for the Mesozoic magmatic timing from west to east in the province is observed through comparing the data of this study with those by previous works on the Qingshan volcanic lavas occurring at western Shandong and within the Yishu fault zone. The Qingshan volcanic rocks are constituent of the 'Shoshonite Province' in East China. Exposed at most provinces of central East China along the Tan-Lu fault and the Yangtze fault zones, these volcanic suites are characterized by shoshonite and high-K calcalkalic rocks in lithology and thought to be correlated with the partial melting of continental mantle in genesis. It is also shown that the Qingshan potassic volcanic suite from eastern Shandong basins is distinctly younger than those from other ar-eas of the shoshonite province. By contrary, ages of the Mesozoic to Cenozoic alkaline basalts, sourced by asthenospheric mantle, from both northern Huaiyan basin and northern Dabie belt along the Tan-Lu fault zone and from the Ningwu, Lishui and Luzong basins along the Yangtze fault zone are observably older than those occurring within eastern Shandong. The revealed temporal and spatial patterns in magmatism for the two types of volcanic suites make an important geochronological con-straint on the Mesozoic to Cenozoic dynamic evolution model of the subcontinental lithosphere in East China.  相似文献   

14.
Seven LA-ICP-MS zircon U-Pb datings from granitoids in the southern basement of the Songliao basin were done in order to constrain the ages of the basin basement. The cathodoluminescence (CL) images of the zircons from seven granitoids indicate that they are euhedral-subhedral ones with striped ab-sorption and obvious oscillatory zoning rims. The dating results show that a weighted mean 206Pb/238U age is 236±3 Ma for quartz diorite (sample No.T6-1) located in the western slope of the basin,that weighted mean 206Pb/238U ages are 319±1 Ma (2126 m) and 361±2 Ma (1994 m) for diorite (sample No.YC1-1) and granite (sample No.YC1-2) located in northern part of southeastern uplift of the basin,respectively,and that weighted mean 206Pb/238U ages are 161±5 Ma,165±2 Ma,165±1 Ma and 161±4 Ma for samples Q2-1,SN121,SN122,and SN72 granitoids located in southern part of southeastern uplift of the basin,respectively. The statistical results of ages suggest that the middle Jurassic granitoids con-stitute the main part of basement granitoids,and that the Hercynian and Indo-Sino magmatisms also occur in the basin basement. It is implied that the Songliao basin should be a rift one formed in the intracontinent or active continental margin settings in the late Mesozoic after the Middle Jurassic orogeny took place.  相似文献   

15.
The SHRIMP zircon U-Pb geochronology of three typical samples, including two monzonitic granites from the Lincang batholith and a rhyolite from the Manghuai Formation are presented in the southern Lancangjiang, western Yunnan Province. The analyses of zircons for the biotite monzonitic granites from the northern (02DX-137) and southern (20JH-10) Lincang batholith show the single and tight clusters on the concordia, and yield the weighted mean 206Pb/238U ages of 229.4 ± 3.0 Ma and 230.4 ± 3.6 Ma, respectively, representing the crystallized ages of these granites. The zircons for the rhyolitic sample (02DX-95) from the Manghuai Formation give a weighted mean 206Pb/238U age of 231.0 ± 5.0 Ma. These data suggest that the igneous rocks from the Lincang granitic batholith and Manghuai Formation have a similar crystallized age. In combination with other data, it is inferred that both were generated at a narrow age span (∼230 Ma) and were originated from the postcollisional tectonic regime. An early Proterozoic 206Pb/238U apparent age of 1977±44 Ma is additionally obtained from one zircon from the biotite monzonitic granite (southern Lincang batholith), indicative of development of the early Proterozoic Yangtze basement in the region. These precisely geochronological data provide important constraints on better understanding the Paleozoic tectonic evolution of the Tethys, western Yunnan Province.  相似文献   

16.
The NE-trended Mesozoic granodioritic intrusions are spatially and temporally associated with the copper multi-metal mineralization in southeastern Hunan Province, South China. U-Pb dating result of single-grained zircons of four samples respectively from Shuikoushan, Baoshan, western Tongshanling and eastern Tongshanling intrusions reveals that their crystallization age spans a range from 172 Ma to 181 Ma, which also represents the oldest age of the regional copper multi-metal mineralization. Some of the zircon grains give an upper intercept age of about 1753 Ma and 207Pb/206Pb apparent age of (1752 ± 4) Ma, implying the involvement of the pre-Cambrian metamorphic (possible Middle Proterozoic) basement in their genesis. The presence of such a kind of zircon grains in these granodiorites indicates either that the parental magmas were assimilated by basement rocks during magma ascent or that lower/middle crustal rocks were one of the important components during the melting process.  相似文献   

