首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon dioxide solubilities in H2O-free hydrous silicate melts of natural andesite (CA), tholeiite (K 1921), and olivine nephelinite (OM1) compositions have been determined employing carbon-14 beta-track mapping techniques. The CO2 solubility increases with increasing pressure, temperature, and degree of silica-undersaturation of the silicate melt. At 1650° C, CO2 solubility in CA increases from 1.48±0.05 wt % at 15 kbar to 1.95±0.03 wt % at 30 kbar. The respective solubilities in OM1 are 3.41±0.08 wt % and 7.11±0.10 wt %. The CO2 solubility in K1921 is intermediate between those of CA and OM1 compositions. At lower temperatures, the CO2 contents of these silicate melts are lower, and the pressure dependence of the solubility is less pronounced. The presence of H2O also affects the CO2 solubility (20–30% more CO2 dissolves in hydrous than in H2O-free silicate melts); the solubility curves pass through an isothermal, isobaric maximum at an intermediate CO2/(CO2+H2O) composition of the volatile phase. Under conditions within the upper mantle where carbonate minerals are not stable and CO2 and H2O are present a vapor phase must exist. Because the solubility of CO2 in silicate melts is lower than that of H2O, volatiles must fractionate between the melt and vapor during partial melting of peridotite. Initial low-temperature melts will be more H2O-rich than later high-temperature melts, provided vapor is present during the melting. Published phase equilibrium data indicate that the compositional sequence of melts from peridotite +H2O+CO2 parent will be andesite-tholeiite-nephelinite with increasing temperature at a pressure of about 20 kbar. Examples of this sequence may be found in the Lesser Antilles and in the Indonesian Island Arcs.  相似文献   

2.
Mt. Shasta andesite and dacite lavas contain high MgO (3.5–5 wt.%), very low FeO*/MgO (1–1.5) and 60–66 wt.% SiO2. The range of major and trace element compositions of the Shasta lavas can be explained through fractional crystallization (~50–60 wt.%) with subsequent magma mixing of a parent magma that had the major element composition of an H2O-rich primitive magnesian andesite (PMA). Isotopic and trace element characteristics of the Mt. Shasta stratocone lavas are highly variable and span the same range of compositions that is found in the parental basaltic andesite and PMA lavas. This variability is inherited from compositional variations in the input contributed from melting of mantle wedge peridotite that was fluxed by a slab-derived, fluid-rich component. Evidence preserved in phenocryst assemblages indicates mixing of magmas that experienced variable amounts of fractional crystallization over a range of crustal depths from ~25 to ~4 km beneath Mt. Shasta. Major and trace element evidence is also consistent with magma mixing. Pre-eruptive crystallization extended from shallow crustal levels under degassed conditions (~4 wt.% H2O) to lower crustal depths with magmatic H2O contents of ~10–15 wt.%. Oxygen fugacity varied over 2 log units from one above to one below the Nickel-Nickel Oxide buffer. The input of buoyant H2O-rich magmas containing 10–15 wt.% H2O may have triggered magma mixing and facilitated eruption. Alternatively, vesiculation of oversaturated H2O-rich melts could also play an important role in mixing and eruption.  相似文献   

3.
Sodium-rich metasomatism in the upper levels of the mantle has been modelled by reacting pyrolite with alkali-bearing H2O fluids containing minor CO2 and concentrations of Na2O and Na2O + K2O (K/K + Na = 0.1 ) up to 4.0 g alkalies/10 g H2O at 20 kbar and 950°C. With increasing alkali concentration, the amounts of amphibole (pargasite-edenite) and olivine increase as orthopyroxene and clinopyroxene decrease. Amphiboles show progressive increases in Na (and K) and Si concentrations and decreases in Al and Ca concentrations suggesting the dominant substitution mechanism is (Na, K) + SiAl + Ca. These results and least squares mass balance calculations suggest the reaction of clinopyroxene + orthopyroxene + spinel produces amphibole + olivine.In nature, upper mantle spinel lherzolite is commonly veined by a variety of rock types which may contain Ti-pargasite as a magmatic crystallization product. Pargasite-edenite occurs interstitially in spinel Iherzolite, often spatially related to Ti-pargasite and may be produced by hydrous fluids evolved during late stage crystallization of the veined rocks. This is supported by the close compositional correlation between the natural pargasite-edenite amphiboles and those produced in this study.The present study suggests that up to 43 wt.% amphibole may be accommodated in pyrolite in the presence of Na2O-rich H2O-CO2 fluids. This represents 0.8 wt.% H2O and 1.7 wt.% Na2O in the hydrated pyrolite composition and indicates the importance of sodium in determining the extent of metasomatism. Sodium also lowers the solidus temperature of pyrolite by more than 50°C over the H2O-saturated pyrolite system at 20 kbar.  相似文献   

