首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper we present a new class of nonsingular solutions representing time dependent balls of perfect fluid with matter-radiation in general relativity. The solution of the class is suitable for interior modeling of a quasar i.e. a massive radiating star. The interior solution is matched with a zero pressure Vaidya metric. From this solution we constructed a quasar model by assuming the life time of the quasar of ≈107 year. We obtained a mass of the quasar of ≈109 M θ , linear dimension ≈1017 km and a rate of emission L ≈1047 erg/s.  相似文献   

2.
We report results from a third sample of quasar absorption line spectra from the Keck telescope which has been studied to search for any possible variation of the fine structure constant, α. This third sample, which is larger than the sum of the two previously published samples, shows the same effect, and also gives, as do the previous two samples, a significant result. The combined sample yields a highly significant effect, Δα = (αz - α0 )/α0 = -0.57 ± 0.10 × 10-5, averaged over the redshift range 0.2 < z < 3.7. We include a brief discussion of small-scale kinematic structure in quasar absorbing clouds. However, kinematics are unlikely to impact significantly on the averagednon-zeroΔα /α above, and we have so far been unable to identify any systematic effect which can explain it. New measurements of quasar spectra obtained using independent instrumentation and telescopes are required to properly check the Keck results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
2D hydrodynamical simulations are performed to examine the evaporation and condensation processes of giant molecular clouds in the hot phase of the interstellar medium. The evolution of cold and dense clouds (T = 1000 K, n H = 3 cm-3,M = 6·104 M) is calculated in the subsonic stream of a hot tenuous plasma (T = 5 ·106 K, n H = 6·10-4cm-3). Our code includes self-gravity, heating and cooling processes and heat conduction by electrons. The thermal conductivity of a fully ionized hydrogen plasma (κ ∝ T5/2) is applied as well as a saturated heat flux in regions where the mean free path of the electrons is large compared to the temperature scaleheight. Significant differences occur between simulations with and without heat conduction. In the simulations without heat conduction, the clouds outermost regions is stired up by Kelvin-Helmholtz (KH) instability after only a few dynamical times. This prevents an infiltration of a significant amount of hot gas into the cloud before its destruction. In contrast, models including heat conduction evolve less violently. The boundary of the cloud remains nearly unsusceptible to KH instabilities. In this scenario it is possible to mix the formerly hot streaming gas very effectively with the cloud material. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Based on the spectra of 4 high-redshift quasars (resolution 2A) obtained by us [1–5] using IPCS on the RGO Cassegrain spectrograph of the AAT, we point out the following. 1. Auto-correlation peaks at in PKS 0805+046 and PKS 1442+101 suggest that the large number of absorption lines shortward of Lα in high redshift quasars are due to absorption by hydrogen clouds. 2. The distribution of absorption lines and the correlation function of indicate that PKS 0528-250 may be an exception, requiring further observation. 3. Absorption redshift systems containing metallic lines may be produced by either matter ejected from the quasar, or an associated galaxy cluster or an intervening galaxy. 4. The randomness in the column density and the dispersion velocity deduced from the curve of growth of the pair supports the hypothesis that the pure Lα absorption comes from primitive hydrogen clouds in the early, exploding universe. 5. The number of hydrogen clouds per unit redshift interval is determined by the data of absorption lines of quasars with Z > 3.  相似文献   

5.
Nearly ten years ago Kwan and Krolik (1979, 1981) published the firstsuccessful photoionization model of the Broad Line Region of Active Galactic Nuclei, the so-called ‘Standard Model’. Since then several efforts have been made to obtain better results using more sophisticated models. Anopen issue is that photoionization models are generally computed startingfrom the assumption that the emission line spectrum is produced by a single-slab cloud with a ‘standard’ hydrogen density nH = 109.5 cm-3, but it seems more likely that a range of densities is present in the Broad Line Region. Purpose of this paper is to review the results given by single-cloud models using the most recent photoionization code, Cloudy 84, and to investigate if the addition of one or more components with different densities does affect the line ratios. To this aim we compute the emission line ratios produced by photoionized single-slab clouds for a wide range of hydrogen densities (nH = 109.5−1013 cm−3), ionization parameters (U = 10−4− 10−0.5) and column densities (NH = 1023−1025 cm−2). Two or more populations of clouds are then combined and the resulting emission line spectrum is compared with a sample of mean observed line ratios. We find that the addition to the standard component of clouds having different densities and located at different positions from the central source introduces many changes in the line ratios, and that these changes are in the direction of a better agreement with the observed emission line ratios.  相似文献   

