首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three global metallogenic belts were formed in the world during Mesozoic and post-Mesozoic times. Two of them are situated along the western and eastern Pacific margins, and the third one - the Tethyan Eurasian metallogenic belt (TEMB) is related to the domain of Eurasian plate and flanked on the south by the Afro-Arabian and Indian plates. The general tectonic evolution of the realm where the TEMB was formed is closely connected with the history of Tethys. The emplacement of ore deposits and the development of regional metallogenic units are related to a definitive time interval and to specific tectonic settings such as: (1) Intracontinental rifting along the northern margin of Gondwana and/or fragments already separated; (2) Oceanic environments (i.e. ophiolite complexes and ocean floor sediments) host podiform chromite deposits, volcano-sedimentary cupriferous pyrite deposits (Cyprus type), stratiform manganese deposits, and sporadically PGE deposits; (3) Subduction related settings involve mainly porphyry copper deposits, hydrothermal massive sulphide polymetallic deposits, and epithermal deposits. So far identified mineralization of porphyry copper exceeds in the TEMB over 100 million tons of copper metal; and(4) Collision and post-collision continent-continent setting includes deposits of lead-zinc, antimony, gold, in some sectors tin deposits, as well. The giant deposits of Li-pegmatite occur sporadically.The TEMB is almost a continuously mineralized belt, but within it, some sectors display specific features of tectonic settings, association of elements, minerals and morphogenetic types of mineralization.  相似文献   

2.
长江中、下游地区块状硫化物矿床普遍受到燕山期岩浆及其热液的改造与叠加.本文以铜陵冬瓜山矿床为例,探讨这类矿床的成矿机制.该矿床主要由层状硫化物矿体组成,伴有矽卡岩型和斑岩型矿体.野外地质观察及室内矿相学的研究表明,冬瓜山层状矿体中矿石遭受了强烈的热变质作用及热液交代作用.进变质过程中形成的结构主要为黄铁矿受燕山期岩浆侵...  相似文献   

3.
4.
Two porphyry Cu-Mo prospects in northern Sonora, Mexico (Fortuna del Cobre and Los Humos) located within the southwestern North American porphyry province have been dated in order to constrain the timing of crystallization and mineralization of these ore deposits. In Fortuna del Cobre, the pre-mineralization granodiorite porphyry yielded an U-Pb zircon age of 76.5?±?2.3 Ma, whereas two samples from the ore-bearing quartz feldespathic porphyry were dated at 74.6?±?1.3 and 75.0?±?1.4 Ma. Four molybdenite samples from Los Humos porphyry Cu prospect yielded a weighted average Re-Os age of 73.5?±?0.2 Ma, whereas two samples from the ore-bearing quartz monzonite porphyry gave U-Pb zircon ages of 74.4?±?1.1 and 74.5?±?1.3 Ma, showing a Late Cretaceous age for the emplacement of this ore deposit. The results indicate that Laramide porphyry Cu mineralization of Late Cretaceous age is not restricted to northern Arizona as previously thought and provide evidence for the definition of NS trending metallogenic belts that are parallel to the paleo-trench. Porphyry copper mineralization follows the inland migration trend of the magmatic arc as a result of the Farallon slab flattening during the Laramide orogeny.  相似文献   