4.
The paper presents data on naturally quenched melt inclusions in olivine (Fo 69–84) from Late Pleistocene pyroclastic rocks of Zhupanovsky volcano in the frontal zone of the Eastern Volcanic Belt of Kamchatka. The composition of the melt inclusions provides insight into the latest crystallization stages (∼70% crystallization) of the parental melt (∼46.4 wt % SiO2, ∼2.5 wt % H2O, ∼0.3 wt % S), which proceeded at decompression and started at a depth of approximately 10 km from the surface. The crystallization temperature was estimated at 1100 ± 20°C at an oxygen fugacity of ΔFMQ = 0.9–1.7. The melts evolved due to the simultaneous crystallization of olivine, plagioclase, pyroxene, chromite, and magnetite (Ol: Pl: Cpx: (Crt-Mt) ∼ 13: 54: 24: 4) along the tholeiite evolutionary trend and became progressively enriched in FeO, SiO2, Na2O, and K2O and depleted in MgO, CaO, and Al2O3. Melt crystallization was associated with the segregation of fluid rich in S-bearing compounds and, to a lesser extent, in H2O and Cl. The primary melt of Zhupanovsky volcano (whose composition was estimated from data on the most primitive melt inclusions) had a composition of low-Si (∼45 wt % SiO2) picrobasalt (∼14 wt % MgO), as is typical of parental melts in Kamchatka and other island arcs, and was different from MORB. This primary melt could be derived by ∼8% melting of mantle peridotite of composition close to the MORB source, under pressures of 1.5 ± 0.2 GPa and temperatures 20–30°C lower than the solidus temperature of “dry” peridotite (1230–1240°C). Melting was induced by the interaction of the hot peridotite with a hydrous component that was brought to the mantle from the subducted slab and was also responsible for the enrichment of the Zhupanovsky magmas in LREE, LILE, B, Cl, Th, U, and Pb. The hydrous component in the magma source of Zhupanovsky volcano was produced by the partial slab melting under water-saturated conditions at temperatures of 760–810°C and pressures of ∼3.5 GPa. As the depth of the subducted slab beneath Kamchatkan volcanoes varies from 100 to 125 km, the composition of the hydrous component drastically changes from relatively low-temperature H2O-rich fluid to higher temperature H2O-bearing melt. The geothermal gradient at the surface of the slab within the depth range of 100–125 km beneath Kamchatka was estimated at 4°C/km.  相似文献   

5.
The Oto-Zan lava in the Setouchi volcanic belt is composed ofphenocryst-poor, sparsely plagioclase-phyric andesites (sanukitoids)and forms a composite lava flow. The phenocryst assemblagesand element abundances change but Sr–Nd–Pb isotopiccompositions are constant throughout the lava flow. The sanukitoidat the base is a high-Mg andesite (HMA) and contains Mg- andNi-rich olivine and Cr-rich chromite, suggesting the emplacementof a mantle-derived hydrous (7 wt % H2O) HMA magma. However,Oto-Zan sanukitoids contain little H2O and are phenocryst-poor.The liquid lines of descent obtained for an Oto-Zan HMA at 0·3GPa in the presence of 0·7–2·1 wt % H2Osuggest that mixing of an HMA magma with a differentiated felsicmelt can reasonably explain the petrographical and chemicalcharacteristics of Oto-Zan sanukitoids. We propose a model wherebya hydrous HMA magma crystallizes extensively within the crust,resulting in the formation of an HMA pluton and causing liberationof H2O from the magma system. The HMA pluton, in which interstitialrhyolitic melts still remain, is then heated from the base byintrusion of a high-T basalt magma, forming an H2O-deficientHMA magma at the base of the pluton. During ascent, this secondaryHMA magma entrains the overlying interstitial rhyolitic melt,resulting in variable self-mixing and formation of a zoned magmareservoir, comprising more felsic magmas upwards. More effectiveupwelling of more mafic, and hence less viscous, magmas througha propagated vent finally results in the emplacement of thecomposite lava flow. KEY WORDS: high-Mg andesite; sanukitoid; composite lava; solidification; remelting  相似文献   

