首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Various aspects of the simulated behaviour of cyclones in thirteen models participating in the AMIP1 exercise are presented. In the simulation of the winter climatological mean sea level pressure field for the Northern Hemisphere, the models produce reasonable simulations of the "semi-permanent" features of the climatology. The greatest departures from the observed climatology occur near the exit regions of the oceanic storm tracks; i.e., over northwestern North America, over and to the west of the British Isles and in the Mediterranean. The departures in the three geographical areas are very systematic in that at least eleven of the models exhibit similar departures from observations. In the Southern Hemisphere the intensity of the circumpolar trough is generally well simulated but positioned slightly too far north. Most models exhibit errors south of Africa, New Zealand, and South America. The simulations of the cyclone events show that the models are reasonably successful in reproducing the large-scale aspects of observed cyclone events but deficiencies in the details of the simulations are apparent. The paucity of simulated events to the south of the Alps and to the east of the Rockies suggests that the models have difficulty simulating lee cyclogenesis. Over much of North America, the models have difficulty simulating the correct level of synoptic activity as demonstrated by the low numbers of both cyclone events and anticyclone events. The models have difficulty simulating the distribution of cyclone events as a function of central pressure. The most common problem is that the models exhibit an ever increasing deficit of events with decreasing central pressure. This problem is more apparent in the Southern Hemisphere than in the Northern Hemisphere and does not appear to be resolution dependent. There is an apparent ENSO signal in the observed Northern Hemisphere interannual variability of intense winter cyclone events. With the exception of ECMWF, the models fail to reproduce this phenomenon. There is some evidence that the models do indeed respond to the interannual variability in the SSTs, but the response tends to be negatively correlated with that of the real atmosphere. In the Southern Hemisphere, there does not appear to be ENSO-induced interannual variability in the observed numbers of cyclone events. Consequently, it could be argued that the models have been reasonably successful in the Southern Hemisphere since they, like the observations, do not exhibit any ENSO-induced interannual variability.  相似文献   

2.
Using the coupled ocean-atmosphere Bergen Climate Model,and a Lagrangian vorticity-based cyclone tracking method,the authors investigate current climate summer cyclones in the Northern Hemisphere and their change by the end of the 21st century,with a focus on Northern Eurasia and the Arctic.The two scenarios A1B and A2 for increasing greenhouse gas concentrations are considered.In the model projections,the total number of cyclones in the Northern Hemisphere is reduced by about 3% 4%,but the Arctic Ocean and adjacent coastal re-gions harbour slightly more and slightly stronger summer storms,compared to the model current climate.This in-crease occurs in conjunction with an increase in the high-latitude zonal winds and in the meridional tempera-ture gradient between the warming land and the ocean across Northern Eurasia.Deficiencies in climate model representations of the summer storm tracks at high lati-tudes are also outlined,and the need for further model inter-comparison studies is emphasized.  相似文献   

3.
Fine-resolution regional climate simulations of tropical cyclones (TCs) are performed over the eastern Australian region. The horizontal resolution (30 km) is fine enough that a good climatological simulation of observed tropical cyclone formation is obtained using the observed tropical cyclone lower wind speed threshold (17 m s–1). This simulation is performed without the insertion of artificial vortices (bogussing). The simulated occurrence of cyclones, measured in numbers of days of cyclone activity, is slightly greater than observed. While the model-simulated distribution of central pressures resembles that observed, simulated wind speeds are generally rather lower, due to weaker than observed pressure gradients close to the centres of the simulated storms. Simulations of the effect of climate change are performed. Under enhanced greenhouse conditions, simulated numbers of TCs do not change very much compared with those simulated for the current climate, nor do regions of occurrence. There is a 56% increase in the number of simulated storms with maximum winds greater than 30 m s–1 (alternatively, a 26% increase in the number of storms with central pressures less than 970 hPa). In addition, there is an increase in the number of intense storms simulated south of 30°S. This increase in simulated maximum storm intensity is consistent with previous studies of the impact of climate change on tropical cyclone wind speeds.  相似文献   

