首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Elemental abundances of the moderately rotating B9–A3 stars λ UMa, 59 Her, 14 Cyg and 29 Cyg have been derived in a consistent manner with previous studies of this series from spectrograms obtained with Reticon and CCD detectors. The derived elemental abundances show that λ UMa is a mild Am star, while 59 Her is slightly metal-rich. Although 14 Cyg has values closer to solar than these stars, its subsolar Ca and Sc abundances indicate that it might be the hottest known hot-Am star. 29 Cyg is a metal-poor λ Boo star.  相似文献   

3.
4.
5.
Spectra (1951–78) of the central object in η Car, taken by A. D. Thackeray, reveal three previously unrecorded epochs of low excitation. Since 1948, at least, these states have occurred regularly in the 2020-d cycle proposed by Damineli et al. They last about 10 per cent of each cycle. Early slit spectra (1899–1919) suggest that at that time the object was always in a low state. JHKL photometry is reported for the period 1994–2000. This shows that the secular increase in brightness found in 1972–94 has continued and its rate has increased at the shorter wavelengths. Modulation of the infrared brightness in a period near 2020 d continues. There is a dip in the JHKL light curves near 1998.0, coincident with a dip in the X-ray light curve. Evidence is given that this dip in the infrared repeats in the 2020-d cycle. As suggested by Whitelock & Laney, the dip is best interpreted as an eclipse phenomenon in an interacting binary system; the object eclipsed being a bright region ('hotspot'), possibly on a circumstellar disc or produced by interacting stellar winds. The eclipse coincides in phase and duration with the state of low excitation. It is presumably caused by a plasma column and/or by one of the stars in the system.  相似文献   

6.
7.
We present new radio and optical observations of the colliding-wind system WR 146 aimed at understanding the nature of the companion to the Wolf–Rayet (WR) star and the collision of their winds. The radio observations reveal emission from three components: the WR stellar wind, the non-thermal wind–wind interaction region and, for the first time, the stellar wind of the OB companion. This provides the unique possibility of determining the mass-loss rate and terminal wind velocity ratios of the two winds, independent of distance. Respectively, these ratios are 0.20±0.06 and 0.56±0.17 for the OB-companion star relative to the WR star. A new optical spectrum indicates that the system is more luminous than had been believed previously. We deduce that the 'companion' cannot be a single, low-luminosity O8 star as suggested previously, but is either a high-luminosity O8 star, or possibly an O8+WC binary system.  相似文献   

8.
9.
10.
We examine the possibility of probing dynamo action in mass-losing stars, components of Algol-type binaries. Our analysis is based on the calculation of non-conservative evolution of these systems. We model the systems U Sge and β Per where the more massive companion fills its Roche lobe at the main sequence (case AB) and where it has a small helium core (early case B) respectively. We show that to maintain evolution of these systems at the late stages which are presumably driven by stellar 'magnetic braking', an efficient mechanism for producing large-scale surface magnetic fields in the donor star is needed. We discuss the relevance of dynamo operation in the donor star to the accelerated mass transfer during the late stages of evolution of Algol-type binaries. We suggest that the observed X-ray activity in Algol-type systems may be a good indicator of their evolutionary status and internal structure of the mass-losing stellar components.  相似文献   

11.
12.
13.
We report the discovery of rapid oscillations in the sdB star PG 1047+003. The oscillations are multiperiodic, with nine periods in the range 104–162 s. The optical spectrum of PG 1047+003 is consistent with that of a single sdB star. Line profile fitting yields an effective temperature of 35 000±1000 K and log g =5.9±0.1, although optical photometry and IUE spectrophotometry may indicate a cooler effective temperature. These properties demonstrate that PG 1047+003 is an EC 14026 star, a recently discovered class of sdB pulsators. Optical and infrared photometry constrains any cool companion to the sdB star to be a main-sequence star of spectral type M0 or later. With V =13.47 and a relatively rich pulsation spectrum, PG 1047+003 is an attractive target for an intensive photometric campaign to extract more periods from the light curve which, along with a suitable grid of pulsation models, will probe the interior structure of the star.  相似文献   