6.
In this paper, we show that if the broad-line region clouds are in approximate energy equipartition between the magnetic field and gravity, as hypothesized by Rees, there will be a significant effect on the shape and smoothness of broad emission-line profiles in active galactic nuclei. Linewidths of contributing clouds or flow elements are much wider than their thermal widths, because of the presence of non-dissipative magnetohydrodynamic waves and their collective contribution produce emission-line profiles broader and smoother than would be expected if a magnetic field were not present. As an illustration, a simple model of isotropically emitting clouds, normally distributed in velocity, is used to show that smoothness can be achieved for less than ∼8×104 clouds and may even be as low as a few hundred. We conclude that magnetic confinement has far-reaching consequences for observing and modelling active galactic nuclei.  相似文献   

7.
The monitoring of the gravitational lens Q2237+0305 carried out by the OGLE group during 1997–2000 is analyzed. The significant light amplifications in the C and A quasar components with maxima in mid-and late 1999, respectively, are interpreted as the crossing of microlens caustics by the source. A constraint on the emitting-region size R≤1015 cm has been obtained from the light-curve shape by assuming a power-law quasar brightness distribution (r 2+R 2)?p . To estimate the exponent p~1.2 requires refining the standard model for the quasar continuum formation in an optically thick accretion disk with p=1.5.  相似文献   

8.
A method for the determination of the background radiation temperature in earlier cosmological epochs at redshiftsz>2 is discussed in detail. The method is based on the fact that in the clouds situated at cosmological distances at redshiftz the background radiation temperature must be (1+z) times more than in the modern epoch (z=0). This shall affect the level populations of the atoms, ions and molecules and, consequently, the parameters of the absorption lines observed in quasar absorption spectra. It is proposed to use the transition3 P 03 P 1 ofCi (=610 ) for the measurement of the background radiation temperature. Atz>2 this absorption line shifts to the millimeter radio region and can be observed by radioastronomical methods.  相似文献   

9.
The first results of the construction of a three-dimensional reddening map for stars within 1600 pc of the Sun are presented. Analysis of the distribution of 70 million stars from the 2MASS catalog with the most accurate photometry on the (J-Ks)-Ks diagram supplemented with Monte Carlo simulations has shown that one of the maxima of this distribution corresponds to F-type dwarfs and subgiants with a mean absolute magnitude M Ks = 2 m 5. The shift of this maximum toward large J-Ks with increasing Ks reflects the reddening of these stars with increasing heliocentric distance. The distribution of the sample of stars over Ks, l, and b cells with a statistically significant number of stars in each cell corresponds to their distribution over three-dimensional spatial cells. As a result, the reddening E(J-Ks) has been determined with an accuracy of 0· m 03 for spatial cells with a side of 100 pc. All of the known large absorbing clouds within 1600 pc of the Sun have manifested themselves in the results obtained. The distances to the near and far edges of the clouds have been determined with a relative accuracy of 15%. The cases where unknown clouds are hidden behind known ones on the same line of sight have been found. The distance dependence of reddening is considered for various Galactic latitudes and longitudes. The absorbing matter of the Gould Belt is shown to manifest itself at latitudes up to 40° and within 600 pc of the Sun. The size and influence of the Gould Belt may have been underestimated thus far. The absorbing matter at latitudes up to 60° and within 1600 pc of the Sun has been found to be distributed predominantly in the first and second quadrants in the southern hemisphere and in the third and fourth quadrants in the northern hemisphere. The warping of the absorbing layer in the near Galaxy apparently manifests itself in this way. A nonrandom orientation of the clouds relative to the Sun is possible. The mass of the baryonic dark matter in solar neighborhoods can then be considerably larger than is generally believed.  相似文献   

10.
The areas of 267 dark clouds in the galaxy NGC 253 were measured. It is shown that the size distribution of these clouds obeys the same exponential formula found for the galaxies NGC 3031, 5128, 5194, and 5457. From the apparent size distribution of the dark clouds the amount of dust and the distance of NGC 253 is found to 4.4 · 107 M and 2.06 Mpc, respectively.  相似文献   