5.
The Kristineberg volcanic-hosted massive sulphide (VMS) deposit, located in the westernmost part of the Palaeoproterozoic Skellefte district, northern Sweden, has yielded 22.4 Mt of ore, grading 1.0% Cu, 3.64% Zn, 0.24% Pb, 1.24 g/t Au, 36 g/t Ag and 25.9% S, since the mine opened in 1941, and is the largest past and present VMS mine in the district. The deposit is hosted in a thick pile of felsic to intermediate and minor mafic metavolcanic rocks of the Skellefte Group, which forms the lowest stratigraphic unit in the district and hosts more than 85 known massive sulphide deposits. The Kristineberg deposit is situated lower in the Skellefte Group than most other deposits. It comprises three main ore zones: (1) massive sulphide lenses of the A-ore (historically the main ore), having a strike length of about 1,400 m, and extending from surface to about 1,200 m depth, (2) massive sulphide lenses of the B-ore, situated 100–150 m structurally above the A-ore, and extending from surface to about 1,000 m depth, (3) the recently discovered Einarsson zone, which occurs in the vicinity of the B-ore at about 1,000 m depth, and consists mainly of Au–Cu-rich veins and heavily disseminated sulphides, together with massive sulphide lenses. On a regional scale the Kristineberg deposit is flanked by two major felsic rock units: massive rhyolite A to the south and the mine porphyry to the north. The three main ore zones lie within a schistose, deformed and metamorphosed package of hydrothermally altered, dominantly felsic volcanic rocks, which contain varying proportions of quartz, muscovite, chlorite, phlogopite, pyrite, cordierite and andalusite. The strongest alteration occurs within 5–10 m of the ore lenses. Stratigraphic younging within the mine area is uncertain as primary bedding and volcanic textures are absent due to strong alteration, and tectonic folding and shearing. In the vicinity of the ore lenses, hydrothermal alteration has produced both Mg-rich assemblages (Mg-chlorite, cordierite, phlogopite and locally talc) and quartz–muscovite–andalusite assemblages. Both types of assemblages commonly contain disseminated pyrite. The sequence of volcanic and ore-forming events at Kristineberg is poorly constrained, as the ages of the massive rhyolite and mine porphyry are unknown, and younging indicators are absent apart from local metal zoning in the A-ores. Regional structural trends, however, suggest that the sequence youngs to the south. The A- and B-ores are interpreted to have formed as synvolcanic sulphide sheets that were originally separated by some 100–150 m of volcanic rocks. The Einarsson zone, which is developed close to the 1,000 m level, is interpreted to have resulted in part from folding and dislocation of the B-ore sulphide sheet, and in part from remobilisation of sulphides into small Zn-rich massive sulphide lenses and late Au–Cu-rich veins. However, the abundance of strongly altered, andalusite-bearing rocks in the Einarsson zone, coupled with the occurrence of Au–Cu-rich disseminated sulphides in these rocks, suggests that some of the mineralisation was synvolcanic and formed from strongly acidic hydrothermal fluids. Editorial handling: P. Weihed  相似文献   

6.
A distinct vertical zonation very similar to that described for the Kuroko deposits of Japan, is displayed by both mineralogy and textures of sulphides from the Lahanos and Kzlkaya massive sulphide deposits of northeastern Turkey. A deeper erosional level is exposed at the Kzlkaya deposit, so that only remnants of the massive sulphide ore zone are present. The zonation is from an upper zone of massive Cu and Zn sulphides (black and yellow ore) with fine-grained, colloform, banded, framboidal, and spherulitic textures, downwards through an intermediate zone of low Cu-Zn massive pyrite with transitional textures, to a lower zone of stockwork and impregnated pyrite displaying euhedral, zoned textures. The fine-grained and colloform pyrite of the upper zones is progressively overgrown by, and recrystallized to, the massive and euhedral pyrite of lower zones. The original textures of these deposits are best preserved by pyrite. The previous interpretation of these textures, of sulphide deposition from colloidal solutions ponded by an impermeable pyroclastic horizon, is reexamined in the light of present observations. Although ultra-fine-grained sulphides, framboids, and radially-cracked spherules could have formed by replacement of pre-existing minerals by a colloidal solution, the colloform and banded textures are indicative of growth in open spaces. It thus seems likely that the fine-grained colloform sulphides, including chalcopyrite, sphalerite, and tennantite as well as pyrite, were initially deposited on or near the surface of the sea-floor. Additional evidence for this interpretation is seen in the progressive recrystallization of the sulphide textures to massive, much coarser, pyrite in the lower zones. This recrystallization may in part be due to diagenetic and hydrothermal processes operating after formation of the original layered sulphides. These conclusions are in agreement with those reached for the similar, but larger Madenköy deposit 100 km to the east.  相似文献   