14.
We present a study of radiative transfer in dusty, clumpy star-forming regions. A series of self-consistent, 3D, continuum radiative transfer models are constructed for a grid of models parametrized by central luminosity, filling factor, clump radius and face-averaged optical depth. The temperature distribution within the clouds is studied as a function of this parametrization. Among our results, we find that: (i) the effective optical depth in clumpy regions is less than in equivalent homogeneous regions of the same average optical depth, leading to a deeper penetration of heating radiation in clumpy clouds, and temperatures higher by over 60 per cent; (ii) penetration of radiation is driven by the fraction of open sky (FOS) – which is a measure of the fraction of solid angle along which no clumps exist; (iii) FOS increases as clump radius increases and as filling factor decreases; (iv) for values of   FOS >0.6–0.8  the sky is sufficiently 'open' that the temperature distribution is relatively insensitive to FOS; (v) the physical process by which radiation penetrates is preferentially through streaming of radiation between clumps as opposed to diffusion through clumps; (vi) filling factor always dominates the determination of the temperature distribution for large optical depths, and for small clump radii at smaller optical depths; (vii) at lower face-averaged optical depths, the temperature distribution is most sensitive to filling factors of 1–10 per cent, in accordance with many observations; (viii) direct shadowing by clumps can be important for distances approximately one clump radius behind a clump.  相似文献   

15.
Near-infrared linear imaging polarimetry of the young stellar objects R CrA and T CrA in the J , H and K n bands, and circular imaging polarimetry in the H band, is presented. The data are modelled with the Clark and McCall scattering model. The R CrA and T CrA system is shown to be a particularly complex scattering environment. In the case of R CrA there is evidence that the wavelength dependence of polarization changes across the nebula. MRN dust grain models do not explain this behaviour. Depolarization by line emission is considered as an alternative explanation. The dust grain properties could also be changing across the nebula.
Although surrounded by reflection nebulosity, there is a region of particularly low polarization surrounding R CrA that is best modelled by the canonical bipolar outflow being truncated by an evacuated spherical cavity surrounding the star. The symmetry axis of the nebula appears inclined by 50° to the plane of the sky.
The H -band circular polarimetry of R CrA clearly shows a quadrupolar structure of positive and negative degrees of circular polarization that reach peak magnitudes of ∼5 per cent within our limited map. It is shown that spherical MRN grains are incapable of producing this circular polarization given the observed linear polarization of the R CrA system. Instead, scattering from aligned non-spherical grains is proposed as the operating mechanism.
T CrA is a more archetypical bipolar reflection nebula, and this object is modelled as a canonical parabolic reflection nebula that lies in the plane of the sky. The wavelength independence of linear polarization in the T CrA reflection nebula suggests that the scattering particles are Rayleigh sized. This is modelled with the MRN interstellar grain size distribution.  相似文献   

16.
17.
18.
19.
20.
Intermediate polars (IPs) are a group of cataclysmic variables (CVs) which are thought to contain white dwarfs which have a magnetic field strength in the range ∼0.1–10 MG. A significant fraction of the X-ray sources detected in recent deep surveys has been postulated to consist of IPs. Until now two of the defining characteristics of IPs have been the presence of high (and complex) absorption in their X-ray spectra and the presence of a stable modulation in the X-ray light curve which is a signature of the spin period, or the beat period, of the accreting white dwarf. Three CVs, V426 Oph, EI UMa and LS Peg, have characteristics which are similar to IPs. However, there has been only tentative evidence for a coherent period in their X-ray light curve. We present the results of a search for coherent periods in XMM–Newton data of these sources using an autoregressive analysis which models the effects of red noise. We confirm the detection of a ∼760 s period in the soft X-ray light curve of EI UMa reported by Reimer et al. and agree that this represents the spin period. We also find evidence for peaks in the power spectrum of each source in the range 100–200 s which are just above the 3σ confidence level. We do not believe that they represent genuine coherent modulations. However, their X-ray spectra are very similar to those of known IPs. We believe that all three CVs are bona fide IPs. We speculate that V426 Oph and LS Peg do not show evidence for a spin period since they have closely aligned magnetic and spin axes. We discuss the implications that this has for the defining characteristics of IPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号