4.
Synoptic activity over the Northern Hemisphere is evaluated in ensembles of ECHAM5/MPI-OM1 simulations for recent climate conditions (20C) and for three climate scenarios (following SRES A1B, A2, B1). A close agreement is found between the simulations for present day climate and the respective results from reanalysis. Significant changes in the winter mid-tropospheric storm tracks are detected in all three scenario simulations. Ensemble mean climate signals are rather similar, with particularly large activity increases downstream of the Atlantic storm track over Western Europe. The magnitude of this signal is largely dependent on the imposed change in forcing. However, differences between individual ensemble members may be large. With respect to the surface cyclones, the scenario runs produce a reduction in cyclonic track density over the mid-latitudes, even in the areas with increasing mid-tropospheric activity. The largest decrease in track densities occurs at subtropical latitudes, e.g., over the Mediterranean Basin. An increase of cyclone intensities is detected for limited areas (e.g., near Great Britain and Aleutian Isles) for the A1B and A2 experiments. The changes in synoptic activity are associated with alterations of the Northern Hemisphere circulation and background conditions (blocking frequencies, jet stream). The North Atlantic Oscillation index also shows increased values with enhanced forcing. With respect to the effects of changing synoptic activity, the regional change in cyclone intensities is accompanied by alterations of the extreme surface winds, with increasing values over Great Britain, North and Baltic Seas, as well as the areas with vanishing sea ice, and decreases over much of the subtropics.  相似文献   

5.
The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments derived from a selection of CMIP5(Coupled Model Intercomparison Project Phase 5) models. Specific attention is paid to the performance of the CMIP5 climate models in simulating the large-scale environment for TC development over the WNP. A downscaling system including individual models for simulating the TC track and intensity is used to select the CMIP5 models and to simulate the TC activity in the future.The assessment of the future track and intensity changes of TCs is based on the projected large-scale environment in the21 st century from a selection of nine CMIP5 climate models under the Representative Concentration Pathway 4.5(RCP4.5)scenario. Due to changes in mean steering flows, the influence of TCs over the South China Sea area is projected to decrease,with an increasing number of TCs taking a northwestward track. Changes in prevailing tracks and their contribution to basin-wide intensity change show considerable inter-model variability. The influences of changes in prevailing track make a marked contribution to TC intensity change in some models, tending to counteract the effect of SST warming. This study suggests that attention should be paid to the simulated large-scale environment when assessing the future changes in regional TC activity based on climate models. In addition, the change in prevailing tracks should be considered when assessing future TC intensity change.  相似文献   

6.
Representation of Northern Hemisphere winter storm tracks in climate models   总被引:1,自引:0,他引:1  
Northern Hemisphere winter storm tracks are a key element of the winter weather and climate at mid-latitudes. Before projections of climate change are made for these regions, it is necessary to be sure that climate models are able to reproduce the main features of observed storm tracks. The simulated storm tracks are assessed for a variety of Hadley Centre models and are shown to be well modelled on the whole. The atmosphere-only model with the semi-Lagrangian dynamical core produces generally more realistic storm tracks than the model with the Eulerian dynamical core, provided the horizontal resolution is high enough. The two models respond in different ways to changes in horizontal resolution: the model with the semi-Lagrangian dynamical core has much reduced frequency and strength of cyclonic features at lower resolution due to reduced transient eddy kinetic energy. The model with Eulerian dynamical core displays much smaller changes in frequency and strength of features with changes in horizontal resolution, but the location of the storm tracks as well as secondary development are sensitive to resolution. Coupling the atmosphere-only model (with semi-Lagrangian dynamical core) to an ocean model seems to affect the storm tracks largely via errors in the tropical representation. For instance a cold SST bias in the Pacific and a lack of ENSO variability lead to large changes in the Pacific storm track. Extratropical SST biases appear to have a more localised effect on the storm tracks.  相似文献   

7.
北半球温带气旋活动和风暴路径的年代际变化   总被引:9,自引:3,他引:9  
基于欧洲中心再分析数据ERA40的海平面气压场和高度场,本文分别采用拉格朗日和欧拉方法研究分析了1958~2001年北半球的不同季节温带气旋活动和风暴路径的年代际变化,以及可能的原因.以客观判定和追踪温带气旋为基础的拉格朗日方法得到了北半球的两个温带气旋主要活动中心,即北太平洋地区和北大西洋/北美地区,同时以500 hPa位势高度天气尺度滤波方差为基础的欧拉方法得到了同主要气旋活动中心相吻合的两条风暴轴.研究表明,44年中北大西洋/北美地区温带气旋活动北移加强,以春季最为显著.风暴轴也同样存在着向极移动并加强的特征,并且温带气旋和风暴路径两者移动趋势的相关性很高.作为一个典型地区,北大西洋/北美地区的气旋活动体现了风暴路径的北移,以及温带地区向极地的扩展.但有意思的是北太平洋的情况完全不同,即北太平洋地区的温带气旋活动和风暴轴向低纬度偏移并加强,以春季的南移趋势最为显著.对于此结论,两种方法也有很高的统计相关性.虽然大量研究表明北半球整体上呈现出风暴路径北移的变化特征,但对于具体地区情况有明显差异.另外,400 hPa最大Eady增长率和气旋活动频率的经验正交展开函数 (EOF) 第一模态的空间分布和时间序列非常相似,北太平洋地区和北大西洋地区风暴路径相反的变化趋势很可能同其大气斜压性的同位相的变化有着密切的关系.这也从另一个方面支持了本文对温带气旋和风暴路径年代际变化的分析.  相似文献   

