首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Acidic atmospheric deposition has adversely affected aquatic ecosystems globally. As emissions and deposition of sulfur (S) and nitrogen (N) have declined in recent decades across North America and Europe, ecosystem recovery is evident in many surface waters. However, persistent chronic and episodic acidification remain important concerns in vulnerable regions. We evaluated acidification in 269 headwater streams during 2010–2012 along the Appalachian Trail (AT) that transits several ecoregions and is located downwind of high levels of S and N emission sources. Discharge was estimated by matching sampled streams to those of a nearby gaged stream and assuming equivalent daily mean flow percentiles. Charge balance acid-neutralizing capacity (ANC) values were adjusted to the 15th (Q15) and 85th flow percentiles (Q85) by applying the ANC/discharge slope among sample pairs collected at each stream. A site-based approach was applied to streams sampled twice or more and a second regression-based approach to streams sampled once to estimate episodic acidification magnitudes as the ANC difference from Q15 to Q85. Streams with ANC <0 μeq/L doubled from 16% to 32% as discharge increased from Q15 to Q85 according to the site-based approach. The proportion of streams with ANC <0 μeq/L at low flow and high flow decreased from north to south. Base cation dilution explained the greatest amount of episodic acidification among streams and variation in sulfate (SO42−) concentrations was a secondary explanatory variable. Episodic SO42− patterns varied geographically with dilution dominant in northern streams underlain by soils developed in glacial sediment and increased concentrations dominant in southern streams with older, highly weathered soils. Episodic acidification increased as low-flow ANC increased, exceeding 90 μeq/L in 25% of streams. Episodic increases in ANC were the dominant pattern in streams with low-flow ANC values <30 μeq/L. Chronic and episodic acidification remain an ecological concern among AT streams. The approach developed here could be applied to estimate the magnitude and extent of chronic and episodic acidification in other regions recovering from decreasing levels of atmospheric S and N deposition.  相似文献   

2.
Temporary streams are a dominant surface water type in the Mediterranean region. As a consequence of their hydrologic regime, these ecosystems contract and fragment as they dry, and expand after rewetting. Global change leads to a rapid increase in the extent of temporary streams, and more and more permanent streams are turning temporary. Consequently, there is an urgent need to better understand the effects of flow intermittency on the biogeochemistry and ecology of stream ecosystems. Our aim was to investigate how stream nutrient availability varied in relation to ecosystem contraction, fragmentation and expansion due to hydrologic drying and rewetting. We quantified the temporal and spatial changes in dissolved nitrogen (N) and phosphorus (P) concentrations along a reach of a temporary Mediterranean forest stream during an entire contraction–fragmentation–expansion hydrologic cycle. We observed marked temporal changes in N and P concentrations, in the proportion of organic and inorganic forms as well as in stoichiometric ratios, reflecting shifts in the relative importance of in-stream nutrient processing and external nutrient sources. In addition, the spatial heterogeneity of N and P concentrations and their ratios increased substantially with ecosystem fragmentation, reflecting the high relevance of in-stream processes when advective transport was lost. Overall, changes were more pronounced for N than for P. This study emphasizes the significance of flow intermittency in regulating stream nutrient availability and its implications for temporary stream management. Moreover, our results point to potential biogeochemical responses of these ecosystems in more temperate regions under future water scarcity scenarios.  相似文献   