11.
We have mapped 16 molecular clouds toward a new OB association in the Pup-CMa region to derive their physical properties. The observations were carried out in the 12CO (J = 1 – 0) line with the Southern millimetre-wave Telescope at Cerro Tololo, Chile. Distances have been determined kinematically using the rotation curve of Brand with R = 8.5 kpc and V = 220 km/s. Masses have been derived adopting a CO luminosity to H2 conversion factor X = 3.8 . 1020 molecules cm-2 (K km/s)-1. The observed mean radial velocity of the clouds is comparable with the mean radial velocity of stars composing an OB association in Pup-CMa; it is in favor of the close connection of clouds with these stars. __________ Published in Astrofizika, Vol. 48, No. 4, pp. 491–501 (October–December, 2005).  相似文献   

12.
We give a review of problems connected with the interpretation of meter and decameter carbon radiolines. The lines are formed inside clumps of molecular clouds in layers with a column density N ≈ 6 · 1021 cm−2. These clumps are very typical structures. The distribution of physical parameters (number density, temperature, etc.) inside the clumps is poorly known. The most difficult and important question is the penetration of subcosmic rays into the clumps. Observations show that the ionization rate is ζ = (1–7) · 10−17 s−1 inside molecular clouds and significantly greater in the diffuse gas. Long-wave radio recombination lines can probably be used for the analysis of the distribution of subcosmic rays inside molecular clouds. The interpretation is complicated by the influence of low-temperature dielectron recombination and poorl known variations of carbon depletion in the clumps.  相似文献   

13.
The masses of quasi-stellar objects having absorption lines with redshifts larger than the redshifts of the corresponding emission lines are attributed to gas clouds which are moving radially against the quasar. Other forces than the gravitational attraction of the quasars are neglected. The average of the mass of a quasi-stellar object is 5 ⋅ 1012 𝔐 ⊙.  相似文献   

14.
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work.  相似文献   

15.
Statistics in absorption 21-cm data show two main types of clouds at low galactic latitudes: dense small clouds, many of them with molecular cores, with dispersions σ≈1.5 km s−1 and large clouds forming the fine features of the spiral arms (the shingle like features) with a dispersion range α≈3–4 km s−1. Sizes and dispersions of both types of clouds are compatible with the Kolmogorov law of turbulence: σ∞d 1/3. The large clouds forming the shingle-like features can be considered as the largest clouds of a Kolmogorov spectrum (the initial vortices), or as the hydrodynamic features with minimum sizes in the Galaxy. In order to define hydrodynamic motions in the same sense as given by Ogrodnikov (1965) we use here the tensorial form of the Helmholtz theorem to obtain an approximation for the hydrodynamic motions depending on distances and seen from the local standard of rest:V r r. The intermediate range of sizes between turbulent motions and hydrodynamic motions is 100<d<300 pc which is also the range of sizes of the large clouds forming the fine features of the spiral arms. A classification on of motions in the Galaxy is postulated: (a) a basic rotation motion given by an smooth unperturbed curveΘ b (R) associated to the old disk population. (b) Systematic motions of the spiral arms. (c) Systematic motions in the fine structure of the arms. For scale sizes smaller than these fine features one has turbulent motions according to the Kolmogorov law. The densities and sizes of the turbulent clouds behave asn H d −2 in a range of sizes 7 pc<d<300 pc. The obtained gas densities of the clouds are confirmed with the dust densities from photometric studies. The conditions for gravitational binding of the clouds are analyzed. Factors as the geometry and the magnetic field within the clouds increases the critic densities for gravitational binding. When we consider these factors we find that the wide component clouds have densities below such a critical value. The narrow component clouds have densities similar or above the critical value; but the real fraction of collapsing clouds remains unknown as far as the factor of geometry and the inner magnetic field of each cloud are not determinated.  相似文献   

