首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Based on dynamical energy transport and thermodynamic energy balance in the earth’s atmosphere-ocean system a steady two-dimensional climate model with residual circulation is proposed. In the model, we include some important physical processes with feedbacks such as ice caps-albedo, water vapor-tempera-ture, etc. The simulated steady temperature field is very close to that of the real atmosphere. The numerical experiments show that doubling of the atmospheric carbon dioxide results in temperature increase of 1~2oC at the low latitude surface and 6~8oC at the high latitude surface. It is shown that a 6% decrease in the solar constant is required for the -10oC ice edge to move from its present latitude ~70o to~50o.  相似文献   

2.
Based on dynamical energy transport and thermodynamic energy balance in the earth's atmosphere-ocean system a steady two-dimensional climate model with residual circulation is proposed. In the model, we include some important physical processes with feedbacks such as ice caps-albedo, water vapor-temperature, etc. The simulated steady temperature field is very close to that of the real atmosphere. The numerical experiments show that doubling of the atmospheric carbon dioxide results in temperature increase of 1-2℃ at the low latitude surface and 6-8℃ at the high latitude surface. It is shown that a 6% decrease in the solar constant is required for the - 10℃ ice edge to move from its present latitude -70° to-50°.  相似文献   

3.
A control integration with the normal solar constant and one with it increased by 2.5% in the National Center for Atmospheric Research (NCAR) coupled atmosphere-ocean Climate System Model were conducted to see how well the actual realized global warming could be predicted just by analysis of the control results. This is a test, within a model context, of proposals that have been advanced to use knowledge of the present day climate to make "empirical" estimates of global climate sensitivity. The scaling of the top-of-the-atmosphere infrared flux and the planetary albedo as functions of surface temperature was inferred by examining four different temporal and geographical variations of the control simulations. Each of these inferences greatly overestimates the climate sensitivity of the model, largely because of the behavior of the cloud albedo. In each inference the control results suggest that cloudiness and albedo decrease with increasing surface temperature. However, the experiment with the increased solar constant actually has higher albedo and more cloudiness at most latitudes. The increased albedo is a strong negative feedback, and this helps account for the rather weak sensitivity of the climate in the NCAR model. To the extent that these model results apply to the real world, they suggest empirical evaluation of the scaling of global-mean radiative properties with surface temperature in the present day climate provides little useful guidance for estimates of the actual climate sensitivity to global changes.  相似文献   

4.
The temperature anomaly and dust concentrations recorded from central Antarctic ice core records display a strong negative correlation. The dust concentration recorded from an ice core in central Antarctica is 50-70 times higher during glacial periods than interglacial periods. This study investigated the impact of dust aerosol on glacial-interglacial climate, using a zonal energy balance model and dust concentration data from an Antarctica ice core. Two important effects of dust, the direct radiative effect and dust-albedo feedback, were considered. On the one hand, the direct radiative effect of dust significantly cooled the climate during the glacial period, with cooling during the last glacial maximum being as much as 2.05℃ in Antarctica. On the other hand, dust deposition onto the ice decreased the surface albedo over Antarctica, leading to increased absorption of solar radiation, inducing a positive feedback that warmed the region by as much as about 0.9℃ during the glacial period. However, cooling by the direct dust effect was found to be the controlling effect for the glacial climate and may be the major influence on the strong negative correlation between temperature and dust concentration during glacial periods.  相似文献   

5.
Transfer of radiation through cirrus consistingofnon-sphericalice crystals randomly oriented in a plane (2D model) is solved by using the discrete-ordinates method. The model is employed to determine the radiative flux properties and the intensity distribution of cirrus for both solar and thermal infrared radiation. Comparison of the 2D cloud model with the conventional 3D cloud model, i.e., randomly oriented in a three-dimensional space, shows that the preferential orientation of ice crystals has a substantial effect on the cloud solar albedo. The difference in the cloud albedo computed from the two models can be as large as 8% for a cirrus of 2 km chicknss. On the thermal infrared side, although the flux emission for cirrus is less affected by the orientation of ice crystals, the difference in the upward radiance using 2D and 3D models is also significant.  相似文献   

6.
The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGCM2.0.1) developed by the National Climate Center(NCC) of the China Meteorological Administration(CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m 2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m 2.The global annual mean surface temperature increased 0.071 C due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter(spring) increased by 0.83 C(0.6 C) and 0.83 C(0.46 C),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic.However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.  相似文献   