8.
Summary Knowledge of the variability in tropical cyclone (TC) frequency and distribution is essential in determining the possible impact of natural or human-induced climate change. This variability can be investigated using the available TC data bases and by carrying out long-term climate model simulations for both past and future climates. A coupled ocean-atmosphere climate model (referred to here as the OU-CGCM) is described and applied with a higher resolution (50 km) nested domain in the southwest Pacific region. Six-member ensembles of simulations with the OU-CGCM have been run for 80 years, from 1970 to 2050. During the period 1970–2000, the OU-CGCM runs were compared with the observed TC data base. For the period 2000–2050, two ensembles of simulations were performed, one with constant greenhouse gas concentrations and the second with increasing greenhouse gases. The OU-CGCM simulated well the observed TC frequency and distribution in the southwest Pacific during the period 1970–2000. It also produced clear interannual and interdecadal TC variability in both the fixed and enhanced greenhouse gas simulations during the period 2000–2050. The variability in TC frequencies was associated with the typical atmospheric and SST anomaly patterns that occur in periods of quiet and active TC frequencies. The main findings from the enhanced greenhouse gas scenario for the period 2000–2050 are: no change in the mean decadal number of TCs relative to the control run, but a marked increase of about 15% in the mean decadal number of TCs in the most severe WMO categories 4 and 5; the likelihood of TCs during the next 50-year period that are more intense than ever previously experienced in the Australian region; a poleward extension of TC tracks; and a poleward shift of over 2 degrees of latitude in the TC genesis region.  相似文献   

9.
The effect of CO2-induced climate change on the North Atlantic storm and cyclone tracks in winter is analysed using time slice experiments of the Hamburg atmospheric general circulation model (ECHAM3) with triangular truncation at wave number 42 (T42) and 19 levels. The sea surface temperature (SST) and sea ice boundary conditions for these experiments are taken from a transient Intergovernmental Panel on Climate Change (IPCC) scenario A run of ECHAM1/LSG at the times where the 1×CO2 (control run), the 2×CO2 and the 3×CO2 concentrations are reached. Using a cyclone identification and tracking scheme, we detect the low pressure systems as relative minima in the 1000 hPa geopotential height field and connect them to cyclone tracks. The results of the Eulerian analysis of the storm track using filtered variances and the Lagrangian analysis of the cyclone trajectories from the three climate runs are discussed and compared with each other. In the 2×CO2 experiment, the storm track shifts eastward, whereas the cyclone density shifts northeastward. In the 3×CO2 experiment the storm track shows a southeastward shift, whereas the cyclone density shifts northward. The variability of the cyclone tracks is determined by a cluster analysis of their relative trajectories considering the first three days of the cyclones. The relative cyclone tracks are grouped into stationary, zonal and northeastward travelling cyclones. This analysis provides a method to assess the model quality and to detect changes of the cyclone trajectories in different climates. In the 2×CO2 (but not in the 3×CO2) run the occupation number of northeastward cyclones increases. Received: 27 January 1998 / Accepted: 19 May 1998  相似文献   

10.
The various bases for making Australian and New Zealand scenarios of climate change at 2010 and 2050 AD are discussed. Atmospheric greenhouse gas increases will cause historically unprecedented warming by 2050 AD, but the likely regional rainfall changes are uncertain. By 2010 AD greenhouse gas climate change should be detectable with a warming relative to the present of 0.5–1.5 °C. At 2050 AD Australian and New Zealand temperatures will be 2–3 °C higher, the frost free season will be longer and the snowline higher. Rainfall changes will be very much determined by regional airflow and storm tracks, and the state of the Southern Oscillation. In order to obtain unproved and more detailed estimates of climate at 2010 and 2050 AD existing climate models need to be improved. For Australia and New Zealand models need to focus on the south west Pacific-Australia region.  相似文献   