7.
The Miduk porphyry copper deposit is located in Kerman province, 85 km northwest of the Sar Cheshmeh porphyry copper deposit, Iran. The deposit is hosted by Eocene volcanic rocks of andesitic–basaltic composition. The porphyry‐type mineralization is associated with two Miocene calc‐alkaline intrusive phases (P1 and P2, respectively). Five hypogene alteration zones are distinguished at the Miduk deposit, including magnetite‐rich potassic, potassic, potassic–phyllic, phyllic and propylitic. Mineralization occurs as stockwork, dissemination and nine generations (magnetite, quartz–magnetite, barren quartz, quartz‐magnetite‐chalcopyrite‐anhydrite, chalcopyrite–anhydrite, quartz‐chalcopyrite‐anhydrite‐pyrite, quartz‐molybdenite‐anhydrite ± chalcopyrite ± magnetite, pyrite, and quartz‐pyrite‐anhydrite ± sericite) of veinlets and veins. Early stages of mineralization consist of magnetite rich veins in the deepest part of the deposit and the main stage of mineralization contains chalcopyrite, magnetite and anhydrite in the potassic zone. The high intensity of mineralization is associated with P2 porphyry (Miduk porphyry). Based on petrography, mineralogy, alteration halos and geochemistry, the Miduk porphyry copper deposit is similar to those of continental arc setting porphyry copper deposits. The Re‐Os molybdenite dates provide the timing of sulfide mineralization at 12.23 ± 0.07 Ma, coincident with U/Pb zircon ages of the P2 porphyry. This evidence indicates a direct genetic relationship between the Miduk porphyry stock and molybdenite mineralization. The Re‐Os age of the Miduk deposit marks the main stage of magmatism and porphyry copper formation in the Central Iranian volcano‐plutonic belt.  相似文献   

8.
The Yangchuling porphyry W-Mo deposit is a new-type tungsten deposit discovered recently in southern China. Being of certain economic significance, this type of deposits promises some new prospects for the availability of increasing tungsten resource. The ore-bearing rock mass, intermediate to acid in composition, is a composite rock body resulting from comagmatic, multiple-stage intrusion during Middle-Late Yenshanian Period. Spatially, the rock mass is controlled by the Guangji—Anqing—Nanjing deep fault. As a typical porphyry deposit, the ore-bearing rocks (granodiorite porphyry, mozonitic granite porphyry and camouflage breccia) belong to sub-volcanic facies characteristic of near-surface environment. The rocks have suffered strong hydrothermal alteration which is closely related to mineralization. The deposit is classified as meso-epithermal deposit and our study shows that W and Mo come from the granodiorite, granodiorite porphyry and mozonitic granodiorite porphyry, which are believed to be derived through remelting from some W-rick basement rocks contaminated with minor amounts of upper mantle materials.  相似文献   

9.
新疆谢米斯台地区斑岩型铜矿化的发现及其意义   总被引:3,自引:0,他引:3  
继在新疆谢米斯台地区玄武岩中发现自然铜矿化后,在谢米斯台地区中-酸性次火山岩中发现具有一定规模的斑岩型铜矿化。原生硫化物主要为黄铜矿、黄铁矿和斑铜矿。斑岩型铜矿化主要发育于蚀变的英安斑岩、流纹斑岩和安山玢岩中,矿化岩石中发育强烈的绿帘石化、绿泥石化、碳酸盐化、硅化,局部发育泥化。区内斑岩型铜矿化的发现,表明新疆谢米斯台地区存在两种类型铜矿化,有望取得铜矿找矿新突破。矿化次火山岩及其下部的浅成侵入体可能是区内斑岩型铜矿床找矿评价的重要目标。  相似文献   

10.
The Great Barrier Island subvolcanic silver-gold deposits comprise a number of essentially east striking, quartz filled, mineralized fissures, which transect andesitic volcanics and an unconformably overlying, bedded sinter deposit of upper Tertiary to Quaternary age. Wall rock alteration is characterized by a propylitic assemblage in the least altered andesite, with argillic assemblages and silicification developed in close proximity to the veins. Some twentyfive hypogene and supergene ore minerals have been recognized, of which pyrite is the most common and finely disseminated pyrargyrite constitutes the main source of silver. The mineral assemblage is dominantly hypogene with minor supergene alteration occurring at surface exposures, and includes mainly sulfides, selenides and native metals. Fineness of electrum derived from two electron microprobe analyses is approximately 500, while total silver to gold ratio from a number of bulk chemical analyses is 30:1. Maximum depth of deposition is estimated to be in the order of 500 m and for some surface exposures 100 m. The mineralization is regarded as subvolcanic and along with other hydrothermal fissure deposits of Hauraki Province is considered to be of Pliocene-Pleistocene age, and hence is believed to be associated with the late phase extrusions and intrusions of acid magma in the volcanic belt.  相似文献   

11.
The Yeoval porphyry copper prospect lies in a complex of dioritic rocks which form part of the eastern margin of the Yeoval Batholith in central‐western New South Wales. Rocks of the batholith are mainly granite and adamellite whose age is about 370 m.y. The diorite complex, (411 m.y.) is composed of rocks ranging from granodiorite to gabbro and pyroxenite.