6.
The phase relations of primitive magnesian andesites and basaltic andesites from the Mt. Shasta region, N California have been determined over a range of pressure and temperature conditions and H2O contents. The experimental results are used to explore the influence of H2O and pressure on fractional crystallization and mantle melting behavior in subduction zone environments. At 200-MPa H2O-saturated conditions the experimentally determined liquid line of descent reproduces the compositional variation found in the Mt. Shasta region lavas. This calc-alkaline differentiation trend begins at the lowest values of FeO*/MgO and the highest SiO2 contents found in any arc magma system and exhibits only a modest increase in FeO*/MgO with increasing SiO2. We propose a two-stage process for the origin of these lavas. (1) Extensive hydrous mantle melting produces H2O-rich (>4.5--6 wt% H2O) melts that are in equilibrium with a refractory harzburgite (olivine + orthopyroxene) residue. Trace elements and H2O are contributed from a slab-derived fluid and/or melt. (2) This mantle melt ascends into the overlying crust and undergoes fractional crystallization. Crustal-level differentiation occurs under near-H2O saturated conditions producing the distinctive high SiO2 and low FeO*/MgO characteristics of these calc-alkaline andesite and dacite lavas. In a subset of Mt. Shasta region lavas, magnesian pargasitic amphibole provides evidence of high pre-eruptive H2O contents (>10 wt% H2O) and lower crustal crystallization pressures (800 MPa). Igneous rocks that possess major and trace element characteristics similar to those of the Mt. Shasta region lavas are found at Adak, Aleutians, Setouchi Belt, Japan, the Mexican Volcanic Belt, Cook Island, Andes and in Archean trondhjemite--tonalite--granodiorite suites (TTG suites). We propose that these magmas also form by hydrous mantle melting.Editorial responsibility: J. Hoefs  相似文献   

7.
H2O-undersaturated melting experiments of synthesized basalt (SiO2 = 50.7 wt.%, MgO = 8.3 wt.%, Mg# = 60) were conducted at fO2 corresponding to NNO+1 and NNO−1 to clarify the effects of pressure (2–7 kbar) and H2O on fractional crystallization in island arcs. H2O content was ranged from nominally anhydrous to 4.4 wt.%. Differentiation trends, namely the liquid lines of descent, change sensitively according to pressure-H2O relations. Tholeiitic differentiation trends are reproduced with H2O ≤ ∼2 wt.% in primary magma. With such quantities of H2O, fractional crystallization is controlled by olivine + plagioclase at 2 kbar. Increasing the pressure from 2 to ≥4 kbar induces early crystallization of orthopyroxene instead of olivine and therefore SiO2 enrichment in the residual melts is suppressed. Increasing H2O (≥ ∼2 wt.% in primary magma) stabilizes clinopyroxene relative to orthopyroxene and/or magnetite. Although the phase relations and proportions strongly depend on fO2 and H2O content, differentiation trends are always calc-alkaline.  相似文献   