11.
Observations as well as most climate model simulations are generally in accord with the hypothesis that the hydrologic cycle should intensify and become highly volatile with the greenhouse-gas-induced climate change, although uncertainties of these projections as well as the spatial and seasonal variability of the changes are much larger than for temperature extremes. In this study, we examine scenarios of changes in extreme precipitation events in 24 future climate runs of ten regional climate models, focusing on a specific area of the Czech Republic (central Europe) where complex orography and an interaction of other factors governing the occurrence of heavy precipitation events result in patterns that cannot be captured by global models. The peaks-over-threshold analysis with increasing threshold censoring is applied to estimate multi-year return levels of daily rainfall amounts. Uncertainties in scenarios of changes for the late 21st century related to the inter-model and within-ensemble variability and the use of the SRES-A2 and SRES-B2 greenhouse gas emission scenarios are evaluated. The results show that heavy precipitation events are likely to increase in severity in winter and (with less agreement among models) also in summer. The inter-model and intra-model variability and related uncertainties in the pattern and magnitude of the change is large, but the scenarios tend to agree with precipitation trends recently observed in the area, which may strengthen their credibility. In most scenario runs, the projected change in extreme precipitation in summer is of the opposite sign than a change in mean seasonal totals, the latter pointing towards generally drier conditions in summer. A combination of enhanced heavy precipitation amounts and reduced water infiltration capabilities of a dry soil may severely increase peak river discharges and flood-related risks in this region.  相似文献   

12.
Modelled atmospheric response to changes in Northern Hemisphere snow cover   总被引:1,自引:0,他引:1  
The surface boundary conditions are altered in a numerical simulation of January climate by prescribing (a) higher and (b) lower than average snow extent over Northern Hemisphere land masses. The anomalies in snow cover are shown to have quite a strong impact on the mean climatic state. Associated with an increase in the areal extent of the snow, there is a significant reduction in temperature throughout the lower troposphere. There are also large increases in sea-level pressure over most land areas. Significant responses in the mass field are also seen at 500 hPa where reductions in atmospheric thickness lead to significant negative anomalies in the height field. Responses are also seen non-locally, over both the North Pacific and North Atlantic basins. The impact of increased snow on cyclone tracks is also examined. A reduction in cyclones is noted over both continents and over the western sectors of both ocean basins. Over the North Atlantic basin this reduction extends across over Europe, significantly weakening the storm track. In the North Pacific, cyclone density is reduced in the west while in the east, there is actually a strengthening of the storm tracks. There are corresponding changes in the genesis of cyclones in both of these regions. The change in cyclogenesis, intensity and density is demonstrated to be associated with changes in baroclinicity between the two experiments. The anomalous snow boundary conditions lead to significant changes in the meridional temperature gradients over both ocean basins which impact on the baroclinic zones. Received: 5 January 1996 / Accepted: 4 May 1996  相似文献   

13.
Climate Change and People-Caused Forest Fire Occurrence in Ontario   总被引:2,自引:0,他引:2  
Climate change that results from increasing levels of greenhouse gases in the atmosphere has the potential to increase temperature and alter rainfall patterns across the boreal forest region of Canada. Daily output from the Canadian Climate Centre coupled general circulation model (GCM) and the Hadley Centre's HadCM3 GCM provided simulated historic climate data and future climate scenarios for the forested area of the province of Ontario, Canada. These models project that in climates of increased greenhouse gases and aerosols, surface air temperatures will increase while seasonal precipitation amounts will remain relatively constant or increase slightly during the forest fire season. These projected changes in weather conditions are used to predict changes in the moisture content of forest fuel, which influences the incidence of people-caused forest fires. Poisson regression analysis methods are used to develop predictive models for the daily number of fires occurring in each of the ecoregions across the forest fire management region of Ontario. This people-caused fire prediction model, combined with GCM data, predicts the total number of people-caused fires in Ontario could increase by approximately 18% by 2020–2040 and50% by the end of the 21st century.  相似文献   