3.
The results of a 10 year study of groundwater‐dominated streams in the chalklands of southern England show that macrophyte communities occupying the headwaters of such streams have a measurable variability in terms of species composition and spatial cover, especially in relation to river flow. This occurs as a result of species adaptation to typically ephemeral flow regimes. Associations have also been established between variations in the vegetation and hydroclimatic parameters at the catchment scale, such as rainfall, percolation and soil moisture conditions. This has led to the derivation of a system whereby the nature of headwater macrophyte communities can be forecast/hindcast, on the basis of parameterized, antecedent flow records, to a current accuracy level of 72% for any of 13 community types and 90% for any of four community groups. It is anticipated that this accuracy rate will improve with (i) an updated community classification, (ii) refinement of the parameterization procedures for flow records, and (iii) the extension of the method from the six study streams currently under scrutiny to a further 18 streams. Greater accuracy of prediction will be constrained by natural variation within the vegetation and the interaction of an array of geomorphological and land‐use variables operating at diverse spatial scales. The process used here to establish vegetation–flow relationships could be used in other locations with groundwater‐fed streams, providing a useful tool for assessing some of the impacts of bioclimatic changes driven by global warming. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A key ecological role hypothesized for the hyporheic zone is as a refugium that promotes survival of benthic invertebrates during adverse conditions in the surface stream. Many studies have investigated use of the hyporheic refugium during hydrological extremes (spates and streambed drying), and recent research has linked an increase in the abundance of benthic invertebrates within hyporheic sediments to increasing biotic interactions during flow recession in a temporary stream. This study examined spatial variability in the refugial capacity of the hyporheic zone in two groundwater-dominated streams in which flow permanence varied over small areas. Two non-insect taxa, Gammarus pulex and Polycelis spp. were common to both streams and were investigated in detail. Hydrological conditions in both streams comprised a four-month period of flow recession and low flows, accompanied by reductions in water depth and wetted width. Consequent declines in submerged benthic habitat availability were associated with increases in population densities of mobile benthic taxa, in particular G. pulex. The reduction in the spatial extent of the hyporheic zone was minimal, and this habitat was therefore a potential refugium from increasing biotic interactions in the benthic sediments. Concurrent increases in the hyporheic abundance and hyporheic proportion of a taxon’s total (benthic + hyporheic) population were considered as evidence of active refugium use. Such evidence was species-specific and site-specific, with refugium use being observed only for G. pulex and at sites dominated by downwelling water. A conceptual model of spatial variability in the refugial capacity of the hyporheic zone during habitat contraction is presented, which highlights the potential importance of the direction of hydrologic exchange.  相似文献   

5.
Rivers in the Mediterranean region often exhibit an intermittent character. An understanding and classification of the flow regimes of these rivers is needed, as flow patterns control both physicochemical and biological processes. This paper reports an attempt to classify flow regimes in Mediterranean rivers based on hydrological variables extracted from discharge time series. Long‐term discharge records from 60 rivers within the Mediterranean region were analysed in order to classify the streams into different flow regime groups. Hydrological indices (HIs) were derived for each stream and principal component analysis (PCA) and then applied to these indices to identify subsets of HIs describing the major sources of variations, while simultaneously minimizing redundancy. PCA was performed for two groups of streams (perennial and temporary) and for all streams combined. The results show that whereas perennial streams are mainly described by high‐flow indices, temporary streams are described by duration, variability and predictability indices. Agglomerative cluster analysis based on HIs identified six groups of rivers classified according to differences in intermittency and variability. A methodology allowing such a classification for ungauged catchments was also tested. Broad‐scale catchment characteristics based on digital elevation, climate, soil and land use data were derived for each long‐term station where these data were available. By using stepwise multiple regression analysis, statistically significant relationships were fitted, linking the three selected hydrological variables (mean annual number of zero‐flow days, predictability and flashiness) to the catchment characteristics. The method provides a means of simplifying the complexity of river systems and is thus useful for river basin management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
《水文科学杂志》2013,58(6):1068-1078
Abstract

The study aims to set and implement environmentally relevant limits for the exploitation of mountain streams in the Kura River basin of Azerbaijan. Such streams represent the preferred spawning grounds for valuable sturgeon of the Caspian Sea, but experience continuously increasing exploitation in the form of water withdrawals for industry and irrigation. Since no detailed environmental flow assessments have been conducted on any of the Kura basin streams, an interim approach is suggested based on minimum flow, referred to as “base environmental minimum”. The latter may be estimated from the unregulated parts of observed or simulated daily flow records. Environmental flow requirements for individual months of an individual year may be calculated using correction factors related to monthly rainfall. Simple relationships are suggested for base environmental flow estimation at ungauged sites, and the implications of river pollution for monthly environmental requirements are examined. Further, definition of environmentally critical periods in a stream is proposed based on a ratio of observed to “environmental” flow as an indicator of environmental stress. It is illustrated that the conjunctive use of several closely located streams for water supply may significantly reduce the duration of, or completely eliminate, environmentally critical periods. The idea of environmentally acceptable areal water withdrawal is formulated, so that the overall approach may be applied for environmentally sustainable water withdrawal management in other small streams.  相似文献   