Hydrothermal alteration of granodiorite in the Yeoval Mine area, 3.5 km north of Yeoval, is associated with disseminated and stockwork‐veinlet copper‐sulphide‐bearing zones. Alteration assemblages are similar to those described from some disseminated or porphyry copper/molybdenum deposits of southwestern USA.

The ubiquity of potassic zones in veinlet alteration envelopes and the poor development of sericitic and argillic zones suggest that the Yeoval prospect formed at or below the level of the Ajo deposit, Arizona, and the Los Loros deposit, Chile, which formed some 5 km below surface near the base of the ‘porphyry system’.

High Rb and Ba contents in the Yeoval diorites and their associated andesitic volcanics, and the presence of garnet‐bearing rhyodacite of similar age, imply that the Yeoval area was part of an Andean type of continental margin in the middle Palaeozoic.  相似文献   

12.
乌兹别克斯坦Almalyk斑岩铜矿田成矿时代及其地质意义   总被引:6,自引:0,他引:6  
新疆西天山斑岩铜矿找矿勘查备受关注。乌兹别克斯坦Almalyk斑岩铜矿田处在西天山西段,铜矿规模属亚洲第二大,但其成矿时代还没有准确厘定。在区域地质构造中,Almalyk铜矿田位于中天山加里东—华力西褶皱带南部边缘,包括Kalmakyr、Dalneye、Sarcheku和Kyzata等4个铜矿床,铜成矿主要发生在斑岩体内,原生矿石呈网脉状、浸染状,金属矿物主要有黄铁矿、黄铜矿,辉钼矿、赤铁矿、磁铁矿、自然金、斑铜矿等。针对Sarcheku铜钼矿石中辉钼矿利用Re-Os法测得(320.4±2.3)Ma的模式年龄和(317.6±2.5)Ma的等时线年龄。结合岩浆建造序列,认为矿田内构造—岩浆—热液过程开始于早石炭世,发展于晚石炭世,结束于早二叠世,斑岩型铜成矿主要在晚石炭世。西天山包括Almalyk铜矿田在内大型—超大型斑岩型铜成矿作用主要在中泥盆—晚石炭世(D2—C2),与古亚洲洋壳向哈萨克斯坦—伊犁板块之下俯冲形成的复杂岛弧岩浆地质过程有关。  相似文献   

13.
安徽铜陵冬瓜山铜、金矿床两阶段成矿模式   总被引:21,自引:0,他引:21  
冬瓜山铜金矿床包括层状硫化物矿体、矽卡岩型和斑岩型矿体。层状硫化物矿体具层状形态和层控特征,矿石具块状、层纹状和揉皱状构造。燕山期岩浆岩及其岩浆流体对层状矿体进行了叠加和改造,改变了其结构构造、矿物组合和矿石成分,并在其上叠加蚀变和矿化。层状矿体中的铜是由含铜流体交代块状硫化物矿石形成的。冬瓜山铜金矿床经历了两次成矿作用:第一成矿阶段.在石炭纪中期,海底喷流作用形成了块状硫化物矿床,矿石成分以硫、铁矿为主;第二成矿阶段。燕山期岩浆侵人,一方面岩浆热液与围岩相互作用发生矽卡岩化、硅化、钾长石化、石英绢云母化和青磐岩化,形成矽卡岩型和斑岩型矿体,另一方面岩浆流体对块状硫化物矿体进行叠加改造,致使块状硫化物矿体富集铜等成矿物质。  相似文献   