7.
A simplified two-dimensional energy balance climate model including the solar and infrared radiation transports, the turbulent exchanges of heat in vertical and horizontal directions and the ice caps-albedo feedback is developed The solutions show that if the atmosphere is considered as a grey body and the grey coefficient depends upon the distributions of absorption medium and cloudiness, both horizontal and vertical distributions of temperature are identical to the observation.On the other hand, comparing the models that the atmosphere is considered as a grey body with ones that the infrared radiation is parameterized as a linear function of temperature, as was considered by Budyko, Sellers(1969), then the results show that even though both of them can obtain the earth's surface temperature in agreement with the observation, the sensitiv ity of the climate to the changes of solar constant is very different. In the former case,the requirement for the ice edge to move southward from the normal 72°N to  相似文献   

8.
The combination of field experiments and satellite observations is the fundamental way tounderstand the characteristics of spatial-temporal variation in surface albedo over the Tibetan(Qinghai-Xizang) Plateau. Under the condition without snow cover, the relatively regular annualvariation cycle of the surface albedo can be expressed by an empirical formula. The effect of snowcover on the surface albedo in winter can be expressed by introducing two variables of snow forcingand sensitivity parameter. The existing satellite retrieved results of surface albedo may provide thedigital grid data for describing the geographical distribution. However, some satellite retrievedsurface albedos available over the Tibetan Plateau are obviously too low in winter. Taking thesatellite derived results in summer as the background field representative of geographicaldistribution and combining the empirical formula of annual cycle based on the surface observations,a dynamic model of surface albedo is developed for the need of modeling the climatic influence ofthe underlying surface forcing of the Tibetan Plateau.  相似文献   

9.
Variations in wave energy and amplitude for Rossby waves are investigated by solving the wave energy equation for the quasigeostrophic barotropic potential vorticity model.The results suggest that compared with rays in the nondivergent barotropic model,rays in the divergent model can have enhanced meridional and zonal propagation,accompanied by a more dramatic variability in both wave energy and amplitude,which is caused by introducing the divergence effect of the free surface in the quasigeostrophic model.For rays propagating in a region enclosed by a turning latitude and a critical latitude,the wave energy approaches the maximum value inside the region,while the amplitude approaches the maximum at the turning latitude.Waves can develop when both the wave energy and amplitude increase.For rays propagating in a region enclosed by two turning latitudes,the wave energy approaches the minimum value at one turning latitude and the maximum value at the other latitude,while the total wavenumber approaches the maximum value inside the region.The resulting amplitude increases if the total wavenumber decreases or the wave energy increases more significantly and decreases if the total wavenumber increases or the wave energy decreases more significantly.The matched roles of the energy from the basic flow and the divergence of the group velocity contribute to the slightly oscillating wave energy,which causes a slightly oscillating amplitude as well as the slightly oscillating total wavenumber.  相似文献   

10.
Accurate estimates of albedos are required in climate modeling. Accurate and simple schemes for radiative transfer within canopy are required for these estimates, but severe limitations exist. This paper developed a four-stream solar radiative transfer model and coupled it with a land surface process model. The radiative model uses a four-stream approximation method as in the atmosphere to obtain analytic solutions of the basic equation of canopy radiative transfer. As an analytical model, the four-stream radiative transfer model can be easily applied efficiently to improve the parameterization of land surface radiation in climate models. Our four-stream solar radiative transfer model is based on a two-stream short wave radiative transfer model. It can simulate short wave solar radiative transfer within canopy according to the relevant theory in the atmosphere. Each parameter of the basic radiative transfer equation of canopy has special geometry and optical characters of leaves or canopy. The upward or downward radiative fluxes are related to the diffuse phase function, the G-function, leaf reflectivity and transmission, leaf area index, and the solar angle of the incident beam. The four-stream simulation is compared with that of the two-stream model. The four-stream model is proved successful through its consistent modeling of canopy albedo at any solar incident angle. In order to compare and find differences between the results predicted by the four- and two-stream models, a number of numerical experiments are performed through examining the effects of different leaf area indices, leaf angle distributions, optical properties of leaves, and ground surface conditions on the canopy albedo. Parallel experiments show that the canopy albedos predicted by the two models differ significantly when the leaf angle distribution is spherical and vertical. The results also show that the difference is particularly great for different incident solar beams. One additional experiment is carried out to evaluate the simulations of the BATS land surface model coupled with the two- and four-stream radiative transfer models. Station observations in 1998 are used for comparison. The results indicate that the simulation of BATS coupled with the four-stream model is the best because the surface absorbed solar radiation from the four-stream model is the closest to the observation.  相似文献   