7.
Stream–subsurface water interaction induced by natural riffles and constructed riffles/steps was examined in lowland streams in southern Ontario, Canada. The penetration of stream water into the subsurface was analysed using hydrometric data, and the zone of > 10% stream water was calculated from a chemical mixing equation using tracer injection of bromide and background chloride concentrations. The constructed riffles studied induced more extensive hyporheic exchange than the natural riffles because of their steeper longitudinal hydraulic head gradients and coarser streambed sediments. The depth of > 10% stream water zone in a small and a large constructed riffle extended to > 0·2 m and > 1·4 m depths respectively. Flux and residence time distribution of hyporheic exchange were simulated in constructed riffles using MODFLOW, a finite‐difference groundwater flow model. Hyporheic flux and residence time distribution varied along the riffles, and the exchange occurring upstream from the riffle crest was small in flux and had a long residence time. In contrast, hyporheic exchange occurring downstream from the riffle crest had a relatively short residence time and accounted for 83% and 70% of total hyporheic exchange flow in a small and large riffle respectively. Although stream restoration projects have not considered the hyporheic zone, our data indicate that constructed riffles and steps can promote vertical hydrologic exchange and increase the groundwater–surface water linkage in degraded lowland streams. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Headwater streams expand, contract, and disconnect in response to seasonal moisture conditions or those related to individual precipitation events. The fluctuation of the surface flow extent, or active drainage network, reflects catchment storage characteristics and has important impacts on stream ecology; however, the hydrological mechanisms that drive this phenomenon are still uncertain. Here, we present field surveys of the active drainage networks of four headwater streams in Central Idaho's Frank Church‐River of No Return Wilderness (7–21 km2) spanning the spring and summer months of 2014. We report the total length of the active drainage networks, which varied as a power law function with stream discharge with an average exponent of 0.11 ± 0.03 (range of 0.05–0.20). Generally, these active drainage networks were less responsive to changes in discharge than many streams in past studies. We observed that the locations where surface flow originates, or flowheads, were often stable, and an average of 64% of the change in active drainage network length was explained by downstream discontinuities. Analysis of geologic and geomorphic characteristics of individual watersheds and flowheads suggests that most flowheads below approximately 2200 m are supported by stable flowpaths controlled by bedrock structure. At higher elevations, small accumulation areas and saturation of shallow and conductive soil and colluvium after snowmelt result in more mobile flowhead locations. The dynamics of active drainage networks can help illuminate the spatiotemporal structure of flowpaths supporting surface flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper focuses upon south-eastern Lithuanian Quaternary aquifer system groundwater resources formation modelling. Groundwater model calibration has been performed for a pre-development and transient flow conditions. The results demonstrate that there is an intense interaction between groundwater and surface water bodies which form groundwater resources and runoff. For Quaternary cover the majority of unconfined groundwater outflows to surface water streams, the remaining part discharges through the confined interglacial/interstadial aquifers and lateral outflows across the boundaries. Groundwater prognostic exploitable resources can be obtained without a significant negative impact on the geoenvironment. The main sources of exploitable resources formation are increase in groundwater recharge and lateral inflow (40.7%), decreased outflow via streams and lateral boundaries (41.2%) and drawing up additional flow from the hydraulically connected streams (14.5%).  相似文献   

10.
《国际泥沙研究》2023,38(2):265-278
Ecological engineering plays an increasingly significant role in mountain hazard control, but the effect of species selection and arrangement (e.g., row spacing and stem spacing) on debris flow suppression is still unclear. To further understand the interception efficiency of shrub arrangement parameters on debris flow and explore the difference with slow hydraulic erosion, sixteen sets of small-scale flume experiments with different stem and row spacings were done to study the effects of shrubs on debris flow severity, flow rate, velocity, and particle size. The results suggest that, for a dilute debris flow, sediment interception effectiveness (27.4%–60.9%) decreases gradually as stem spacing increases. Moreover, as row spacing increases, flow velocity reduction (34.4%–44.9%) and flow reduction (18.5%–47.4%) gradually decrease; and the bulk density reduction (0.5%–5.3%) and sediment interception increase initially and then decrease. In contrast, for a viscous debris flow, the flow reduction, flow velocity reduction, and sedimentation interception decrease gradually as the stem spacing increases. As row spacing increases, the flow velocity reduction, flow reduction, and sediment interception all increase initially and then decrease. A formula for the flow velocity of dilute debris flow after the filter strip was derived based on the energy conservation law and Bernoulli's equation, confirming that debris flow movement is closely related to the degree of vegetation cover. This research strengthens the current understanding of the effectiveness of vegetation in debris flow disaster prevention and control and can guide practical applications.  相似文献   