8.
The powerful eruption in the Akademii Nauk caldera on January 2, 1996, marked a new activity phase of Karymsky volcano and became a noticeable event in the history of modern volcanism in Kamchatka. The paper reports data obtained by studying more than 200 glassy melt inclusions in phenocrysts of olivine (Fo 82-72), plagioclase (An 92-73), and clinopyroxene (Mg#83-70) in basalts of the 1996 eruption. The data were utilized to estimate the composition of the parental melt and the physicochemical parameters of the magma evolution. According to our data, the parental melt corresponded to low magnesian, highly aluminous basalt (SiO2 = 50.2 wt %, MgO = 5.6 wt %, Al2O3 = 17 wt %) of the mildly potassic type (K2O = 0.56 wt %) and contained much dissolved volatile components (H2O = 2.8 wt %, S = 0.17 wt %, and Cl = 0.11 wt %). Melt inclusions in the minerals are similar in chemical composition, a fact testifying that the minerals crystallized simultaneously with one another. Their crystallization started at a pressure of approximately 1.5 kbar, proceeded within a narrow temperature range of 1040 ± 20°C, and continued until a near-surface pressure of approximately 100 bar was reached. The degree of crystallization of the parental melt during its eruption was close to 55%. Massive crystallization was triggered by H2O degassing under a pressure of less than 1 kbar. Magma degassing in an open system resulted in the escape of 82% H2O, 93% S, and 24% Cl (of their initial contents in the parental melt) to the fluid phase. The release of volatile compounds to the atmosphere during the eruption that lasted for 18 h was estimated at 1.7 × 106 t H2O, 1.4 × 105 t S, and 1.5 × 104 t Cl. The concentrations of most incompatible trace elements in the melt inclusions are close to those in the rocks and to the expected fractional differentiation trend. Melt inclusions in the plagioclase were found to be selectively enriched in Li. The Li-enriched plagioclase with melt inclusions thought to originate from cumulate layers in the feeding system beneath Karymsky volcano, in which plagioclase interacted with Li-rich melts/brines and was subsequently entrapped and entrained by the magma during the 1996 eruption.  相似文献   

9.
Liquidus and subliquidus phase relations of a leucite-lamproite (wolgidite) from the West Kimberley area, Australia have been studied experimentally under the volatile conditions of 3.22 wt.% H2O ( \(X_{CO_2 }\) =0.11) and 13.0 wt.% H2O ( \(X_{CO_2 }\) =0.03) between 10 to 40 kbar. Under these conditions, liquids are vapour undersaturated. In experiments with 13.0 wt.% H2O, olivine is the liquidus phase up to 24 kbar and orthopyroxene above 24 kbar. Phlogopite and rutile occur close to the liquidus above 16 kbar. Crystallization temperatures of clinopyroxenes are 50–120° C below the liquidus. Based on these results, wolgidite magma is unlikely to be a partial melt of a garnet- or spinel-lherzolite mantle but could be derived from phlogopite+rutile±olivine±or-thopyroxene assemblages occurring as metasomatized mantle.  相似文献   

10.
This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years b.p.). Petrologic, geochemical and isotopic evidence indicates that this late Holocene mafic magmatism was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic magmatism (from 10,600 to ∼3000 14C years b.p.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (<0.2 wt%), lower LILE abundance and different isotopic characteristics. Thus, the mantle-derived inputs into the Medicine Lake system have not always been low H2O, primitive HAOT, but have alternated between HAOT and hydrous subduction related, calc-alkaline basalt. This influx of hydrous mafic magma coincides temporally and spatially with rhyolite eruption at Glass Mountain and Little Glass Mountain. The rhyolites contain quenched magmatic inclusions similar in character to the mafic lavas at Callahan and Paint Pot Crater. The influence of H2O on fractional crystallization of hydrous mafic magma and melting of pre-existing granite crust beneath the volcano combined to produce the rhyolite. Fractionation under hydrous conditions at upper crustal pressures leads to the early crystallization of Fe-Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT magmas at Medicine Lake differentiate to iron-rich basaltic liquids. When these Fe-enriched basalts mix with melted granitic crust, the result is an andesitic magma. Since mid-Holocene time, mafic volcanism has been dominated primarily by hydrous basaltic andesite and andesite at Medicine Lake Volcano. However, during the late Holocene, H2O-poor mafic magmas continued to be erupted along with hydrous mafic magmas, although in significantly smaller volumes. Received: 4 January 1999 / Accepted: 30 August 1999  相似文献   