14.
The Miocene porphyry Cu–(Mo) deposits in the Gangdese orogenic belt in southern Tibet were formed in a post-subduction collisional setting. They are closely related to the Miocene adakite-like porphyries which were probably derived from a thickened basaltic lower crust. Furthermore, mantle components have been considered to have played a crucial role in formation of these porphyry deposits (Hou et al. Ore Geol Rev 36: 25–51, 2009; Miner Deposita doi:10.1007/s00126-012-0415-6, 2012). In this study, we present zircon Hf isotopes and molybdenite Re–Os ages on the newly discovered Gangjiang porphyry Cu–Mo deposit in southern Tibet to constrain the magma source of the intrusions and the timing of mineralization. The Gangjiang porphyry Cu–Mo deposit is located in the Nimu ore field in the central Gangdese porphyry deposits belt, southern Tibet. The copper and molybdenum mineralization occur mainly as disseminations and veins in the overlapped part of the potassic and phyllic alteration zones, and are predominantly hosted in the quartz monzonite stock and in contact with the rhyodacite porphyry stock. SIMS zircon U–Pb dating of the pre-mineral quartz monzonite stock and late intra-mineral rhyodacite porphyry yielded ages of 14.73?±?0.13 Ma (2σ) and 12.01?±?0.29 Ma (2σ), respectively. These results indicate that the magmatism could have lasted as long as about 2.7 Ma for the Gangjiang deposit. The newly obtained Re–Os model ages vary from 12.51?±?0.19 Ma (2σ) to 12.85?±?0.18 Ma (2σ) for four molybdenite samples. These Re–Os ages are roughly coincident with the rhyodacite porphyry U–Pb zircon age, and indicate a relatively short-lived episode of ore deposition (ca. 0.3 Ma). In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS indicate that the ε Hf(t) values of zircons from a quartz monzonite sample vary from +2.25 to +4.57 with an average of +3.33, while zircons from a rhyodacite porphyry sample vary from +5.53 to +7.81 with an average of +6.64. The Hf data indicate that mantle components could be partly involved in the deposit formation, and that mantle contributions might have increased over time from ca. 14.7 to 12.0 Ma. Combined with previous works, it is proposed that the Gangjiang deposit could have resulted from the convective thinning of the lithospheric root, and the input of upper mantle components into the magma could have played a key role in the formation of the porphyry deposits in the Miocene Gangdese porphyry copper belt in the Tibetan Orogen.  相似文献   

15.
The Banská?tiavnica ore district is in the central zone of the largest stratovolcano in the Central Slovakia Neogene Volcanic Field, which is situated at the inner side of the Carpathian arc over the Hercynian basement with the Late Paleozoic and Mesozoic sedimentary cover. Volcanic rocks of the High-K orogenic suite are of the Badenian through Pannonian age (16.5–8.5?Ma). Their petrogenesis is closely related to subduction of flysch belt oceanic basement underneath the advancing Carpathian arc and to back-arc extension processes. The stratovolcano includes a large caldera 20?km in diameter and a late-stage resurgent horst in its centre, exposing a basement and extensive subvolcanic intrusive complex. The following stages have been recognized in the evolution of the stratovolcano: (1)?formation of a large pyroxene/hornblende-pyroxene andesite stratovolcano; (2)?denudation, emplacement of a diorite intrusion; (3) emplacement of a large granodiorite bell-jar pluton within the basement; (4) emplacement of granodiorite/quartz-diorite porphyry stocks and dyke clusters around the pluton; (5) caldera subsidence and its filling by biotite-hornblende andesite volcanics, emplacement of quartz-diorite porphyry sills and dykes at the subvolcanic level; (6)?renewed activity of andesites from dispersed centres on slopes of the volcano; (7) uplift of a resurgent horst accompanied by rhyolite volcanics and granite porphyry dykes. The following types of ore deposits (mineralizations) have been identified in the Banská?tiavnica ore district: 1. Quartz-pyrophyllite-pyrite high-sulphidation system at ?obov, related to the diorite intrusion. 2. Magnetite skarn deposits and occurrences?at contacts of the granodiorite pluton with Mesozoic carbonate rocks. Magnetite ores occur as lenses in the calcic skarns. 3.?Stockwork/disseminated base metal deposit along an irregular network of fractures in apical parts of the granodiorite pluton and in remnants of basement rocks. Mineral paragenesis is simple, with leading sphalerite and galena and minor chalcopyrite and pyrite. In overlying andesites the mineralization is accompanied by metasomatic quartzites and argillites with pyrophyllite, kaolinite, illite and pyrite. 4. Porphyry/skarn copper deposits and occurrences related to granodiorite/quartz-diorite porphyry dyke clusters and stocks around the granodiorite intrusion. The mineralized zone is represented by accumulations of chalcopyrite in exo- and endo-skarns, usually of the magnesian type affected by serpentinization. Besides chalcopyrite, pyrhotite, minor bornite, chalcosite, tennantite and magnetite, rare molybdenite and gold are present. The alteration pattern around productive intrusions includes an external zone of propylitization, a zone of argillitic alteration (kaolinite – illite – pyrite) and an internal zone of phyllic alteration (quartz – sericite – pyrite). Biotitization is rare and limited to porphyry intrusions. 5. Intrusion related “mesothermal” gold deposit in an andesitic environment just above the granodiorite intrusion. Gold of high fineness with base metal mineralization is contained in brecciated and/or banded quartz veins of subhorizontal orientation, parallel to the surface of granodiorite pluton. At least the first phase of mineralization is older than quartz-diorite porphyry sills, which separate granodiorite and blocks of mineralized andesite. 6. Hot spring type advanced argillic systems in the caldera filling. Silicites and opalites accompanied by kaolinite, alunite and pyrite grade downward into smectite dominated argillites. 7. Vein type epithermal precious/base metal deposits and occurrences as a result of the long lasting interaction among structural evolution of the resurgent horst and evolving hydrothermal system, extensive intrusive complex and deep seated siliceous magma chamber serving as heat and magmatic fluid source. Three types of epithermal veins occur in a zonal arrangement: (a) base metal veins ± Au with transition to Cu?±?Bi mineralization at depth in the east/central part of the horst, (b)?Ag – Au veins with minor base metal mineralization and (c) Au – Ag veins located at marginal faults of the horst. Isotopic composition of oxygen and hydrogen in hydrothermal fluids indicate mixing of magmatic and meteoric component (with generally increasing proportion of meteoric component towards younger mineralization periods?). Veins are accompanied by zones of silicification, adularization and sericitization, indicating a low sulphidation environment. 8.?Replacement base metal mineralization of a limited extent in the Mesozoic carbonate rocks next to sulphide rich epithermal base metal veins.  相似文献   