11.
IINTRODUCTIONThequestfordeterminingthedesigncharacteristicsofregimechannelshasbeengoingonforalongtime.Peoplehavebeenexcavatingnewormodifyingexistingchannelstousethemforirrigation,watersupply,navigation,floodcontrolandotherpurposes.Recently,archeologistsdiscoveredwhatiscurrentlybelievedtobetheoldestman(madecanalsystem.ItwasfoundintheareawhereMesopotamiausedtoexistanditisdatedbacktoabollt4,000BC.Ifachanne]isnotproperlydesigned,erosionofitsbanksordepositionofsedimentwithinitscross-sectionw…  相似文献   

12.
We developed an index (MESHMacroinvertebrates in Estonia: Score of Hydromorphology) to assess hydromorphological quality of Estonian surface waters based on macroinvertebrate taxonomic composition. The MESH is an average score based on the affinities of selected indicator taxa to flow velocity and bottom type. As both parameters were highly correlated (r = 0.65) indicator response to both parameters were combined. The list of MESH indicators includes 394 freshwater macroinvertebrate taxa derived from 3282 samples collected from rivers and lakes during 1985–2009. The indicators were selected out of 690 taxa, by applying the information-theoretical Kullback–Leibler divergence. The individual scores of macroinvertebrates range from 0 to 3, the higher scores indicating faster flow and/or solid bottom substrate. For standing waters, flow velocity was always considered zero. Among the reference waterbodies, mean MESH was the highest for small streams followed by middle streams, large streams, and lakes. In lakes with medium water hardness (the prevailing type in Estonia), the MESH decreased gradually from stony to muddy bottom. The highest MESH values for standing waters were observed in the stony surf zone of very large lakes (area > 100 km2). The lowest values occurred for small lakes with exceptional hydrochemical characteristics (soft- and darkwater, and calcareous types). Similarly, MESH indicated stream degradation by damming. Mean MESH in reservoirs with a muddy bottom was significantly lower than in reservoirs with a hard bottom, or in unregulated stream sections.  相似文献   

13.
A cellular automata model of surface water flow   总被引:1,自引:0,他引:1  
Previous cellular automata models of surface water flow have been constructed to reflect steady, gradually‐varied flow conditions. While these models are extremely important in showing the near‐equilibrium forms that result from the interactions of water and boundary material, highly dynamic forms and processes require models that represent unsteady flow conditions. In order to simulate unsteady flow in a cellular model of surface water flow, the conservation of mass and the Manning's equations are coupled with an algorithm to delay the movement of water from one pixel to the next until the correct timing is reached. This approach yields highly realistic flood wave hydrographs when compared with flood observations in the Walnut Gulch Experiment Watershed. Coupling this unsteady flow model with simple laws of sediment erosion, transport, and deposition should allow event‐based simulations of watershed and river channel geomorphologic change. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Stream temperature is an important property of water and affects most other water quality constituents. It is also a property which is very much influenced by exogenous factors like air temperature and stream flow. This study investigates long‐term trends in stream temperatures measured at various stream monitoring stations in Turkey to better understand links with climate change. It was found by statistical trend analysis that more streams have experienced decreasing trends than increasing ones. Moreover, stream temperatures show a rising tendency in most stations over Turkey. Flow‐adjusted temperatures were computed to eliminate flow dependency and these show more positive than negative trends. Management plans of streams and watersheds need to take this into account and incorporate the implications into plans.  相似文献   

15.
1. INTRODUCTIONIn the regulation of an estuary and the maintenance of a tidal channel for navigation, it is highlyimportant to investigate the interplay between tide and river flow and to anticipate its effects on sedimentation. In this paper. sediment--laden flow in an estuary is treated as a case of two--phase flow. resulting in a set of four governing equations. A theoretical solution is then derived for a simplified casefor qualitative assessment. Numerical computations are also carri…  相似文献   

16.
Abstract

The impact of pollution incidents on rivers and streams may be predicted using mathematical models of solute transport. Practical applications require an analytical or numerical solution to a governing solute mass balance equation together with appropriate values of relevant transport coefficients under the flow conditions of interest. This paper considers two such models, namely those proposed by Fischer and by Singh and Beck, and compares their performances using tracer data from a small stream in Edinburgh, UK. In calibrating the models, information on the magnitudes and the flow rate dependencies of the velocity and the dispersion coefficients was generated. The dispersion coefficient in the stream ranged between 0.1 and 0.9 m2/s for a flow rate range of 13–437 L/s. During calibration it was found that the Singh and Beck model fitted the tracer data a little better than the Fischer model in the majority of cases. In a validation exercise, however, both models gave similarly good predictions of solute transport at three different flow rates.  相似文献   