11.
ABSTRACT

The Xiaohaizi wehrlite intrusion in the early Permian Tarim Large Igneous Province, Northwest China, is characterized by unusual high-An (up to 86) plagioclases. It has been suggested that H2O may have exerted a major control on their formation, but this interpretation requires further direct evidence. Moreover, it remains unclear where the water came from. In order to unravel these questions, we present electron microprobe analyses of minerals and melt inclusions in clinopyroxene macrocrysts in the dikes crosscutting the Xiaohaizi wehrlite intrusion and in situ oxygen isotope data of zircons from the Xiaohaizi wehrlite. The homogenized melt inclusions have restricted SiO2 (45.5–48.7 wt.%) and Na2O + K2O (2.4–3.8 wt.%) contents, displaying sub-alkaline affinity. This is inconsistent with the alkaline characteristic of the parental magma of the clinopyroxenes, suggesting significant modification of melt inclusions by contamination of the host clinopyroxene due to overheating. Nevertheless, the Ca/Na ratios (2.9–4.7) of melt inclusions are the upper limit of the parental magma of the clinopyroxenes due to high CaO (21.5–23.0 wt.%) and very low Na2O (0.22–0.34 wt.%) contents in the host clinopyroxenes. Thermodynamic calculation suggests that under fixed P (2.7 kbar) and T (1000°C), and assumed H2O (~1.5 wt.%) conditions, the Ca/Na ratio of the parental magma cannot generate high-An plagioclase in the wehrlite. The results confirm that H2O exerts a major control. Zircon δ18O (VSMOW) values (2.99–3.71‰) are significantly lower than that of mantle-derived zircon (5.3 ± 0.6‰). Such low zircon δ18O values may be due to incorporation of large amounts of low-δ18O, hydrothermally altered oceanic crust. However, geochemical and Sr-Nd-Pb isotopic data do not support recycled oceanic crust in the mantle source of the Xiaohaizi intrusion. Alternatively this can be explained by incorporation of meteoritic water in the magma chamber. This will increase the H2O content of the liquid that finally crystallize high-An plagioclases.  相似文献   

12.
The products of the 1974 eruption of Fuego, a subduction zone volcano in Guatemala, have been investigated through study of silicate melt inclusions in olivine. The melt inclusions sampled liquids in regions where olivine, plagioclase, magnetite, and augite were precipitating. Comparisons of the erupted ash, groundmass, and melt inclusion compositions suggest that the inclusions represent samples of liquids present in a thermal boundary layer of the magma body. The concentrations of H2O and CO2 in glass inclusions were determined by a vacuum fusion manometric technique using individual olivine crystals (Fo77 to Fo71) with glass inclusion compositions that ranged from high-alumina basalt to basaltic andesite. Water, Cl, and K2O concentrations increased by a factor of two as the olivine crystals became more iron-rich (Fo77 to Fo71) and as the glass inclusions increased in SiO2 from 51 to 54 wt.% SiO2. The concentration of H2O in the melt increased from 1.6 wt.% in the least differentiated liquid to about 3.5% in a more differentiated liquid. Carbon dioxide is about an order of magnitude less abundant than H2O in these inclusions. The gas saturation pressures for pure H2O in equilibrium with the melt inclusions, which were calculated from the glass inclusion compositions using the solubility model of Burnham (1979), are given approximately by P(H2O)(Pa)=(SiO2−48.5 wt.%) × 1.45 × 107. The concentrations of water in the melt and the gas saturation pressures increased from about 1.5% to 3.5% and from 300 to 850 bars, respectively, during pre-eruption crystallization.  相似文献   