17.
小墨山岩体侵位于中元古代冷家溪群中,由两期侵人体组成,早期为粗中粒-中粒斑状黑云母二长花岗岩;末期为细粒黑(二)云母二长花岗岩。通过锆石SHRIMPU—Pb法测得岩体侵位年龄为122.5±2.1Ma(20),MSWD=1.9,成岩时代为早白垩世。主元素中,SiO2变化于67.20%~75.16%,K20含量高,且K2O〉Na2O,K2O/Na2O为1.16~1.72;ASI值变化于0.96~1.10之间,平均1.02,属准铝质-微过铝质、高钾钙碱性系列。岩石明显富集大离子亲石元素,亏损高场强元素,Rb/Sr=0.27~15.13;Nb/Ta=15.9~17.1,为锶和铌亏损型。EREE总体较高,重稀土含量相对较高,轻重稀土分馏稍弱,∑Ce/∑Y为0.49~6.18,(La/Yb)。为0.66~15.54。有较高的εNd(t),为-6.8~-8.7;T2DM相对较小(1.47~1.62Ga)。综合研究表明,小墨山花岗岩石为壳源型富黑云母过铝花岗岩类(CPG),其成因应为下地壳物质和上地壳物质混合而成,与花岗岩底侵作用或注入地壳中的幔源岩浆有关,形成的构造背景为陆内挤压造山向非造山转换的后造山拉张环境,是在紧随侏罗纪挤压造山运动之后的构造松驰和拉张减薄条件下所形成。  相似文献   

18.
分布于湖南东北部的石蛤蟆岩体侵位于新元古代地层中。由微细粒斑状黑云母花岗闪长岩和细粒斑状黑云母二长花岗岩等两期侵入体组成。通过锆石SHRIM PU--Pb法测得岩体侵位年龄为157土2Ma(2d),MSWD=0.98,成岩时代为晚侏罗世。SiO2=68.26%~68.53%,K2O/Na2O=1.37~1.59,岩石属镁质、准铝质-微过铝质、高钾钙碱性-钾玄岩系列;岩石明显富集大离子亲石元素,亏损高场强元素,Rb/Sr较低(0.40~0.56);乏REE较高(171.48~183.81),Eu为弱负异常(δEu=0.86~0.93),(La/Yb)N=27.11~45.87;具较高的eNd值(-5.11)和高T2DM(1.63Ga)。综合研究表明,石蛤蟆花岗岩为混合源高钾钙碱性花岗岩类(KCG),其花岗岩浆有大量幔源物质加入。讨论认为岩体形成于构造体制转换下的地球动力学背景,是造山晚期张弛作用下的产物。  相似文献   

19.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

20.
Zircon SHRIMP dating of granites from Dulan,east segment of North Qaidam UHP belt shows that they are 406.6±3.5 Ma for Yematan-E,407.3±4.3 and 397±6 Ma for Balijiehatan-W,404.5±4.0 and 397.0±3.7 Ma for Shuiwenzhan-N,380.5±5.0 Ma for Shuiwenzhan-S,382.5±3.6 and 372.5±2.8 Ma for Chachagongma.These granites from Dulan represent the products of the third and fourth periods of Paleozoic magmatism in North Qaidam.Geochemically,the granitoids with metalumious to weak peratuminous are quartz diorite,granodiorite,and granite in composition and mainly belong to calc-alkaline series,a few samples to calc or alkali-calc series.The third period of granites is a rock association of granodiorite+granite,with initial 87Sr/86Sr ratios from 0.7082 to 0.7110 and T2DM model ages from 1.41–1.90 Ga;and the fourth period of granites is a rock association of quartz diorite+granodiorite+granite,with initial 87Sr/86Sr ratios from 0.7072 to 0.7091 and T2DM model ages from 1.07–1.38 Ga.Therefore,the third period of granites has higher initial 87Sr/86Sr ratios and T2DM model ages.On the contrary,the fourth period of granites has Nd(t)values from 0.6 to-3.0,higher than that of the third granite with Nd(t)values-3.2 to-9.3.Thus,the data comparison indicates that the third granites may derive from Paleo-proterzoic continental crust with mantle material whereas the fourth granites may derive from the Meso-proterzoic basalt crust with continental material.Combined with regional geology,we thought that the third granites were formed relative to plate exhumation and the fourth granites to delamination of the lithospheric mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号