14.
The performance of the ECMWF 32-day ensemble predictions of western North Pacific tropical cyclone events (formation plus track) made once a week during the 2009 season is evaluated with the same procedures as for the 2008 season. Seventeen of the 23 tropical cyclones during the 2009 season occurred during multiple storm scenarios that are more difficult to predict, and many of the deficient track predictions involved unusual and rapidly changing tracks that typically involve interactions with adjacent synoptic circulations that are not predictable on intraseasonal timescales (10–30 days). Such incorrect predictions of the duration and tracks of these multiple cyclones were found to degrade the performance in predicting subsequent tropical cyclone formations and tracks during the 32-day integration. Predominantly northward tracks throughout the life cycle tended to be less predictable on intraseasonal timescales. Given these caveats, the overall performance of the ECMWF ensemble for the 12 typhoons was more successful than during the 2008 season. However, the performance for three tropical storms during the 2009 season was less successful due to the difficult track forecast scenarios. A surprisingly good performance was found in predicting the formation location and early track segments of eight minimal tropical storms or tropical depressions. The less satisfactory aspect for many of the late season tropical depressions was that the ECMWF ensemble continued to predict member vortices for extended periods after the system had actually dissipated.  相似文献   

15.
Climatology and interannual variations of wintertime extratropical cyclone frequency in CCSM3 twentieth century simulation are compared with the NCEP/NCAR reanalysis during 1950–1999. CCSM3 can simulate the storm tracks reasonably well, although the model produces slightly less cyclones at the beginning of the Pacific and Atlantic storm tracks and weaker poleward deflection over the Pacific. As in the reanalysis, frequency of cyclones stronger than 980 hPa shows significant correlation with the Pacific/North America (PNA) teleconnection pattern over the Pacific region and with the North Atlantic Oscillation (NAO) in the Atlantic sector. Composite maps are constructed for opposite phases of El Nino-Southern Oscillation (ENSO) and the NAO and all anomalous patterns coincide with observed. One CCSM3 twenty-first century A1B scenario realization indicates there is significant increase in the extratropical cyclone frequency on the US west coast and decrease in Alaska. Meanwhile, cyclone frequency increases from the Great Lakes region to Quebec and decreases over the US east coast, suggesting a possible northward shift of the Atlantic storm tracks under the warmer climate. The cyclone frequency anomalies are closely linked to changes in seasonal mean states of the upper-troposphere zonal wind and baroclinicity in the lower troposphere. Due to lack of 6-hourly outputs, we cannot apply the cyclone-tracking algorithm to the other eight CCSM3 realizations. Based on the linkage between the mean state change and the cyclone frequency anomalies, it is likely a common feature among the other ensemble members that cyclone activity is reduced on the East Coast and in Alaska as a result of global warming.  相似文献   

16.
In this study, we analyse the uncertainty of the effect of enhanced greenhouse gas conditions on windiness projected by an ensemble of regional model simulations driven by the same global control and climate change simulations. These global conditions, representative for 1961–1990 and 2071–2100, were prepared by the Hadley Centre based on the IPCC SRES/A2 scenario. The basic data sets consist of simulated daily maximum and daily mean wind speed fields (over land) from the PRUDENCE data archive at the Danish Meteorological Institute. The main focus is on the results from the standard 50 km-resolution runs of eight regional models. The best parameter for determining possible future changes in extreme wind speeds and possible change in the number of storm events is maximum daily wind speed. It turned out during this study that the method for calculating maximum daily wind speed differs among the regional models. A comparison of simulated winds with observations for the control period shows that models without gust parameterisation are not able to realistically capture high wind speeds. The two models with gust parametrization estimate an increase of up to 20% of the number of storm peak (defined as gusts?≥?8 Bft in this paper) events over Central Europe in the future. In order to use a larger ensemble of models than just the two with gust parameterisation, we also look at the 99th percentile of daily mean wind speed. We divide Europe into eight sub-regions (e.g., British Isles, Iberian Peninsula, NE Europe) and investigate the inter-monthly variation of wind over these regions as well as differences between today’s climate and a possible future climate. Results show differences and similarities between the sub-regions in magnitude, spread, and seasonal tendencies. The model ensemble indicates a possible increase in future mean daily wind speed during winter months, and a decrease during autumn in areas influenced by North Atlantic extra-tropical cyclones.  相似文献   