13.
Recent petrological studies indicate that some crustal magma chambers may be built up slowly by the intermittent ascent and amalgamation of small packets of magma generated in a deep-seated source region. Despite having little effect on whole-rock compositions, this process should be detectable as variable melt trace element composition, preserved as melt inclusions trapped in phenocrysts. We studied trace element and H2O contents of plagioclase- and hornblende-hosted melt inclusions from andesite lavas and pumices of Shiveluch Volcano, Kamchatka. Melt inclusions are significantly more evolved than the whole rocks, indicating that the whole rocks contain a significant proportion of recycled foreign material. H2O concentrations indicate trapping at a wide range of pressures, consistent with shallow decompression-driven crystallisation. The variation of trace element concentrations indicates up to ∼30% decompression crystallisation, which accounts for crystallisation of the groundmass and rims on phenocrysts. Trace element scatter could be explained by episodic stalling during shallow magma ascent, allowing incompatible element concentrations to increase during isobaric crystallisation. Enrichment of Li at intermediate pH2O reflects influx and condensation of metal-rich vapours. A set of “exotic melts”, identified by their anomalous incompatible trace element characteristics, indicate variable source chemistry. This is consistent with evolution of individual magma batches with small differences in trace element chemistry, and intermittent ascent of magma pulses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Olivine-hosted melt inclusions in the O95 pyroclastic layer of Izu-Oshima volcano, Japan are basaltic to basaltic-andesitic in composition. The negative correlation between SiO2 and H2O in melt inclusions and reverse compositional zoning observed in olivine and other mineral phenocrysts is inferred to arise from mixing between a highly evolved and a less evolved magma. The latter is characterized by the highest S (0.15 wt.%) and H2O (3.4 wt.%) concentrations among those described in reports of previous studies. The S6+/Stotal ratios in melt inclusions were 0.64?–?0.73, suggesting a relatively high oxidation state (NNO + 0.87 at 1150°C). The presence of pyrrhotites, which are found only in titanomagnetite microlites, suggests that sulfide saturation occurred during microlite growth under at a sulfur fugacity (log fS2) value of around + 0.5 for T = 1060°C. The groundmass glass compositions are more evolved (andesitic composition) than any melt inclusions containing high amounts of Cl (0.13 wt.%) but negligible H2O (0.20 wt.%) and S (< 70 ppm), suggesting that Cl was retained in the magma, in contrast to S and H2O, which degassed strongly during magma effusion.  相似文献   

15.
Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt   总被引:2,自引:0,他引:2  
Fluid/melt distribution coefficients for F have been determined in experiments conducted with peraluminous topaz rhyolite melts and fluids consisting of H2O and H2O+CO2 at pressures of 0.5 to 5 kbar, temperatures of 775°–1000°C, and concentrations of F in the melt ranging from 0.5 to 6.9 wt%. The major element, F, and Cl concentrations of the starting material and run product glasses were determined by electron microprobe, and the concentration of F in the fluid was calculated by mass balance. The H2O concentrations of some run product glasses were determined by ion microprobe (SIMS). The solubility of melt in the fluid phase increases with increasing F in the system; the solubility of H2O in the melt is independent of the F concentration of the system with up to 6.3 wt% F in the melt. No evidence of immiscible silica- and fluoriderich liquids was detected in the hydrous but water-undersaturated starting material glasses (8.5 wt% F in melt) or in the water-saturated run product glasses. F concentrates in topaz rhyolite melts relative to coexisting fluids at most conditions studied; however, DF (wt% F in fluid/wt% F in melt) increases strongly with increasing F in the system. Maximum values of DF in this study are significantly larger than those previously reported in the literature. Linear extrapolation of the data suggests that DF is greater than one for water-saturated, peraluminous granitic melts containing 8 wt% F at 800° C and 2 kbar. DF increases as temperature and as (H2O/H2O+CO2) of the fluid increase. For topaz rhyolite melts containing 1 wt% F and with H2O-rich fluids, DF is independent of changes in pressure from 2 to 5 kbar at 800° C; for melts containing 1 wt% F and in equilibrium with CO2-bearing fluids the concentrations of F in fluid increases with increasing pressure. F-and lithophile element-enriched granites may evolve to compositions containing extreme concentrations of F during the final stages of crystallization. If F in the melt exceeds 8 wt%, DF is greater than one and the associated magmatic-hydrothermal fluid contains >4 molal F. Such F-enriched fluids may be important in the mass transport of ore constituents, i.e., F, Mo, W, Sn, Li, Be, Rb, Cs, U, Th, Nb, Ta, and B, from the magma.  相似文献   