16.
The so-called“Yangtze-type”copper deposits include:(1)Cu-bearing massive pyrite bed ,(2)Cu-bearing skarn and magnetite-type ore deposits,with replacement Cu-vein-type deposits near the metasomatic zone,and (3)mineralized intrusive bodies and breccia pipes ,some of which are known as porphyry copper ores(e.g.Chengmenshan).This type of ore deposits is a typical example to verify the polygenesis of inost of the deposits in China,as has been promoted by Prof.Tu Guangchi in view of the polycyclic development of the geological history in China.This paper is con-cemed with one sub-type of such deposits.  相似文献   

17.
The eastern Lachlan Orogen in southeastern Australia is noted for its major porphyry–epithermal–skarn copper–gold deposits of late Ordovician age. Whilst many small quartz vein-hosted or orogenic lode-type gold deposits are known in the region, the discovery of the Wyoming gold deposits has demonstrated the potential for significant lode-type mineralisation hosted within the same Ordovician volcanic stratigraphy. Outcrop in the Wyoming area is limited, with the Ordovician sequence largely obscured by clay-rich cover of probable Quaternary to Cretaceous age with depths up to 50 m. Regional aeromagnetic data define a north–south trending linear belt interpreted to represent the Ordovician andesitic volcanic rock sequence within probable Ordo-Silurian pelitic metasedimentary rocks. Drilling through the cover sequence in 2001 to follow up the trend of historically reported mineralisation discovered extensive alteration and gold mineralisation within an andesitic feldspar porphyry intrusion and adjacent volcaniclastic sandstones and siltstones. Subsequent detailed resource definition drilling has identified a substantial mineralised body associated with sericite–carbonate–albite–quartz–(±chlorite ± pyrite ± arsenopyrite) alteration. The Wyoming deposits appear to have formed as the result of a rheological contrast between the porphyry host and the surrounding volcaniclastic rocks, with the porphyry showing brittle fracture and the metasedimentary rocks ductile deformation. The mineralisation at Wyoming bears many petrological and structural similarities to orogenic lode-style gold deposits. Although the timing of alteration and mineralisation in the Wyoming deposits remain problematic, a relationship with possible early to middle Devonian deformation is considered likely.  相似文献   