17.
 A simplified global circulation model is used to analyse a greenhouse warming experiment simulated by a comprehensive general circulation model. The given GCM scenario and control climates are assimilated by the simplified model using a dynamical relaxation technique. Two sets of sensitivity experiments investigate the influence of upper and lower tropospheric changes in baroclinicity on the Northern Hemisphere winter storm tracks. The results show that the three-dimensional structure of both the background flow and the changes in baroclinicity are important for the behaviour of mid-latitude eddy activity in relation to modifications of the baroclinicity. In general, the mid-latitude eddy activity is more sensitive to lower than to upper level changes in baroclinicity. The results further suggest that the simulated storm track changes in the GCM scenario are dominated by local modes of baroclinic instability. Received: 17 December 1996 / Accepted: 14 May 1998  相似文献   

18.
The intensity and frequency of heavy snowfall events in the Pyrenees were simulated using data from the HIRHAM regional climate model for a control period (1960?C1990) and two greenhouse emission scenarios (SRES B2 and A2) for the end of the twenty-first century (2070?C2100). Comparisons between future and control simulations enabled a quantification of the expected change in the intensity and frequency of these events at elevations of 1,000, 1,500, 2,000 and 2,500?m a.s.l. The projected changes in heavy snowfall depended largely on the elevation and the greenhouse gas emission scenario considered. At 1,000?m a.s.l., a marked decrease in the frequency and intensity of heavy snowfall events was projected with the B2 and A2 scenarios. At 1,500?m a.s.l., a decrease in the frequency and intensity is only expected under the higher greenhouse gas emission scenario (A2). Above 2,000?m a.s.l., no change or heavier snowfalls are expected under both emission scenarios. Large spatial variability in the impacts of climate change on heavy snowfall events was found across the study area.  相似文献   

19.
Towards the Construction of Climate Change Scenarios   总被引:3,自引:2,他引:1  
Climate impacts assessments need regional scenarios of climate change for a wide range of projected emissions. General circulation models (GCMs) are the most promising approach to providing such information, but as yet there is considerable uncertainty in their regional projections and they are still too costly to run for a large number of emission scenarios. Simpler models have been used to estimate global-mean temperature changes under a range of scenarios. In this paper we investigate whether a fixed pattern from a GCM experiment scaled by global-mean temperature changes from a simple model provides an acceptable estimate of the regional climate change over a range of scenarios. Changes estimated using this approximate approach are evaluated by comparing them with results from ensembles of a coupled ocean-atmosphere model. Five specific emissions scenarios are considered. For increases in greenhouse gases only, the 'error' in annual mean temperature for the cases considered is smaller than the sampling error due to the model's internal variability. The method may break down for scenarios of stabilisation of concentrations, because the patterns change as the model approaches equilibrium. The inclusion of large local perturbations due to sulphate aerosols can lead to significant deviations of the temperature pattern from that obtained using greenhouse gases alone. Combining separate patterns for the responses to greenhouse gases and aerosols may improve the accuracy of approximation. Finally, the accuracy of the scaling approach is more difficult to assess for deriving changes in regional precipitation because many of the regional changes are not statistically significant in the climate change projections considered here. If precipitation changes are only marginally significant in other models, the apparent disagreement between different models may be as much due to sampling error as to genuine differences in model response.  相似文献   

20.
Potential impacts of climate change on heavy rainfall events and flooding in the Australian region are explored using the results of a general circulation model (GCM) run in an equilibrium enhanced greenhouse experiment. In the doubled CO2 simulation, the model simulates an increase in the frequency of high-rainfall events and a decrease in the frequency of low-rainfall events. This result applies over most of Australia, is statistically more significant than simulated changes in total rainfall, and is supported by theoretical considerations. We show that this result implies decreased return periods for heavy rainfall events. The further implication is that flooding could increase, although we discuss here the many difficulties associated with assessing in quantitative terms the significance of the modelling results for the real world.The second part of the paper assesses the implications of climate change for drought occurrence in Australia. This is undertaken using an off-line soil water balance model driven by observed time series of rainfall and potential evaporation to determine the sensitivity of the soil water regime to changes in rainfall and temperature, and hence potential evaporation. Potential impacts are assessed at nine sites, representing a range of climate regimes and possible climate futures, by linking this sensitivity analysis with scenarios of regional climate change, derived from analysis of enhanced greenhouse experiment results from five GCMs. Results indicate that significant drying may be limited to the south of Australia. However, because the direction of change in terms of the soil water regime is uncertain at all sites and for all seasons, there is no basis for statements about how drought potential may change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号