17.
The influence of woody debris on channel morphology and aquatic habitat has been recognized for many years. Unlike sediment, however, little is known about how wood moves through river systems. We examined some dynamics of wood transport in streams through a series of flume experiments and observed three distinct wood transport regimes: uncongested, congested and semi-congested. During uncongested transport, logs move without piece-to-piece interactions and generally occupy less than 10 per cent of the channel area. In congested transport, the logs move together as a single mass and occupy more than 33 per cent of the channel area. Semi-congested transport is intermediate between these two transport regimes. The type of transport regime was most sensitive to changes in a dimensionless input rate, defined as the ratio of log volume delivered to the channel per second (Qlog) to discharge (QW); this ratio varied between 0·015 for uncongested transport and 0·20 for congested transport. Depositional fabrics within stable log jams varied by transport type, with deposits derived from uncongested and semi-congested transport regimes having a higher proportion of pieces orientated normal to flow than those from congested transport. Because wood input rates are higher and channel dimensions decrease relative to piece size in low-order channels, we expect congested transport will be more common in low-order streams while uncongested transport will dominate higher-order streams. Single flotation models can be used to model the stability of individual pieces, especially in higher-order channels, but are insufficient for modelling the more complex intractions that occur in lower-order streams. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Modelling soil erosion requires an equation for predicting the sediment transport capacity by interrill overland flow on rough surfaces. The conventional practice of partitioning total shear stress into grain and form shear stress and predicting transport capacity using grain shear stress lacks rigour and is prone to underestimation. This study therefore explores the possibility that inasmuch as surface roughness affects flow hydraulic variables which, in turn, determine transport capacity, there may be one or more hydraulic variables which capture the effect of surface roughness on transport capacity suffciently well for good predictions of transport capacity to be achieved from data on these variables alone. To investigate this possibility, regression analyses were performed on data from 1506 flume experiments in which discharge, slope, water temperature, rainfall intensity, and roughness size, shape and concentration were varied. The analyses reveal that 89·8 per cent of the variance in transport capacity can be accounted for by excess flow power and flow depth. Including roughness size and concentration in the regression improves that explained variance by only 3·5 per cent. Evidently, flow depth, when used in combination with excess flow power, largely captures the effect of surface roughness on transport capacity. This finding promises to simplify greatly the task of developing a general sediment equation for interrill overland flow on rough surfaces. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Key processes in stream ecosystems are linked to hydraulic retention, which is the departure of stream flow from ideal ‘plug flow’, and reflects fluid movement through surface and hyporheic storage zones. Most existing information about hyporheic exchange is based on flume studies or field measurements in relatively steep streams with beds coarser than sand. Stream tracer studies may be used to quantify overall hydraulic retention, but disaggregation of surface and hyporheic retention remains difficult. A stream tracer approach was used to compute the rates at which stream water is exchanged with water in storage zones (total storage) in short reaches of two small, sand‐bed streams under free and obstructed flow conditions. Tracer curves were fit to the one‐dimensional transport with inflow storage model OTIS‐P. Networks of piezometers were used to measure specific discharge between the stream and the groundwater. In the sand‐bed streams studied, parameters describing total retention were in the upper 50% of data compiled from the literature, most of which represented streams with beds coarser than sand. However, hyporheic storage was an insignificant component of total hydraulic retention, representing only 0·01–0·49% of total exchange, and this fraction did not increase after installation of flow obstructions. Total retention did not vary systematically with bed material size, but increased 50–100% following flow obstruction. Removal of roughness elements, such as large wood and debris dams, is detrimental to processes dependent upon transient storage in small, sand‐bed streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Ecological investigations at four streams in Saxony‐Anhalt have shown that there are considerable differences between the self‐purification power of upland and lowland streams. This result is reflected in chemistry and in microbiology. The structure of the bottom substrate mainly influences the degree of self‐purification in connection with rate of flow and flow velocity. The results and differences are demonstrated using the example of Katzsohlbach in the landscape unit “Mittel‐ and Unterharz” and the stream Olbe in the landscape unit “Magdeburger Börde”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号