16.
We determined total CO2 solubilities in andesite melts with a range of compositions. Melts were equilibrated with excess C-O(-H) fluid at 1 GPa and 1300°C then quenched to glasses. Samples were analyzed using an electron microprobe for major elements, ion microprobe for C-O-H volatiles, and Fourier transform infrared spectroscopy for molecular H2O, OH, molecular CO2, and CO32−. CO2 solubility was determined in hydrous andesite glasses and we found that H2O content has a strong influence on C-O speciation and total CO2 solubility. In anhydrous andesite melts with ∼60 wt.% SiO2, total CO2 solubility is ∼0.3 wt.% at 1300°C and 1 GPa and total CO2 solubility increases by about 0.06 wt.% per wt.% of total H2O. As total H2O increases from ∼0 to ∼3.4 wt.%, molecular CO2 decreases (from 0.07 ± 0.01 wt.% to ∼0.01 wt.%) and CO32− increases (from 0.24 ± 0.04 wt.% to 0.57 ± 0.09 wt.%). Molecular CO2 increases as the calculated mole fraction of CO2 in the fluid increases, showing Henrian behavior. In contrast, CO32− decreases as the calculated mole fraction of CO2 in the fluid increases, indicating that CO32− solubility is strongly dependent on the availability of reactive oxygens in the melt. These findings have implications for CO2 degassing. If substantial H2O is present, total CO2 solubility is higher and CO2 will degas at relatively shallow levels compared to a drier melt. Total CO2 solubility was also examined in andesitic glasses with additional Ca, K, or Mg and low H2O contents (<1 wt.%). We found that total CO2 solubility is negatively correlated with (Si + Al) cation mole fraction and positively correlated with cations with large Gibbs free energy of decarbonation or high charge-to-radius ratios (e.g., Ca). Combining our andesite data with data from the literature, we find that molecular CO2 is more abundant in highly polymerized melts with high ionic porosities (>∼48.3%), and low nonbridging oxygen/tetrahedral oxygen (<∼0.3). Carbonate dominates most silicate melts and is most abundant in depolymerized melts with low ionic porosities, high nonbridging oxygen/tetrahedral oxygen (>∼0.3), and abundant cations with large Gibbs free energy of decarbonation or high charge-to-radius ratio. In natural silicate melt, the oxygens in the carbonate are likely associated with tetrahedral and network-modifying cations (including Ca, H, or H-bonds) or a combinations of those cations.  相似文献   

17.
We conducted melting experiments on a low MgO (3.29 wt.%) basaltic andesite (54.63 wt.% SiO2) from Westdahl volcano, Alaska, at XH2O = 0.7–1 and fO2 ~ Ni–NiO, at pressures = 0.1–180 MPa and temperatures = 900–1,200 °C. We examine the evolution of the melt along a liquid line of descent during equilibrium crystallization at high H2O and fO2 conditions, starting from a high FeOt/MgO, low MgO basaltic andesite. Ti-magnetite formed on the liquidus regardless of XH2O, followed by clinopyroxene, plagioclase, amphibole, and orthopyroxene. We observe slight but significant differences in the phase stability curves between the XH2O = 1 and 0.7 experiments. Early crystallization of Ti-magnetite and suppression of plagioclase at higher pressures and temperatures resulted in strongly decreasing melt FeOt/MgO with increasing SiO2, consistent with a “calc-alkaline” compositional trend, in agreement with prior phase equilibria studies on basalt at similar H2O and fO2. Our study helps quantify the impact of small amounts of CO2 and high fO2 on the evolution of melts formed during crystallization of a low MgO basaltic andesite magma stored at mid- to shallow crustal conditions. Like the prior studies, we conclude that H2O strongly influences melt evolution trends, through stabilization of Ti-magnetite on the liquidus and suppression of plagioclase at high P–T conditions.  相似文献   