16.
Dynamics of molecular clouds on the galactic scale   总被引:1,自引:0,他引:1  
We have carried out an extensive investigation into the dynamics of the molecular clouds in the disk of the Galaxy. We have used both computational methods and physical arguments to try to understand how the ensemble of molecular clouds interacts, how the clouds are affected by the gravitational field of the Galaxy and also the circumstances under which they can aggregate into giant molecular clouds (GMC's).The dynamical model is three dimensional and consists of 120,000 spherical clouds, each having a mass of 104 M . It allows for the mutual gravitation between clouds, up to a cut-off distance; when two clouds collide they rebound, with a specified coefficient of restitutione. We have also developed a physically more realistic model for a cloud, supported by a magnetic field, and used it to select a suitable range of values fore. Our first paper deals with the case of an axially symmetrical galaxy. The clouds are distributed initially in a disk extending 100 pc on either side of the Galactic plane. As it evolves the system of clouds loses energy, and the disk grows thinner at a rate which depends on the value ofe. GMC's start to form once the disk is thin enough. We believe this result to be valid more generally, and that it holds also in models with spiral structure.  相似文献   

17.
This paper deals with molecular clouds discovered in the absorption spectra (z=2–3) of distant quasars. It is argued that these clouds belong to the gaseous subsystems of young galaxies. We estimate the gas concentration to ben<104 cm–3 in the cloud observed in the direction of the quasar PHL957. It is shown that this cloud is exposed to ultraviolet radiation. The UV-energy flux does not exceed the value typical for our Galaxy by an order of magnitude (F2×10–6 ergs cm–2 s–1 Å–1 at =2000 Å). The mechanisms maintaining the thermal balance in this cloud are discussed.  相似文献   

18.
In this paper we present a detailed study of BCT Ist solution Tewari (Astrophys. Space Sci. 149:233, 1988) representing time dependent balls of perfect fluid with matter-radiation in general relativity. Assuming the life time of quasar 107 years our model has initial mass≈108 M Θ with an initial linear dimension≈1015 cm. Our model is radiating the energy at a constant rate i.e. L =1047 ergs/sec with the gravitational red shift, z=0.44637. In this model we have 2GM(u)/c 2 R S (u))=0.3191 i.e. the model is horizon free.  相似文献   

19.
For z = 0.8–2.2 redshift interval, quasar pair correlation function parameters and β redshift space distortion parameter (connected to large-scale potential flows) values are estimated. We base them on the Main QSO Sample from SDSS Data Release 5. Standard correlation function form ξ(r) = (r 0/r)γ is used for comoving distances r = 2–50 Mpc between quasars. We fix the parameters of the cosmological model: ΩΛ = 1 − Ω M = 0.726 and H 0 = 70.5 km/(s Mpc). We come to the best-fit parameter values of γ = 1.77 ± 0.20, r 0 = 5.52 ± 0.95 Mpc/h for r in the range 2–30 Mpc, γ = 1.91 ± 0.11, r 0 = 5.82 ± 0.61 Mpc for r in the range 2–50 Mpc. The mean β value is β = 0.43 ± 0.22.  相似文献   

20.
Abstract— The crystal structure of druse clinopyroxene from the D'Orbigny angrite, (Ca0.944 Fe2+0.042 Mg0.010Mn0.004) (Mg0.469Fe2+0.317Fe3+0.035Al0.125Cr0.010Ti0.044) (Si1.742Al0.258) O6, a = 9.7684(2), b = 8.9124(2), c = 5.2859(1) Å, β = 105.903(1)°, V = 442.58 Å3, space group C2/c, Z = 2, has been refined to an R1 index of 1.92% using single‐crystal X‐ray diffraction data. The unit formula, calculated from electron microprobe analysis, and the refined site scattering values were used to assign site populations. The distribution of Fe2+and Mg over the M1 and M2 sites suggests a closure temperature of 1000 °C. Mössbauer spectroscopy measurements were done at room temperature on a single crystal and a powdered sample. The spectra are adequately fit by a Voigt‐based quadrupole‐splitting distribution model having two generalized sites, one for Fe2+with two Gaussian components and one for Fe3+with one Gaussian component. The two ferrous components are assigned to Fe2+at the M1 site, and arise from two different next‐nearest‐neighbor configurations of Ca and Fe cations at the M2 site: (3Ca,0Fe) and (2Ca,1Fe). The Fe3+/Fetot ratio determined by Mössbauer spectroscopy is in agreement with that calculated from the electron microprobe analysis. The results are discussed in connection with the redox and thermal history of D'Orbigny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号