18.
Komatiite-hosted disseminated Ni sulphide deposits in the Agnew-Wiluna greenstone belt occur both above and below the olivine isograd that was imposed on the greenstone sequence during the M2 metamorphic/deformation event. Deposits in the northern and central part of the belt and that are located below the isograd (Mount Keith, Honeymoon Well and West Jordan) have complex sulphide mineralogy and strongly zoned sulphide assemblages. These range from least-altered assemblages of pentlandite-pyrrhotite-chalcopyrite±pyrite to altered assemblages of pentlandite±chalcopyrite, pentlandite-heazlewoodite (or millerite), heazlewoodite (or millerite), and rarely to heazlewoodite-native Ni. Deposits to the south and that are above of the olivine isograd (Six Mile, Goliath North) are dominated by less complex magmatic assemblages with a lower proportion of weakly altered pentlandite±chalcopyrite assemblages. More altered assemblages are uncommon in these deposits and occur as isolated patches around the periphery of the deposits. The sulphide zonation is reflected by whole-rock reductions in S, Cu, Fe and Zn, whereas Ni, Pt and Pd and, with some exceptions, Co are conservative. The leaching of S, Cu, Fe and Zn from sulphide assemblages and the whole rock was initiated by highly reduced conditions that were produced during low fluid/rock ratio serpentinization. Consumption of H2O resulted in Cl, a component of the fluid, being concentrated sufficiently to stabilise iowaite as part of lizardite-rich assemblages. Once the rate of olivine hydration reactions declined and during and after expansion and associated fracturing of the ultramafic sequence allowed higher fluid access, a more fluid-dominated environment formed and new carbonate-bearing fluid gained access to varying extents to the ultramafic rock sequence. This drove Cl from iowaite (to form pyroaurite) and caused the sulphide assemblages to be altered from the original magmatic assemblages and compositions to those stable at the prevailing fO2 and fS2 conditions. Mass transfer was made possible via metal chloride complexes and H2S with fluids driven by deformation associated with the M2 metamorphism. Disseminated deposits in higher metamorphic grade terrains where olivine was stable during peak metamorphism did not undergo the metasomatism seen in the deposits in areas of lower metamorphic grade. Some minor leaching of S, Fe and Cu occurred around the periphery of the deposits during early, pre-M2 peak metamorphism, but once olivine stability was reached the driving force for the series of leaching reactions was exhausted. The effect of this process on the original magmatic sulphides is to induce significant variability in texture, mineralogy and bulk composition and to markedly reduce the Fe and S contents of the sulphide fraction (in extreme cases to zero for both elements), and to reduce the volume of the sulphide fraction per unit of Ni. These changes impact unfavourably on Ni sulphide recoveries and metallurgical characteristics of these Ni ores.  相似文献   

19.
20.
武广  陈毓川  陈衍景 《岩石学报》2010,26(12):3683-3695
哈萨克斯坦北东天山地区是中亚造山带重要的浅成低温热液型金矿床产出地区,但其成矿年代学研究非常薄弱。为确定成矿时代,作者运用高精度激光40Ar/39Ar定年法对阿尔哈尔雷金矿床和乌仁科布拉克金矿床的赋矿围岩进行了年龄测定。获得阿尔哈尔雷金矿床安山岩样品20个点40Ar/39Ar等时线年龄为304±7Ma(MSWD=6),乌仁科布拉克金矿床安山玄武岩样品21个点40Ar/39Ar等时线年龄为280±6Ma(MSWD=2.4),表明哈萨克斯坦北东天山地区浅成低温热液型金矿床主要形成于晚石炭世末期-早二叠世。初步的岩石学、地球化学研究表明,哈萨克斯坦北东天山地区晚石炭世末期-二叠纪火山岩主要为流纹岩、粗安岩、玄武粗安岩、玄武安山岩、粗面玄武岩和玄武岩,具双峰式特征,主体属于高钾钙碱性和橄榄玄粗岩系列。哈萨克斯坦北东天山地区晚石炭世末期浅成低温热液型金矿床形成于碰撞晚期向裂谷的转换阶段,而二叠纪浅成低温热液型金矿床产出于陆内裂谷环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号