18.
Liquidus phase relationships have been determined for a high-MgO basalt (STV301: MgO=12.5 wt%, Ni=250 ppm, Cr=728 ppm) from Black Point, St Vincent (Lesser Antilles arc). Piston-cylinder experiments were conducted between 7.5 and 20 kbar under both hydrous and oxidizing conditions. AuPd capsules were used as containers. Compositions of supraliquidus glasses and mass-balance calculations show that Fe loss is < 10% in the majority of experiments. Two series of water concentrations in melt were investigated: (i) 1.5 wt% and (ii) 4.5 wt% H2O, as determined by SIMS analyses on quenched glasses and with the by difference technique. The Fe3+/Fe2+ partitioning between Cr-Al spinel and melt and olivine-spinel equilibria show that oxidizing fO2 were imposed (NNO + 1.5 for the 1.5 wt% H2O series, NNO + 2.3 for the 4.5 wt% H2O series). For both series of water concentrations, the liquid is multiply-saturated with a spinel lherzolite phase assemblage on its liquidus, at 1235°C, 11.5 kbar (1.5 wt% H2O) and 1185°C, 16 kbar (4.5 wt% H2O). Liquidus phases are homogeneous and comparable to typical mantle compositions. Mineral-melt partition coefficients are generally identical to values under anhydrous conditions. The modal proportion cpx/opx on the liquidus decreases from the 1.5 wt% to the 4.5 wt% H2O series. The experimental data are consistent with STV301 being a product of partial melting of lherzolitic mantle. Conditions of multiple saturation progressively evolve toward lower temperatures and higher pressures with increasing melt H2O concentration. Phase equilibria constraints, i.e., the necessity of preserving the mantle signature seen in high-MgO and picritic arc basalts, and glass inclusion data suggest that STV301 was extracted relatively dry (∼ 2 wt% H2O) from its mantle source. However, not all primary arc basalts are extracted under similarly dry conditions because more hydrous melts will crystallize during ascent and will not be present unmodified at the surface. From degrees of melting calculated from experiments on KLB-1, extraction of a 12.5 wt% MgO melt with ∼ 2 wt% H2O would require a H2O concentration of 0.3 wt% in the sub-arc mantle. For mantle sources fluxed with a slab-derived hydrous component, extracted melts may contain up to ∼ 5.5 wt% H2O.  相似文献   

19.
Clinopyroxene phenocrysts in fergusite from a diatreme in the Dunkel’dyk potassic alkaline complex in the southeastern Pamirs, Tajikistan, and from carbonate veinlets cutting across this rock contain syngenetic carbonate, silicate, and complex melt inclusions. The homogenization of the silicate and carbonate material of the inclusions with the complete dissolution of daughter crystalline phases and fluid in each of them occur simultaneously at 1150?1180°C. The pressures estimated using fluid inclusions and mineral geobarometers were 0.5–0.7 GPa. The behavior of the inclusions during their heating and their geochemistry are in good agreement with the origin of carbonate melts via liquid immiscibility. Carbonatite magma was segregated at the preservation of volatile components (H2O, CO2, F, Cl, and S) in the melt, and this resulted in the crystallization of H2O-rich minerals and carbonates and testifies that the magma was not intensely degassed during its ascent to the surface. The silicate melts are rich in alkalis (up to 4 wt % Na2O and 12 wt % K2O), H2O, F, Cl, and REE (up to 1000 ppm), LREE, Ba, Th, U, Li, B, and Be. The diagrams of the concentrations of incompatible elements of these rocks typically show deep Nb, Ta, and Ti minima, a fact making them similar to the unusual type of ultrapotassic magmas: lamproites of the Mediterranean type. These magmas are thought to be generated in relation to subduction processes, first of all, the fluid transport of various components from a down-going continental crustal slab into overlying levels of the mantle wedge, from which ultrapotassic magmas are presumably derived.  相似文献   

20.
The solubility of sulphur in sulphide-saturated, H2O-bearing basaltic–andesitic and basaltic melts from Hekla volcano (Iceland) has been determined experimentally at 1,050°C, 300 and 200 MPa, and redox conditions with oxygen fugacity (logfO2) between QFM−1.2 and QFM+1.1 (QFM is a quartz–fayalite–magnetite oxygen buffer) in the systems containing various amounts of S and H2O. The S content of the H2O-rich glasses saturated with pyrrhotite decreases from 2,500 ppm in basalt to 1,500 ppm in basaltic andesite at the investigated conditions. Furthermore, the reduction of water content in the melt at pyrrhotite saturation and fixed T, P and redox conditions leads to a decrease in S concentration from 2,500 to 1,400 ppm for basaltic experiments (for H2O decrease from 7.8 to 1.4 wt%) and from 1,500 to 900 ppm (for H2O decrease from 6.7 to 1.7 wt%) for basaltic andesitic experiments. Our experimental data, combined with silicate melt inclusion investigations and the available models on sulphide saturation in mafic magmas, indicate that the parental basaltic melts of Hekla were not saturated with respect to sulphide. During magmatic differentiation, the S content in the residual melts increased and might have reached sulphide saturation with 2,500 ppm dissolved S. With further magma crystallization, the S concentration in the melt was controlled by the sulphide saturation of the magma, decreasing from ~2,500 to 900 ppm S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号