11.
本文利用简单的一维能量平衡模拟全球冰雪面积增减,太阳常数增减,地面反照率增减,大气中二氧化碳浓度增减以及气溶胶浓度增减等对全球温度的影响。同时还模拟多个因子综合对冰河期的影响。敏感试验给出各种自然变化和人类活动对全球温度影响的可能的数值结果,从而为保护大气与环境提供一定参考数据。  相似文献   

12.
We have conducted a multi-model intercomparison of cloud-water in five state-of-the-art AGCMs run for control and doubled carbon dioxide climates. The most notable feature of the differences between the control and doubled carbon dioxide climates is in the distribution of cloud-water in the mixed-phase temperature band. The difference is greatest at mid and high latitudes. We found that the amount of cloud ice in the mixed phase layer in the control climate largely determines how much the cloud-water distribution changes for the doubled carbon dioxide climate. Therefore evaluation of the cloud ice distribution by comparison with data is important for future climate sensitivity studies. Cloud ice and cloud liquid both decrease in the layer below the melting layer, but only cloud liquid increases in the mixed-phase layer. Although the decrease in cloud-water below the melting layer occurs at all latitudes, the increase in cloud liquid in the mixed-phase layer is restricted to those latitudes where there is a large amount of cloud ice in the mixed-phase layer. If the cloud ice in the mixed-phase layer is concentrated at high latitudes, doubling of carbon dioxide might shift the center of cloud water distribution poleward which could decrease solar reflection because solar insolation is less at higher latitude. The magnitude of this poleward shift of cloud water appears to be larger for the higher climate sensitivity models, and it is consistent with the associated changes in cloud albedo forcing. For the control climate there is a clear relationship between the differences in cloud-water and relative humidity between the different models, for both magnitude and distribution. On the other hand the ratio of cloud ice to cloud-water follows the threshold temperature which is determined in each model. Improved measurements of relative humidity could be used to constrain the modeled representation of cloud water. At the same time, comparative analysis in global cloud resolving model simulations is necessary for further understanding of the relationships suggested in this paper.  相似文献   

13.
G J Boer 《Climate Dynamics》1993,8(5):225-239
The increase in the vigor of the hydrological cycle simulated in a 2 × CO2 experiment with the Canadian Climate Centre general circulation model is smaller than that obtained by other models which have similar increases in mean surface temperature. The surface energy budget, which encompasses also the moisture budget for the oceans, is analyzed. Changes in the net radiative input to and sensible heat flux from the surface act to warm it. This is balanced, at the new equilibrium, by a change in the latent heat flux which acts to cool it. Although this same general behavior is seen in other models, the increase in radiative input to the surface in the CCC GCM is smaller than in other models while the change in the sensible heat flux is of similar size. As a consequence, the latent heat flux required for balance is smaller. The comparatively small increase in the net radiative input at the surface occurs because of a decrease in the solar component. On average the decrease in solar input in the tropical region outweighs the higher latitude increase associated with the snow/ice albedo feedback. The notable tropical decrease in solar input occurs because the albedo of the clouds increase enough in this region to outweigh a small decrease in cloud amount. The increase in cloud albedo in the warmer and moister tropical atmosphere is a consequence of the parameterized cloud optical properties in the model which play an important role in the regulation of the surface energy and moisture budgets. The results demonstrate some of the consequences of the negative feedback mechanism associated with increasing cloud albedo in the model. They also suggest that the simulated change in the vigor of the hydrological cycle is not a simple function of the average increase in surface temperature but is a consequence of all of the processes in the model which control the available energy at the surface as a function of latitude.  相似文献   

14.
A seasonal energy balance climate model containing a detailed treatment of surface and planetary albedo, and in which seasonally varying land snow and sea ice amounts are simulated in terms of a number of explicit physical processes, is used to investigate the role of high latitude ice, snow, and vegetation feedback processes. Feedback processes are quantified by computing changes in radiative forcing and feedback factors associated with individual processes. Global sea ice albedo feedback is 5–8 times stronger than global land snowcover albedo feedback for a 2% solar constant increase or decrease, with Southern Hemisphere cryosphere feedback being 2–5 times stronger than Northern Hemisphere cryosphere feedback.In the absence of changes in ice extent, changes in ice thickness in response to an increase in solar constant are associated with an increase in summer surface melting which is exactly balanced by increased basal winter freezing, and a reduction in the upward ocean-air flux in summer which is exactly balanced by an increased flux in winter, with no change in the annual mean ocean-air flux. Changes in the mean annual ocean-air heat flux require changes in mean annual ice extent, and are constrained to equal the change in meridional oceanic heat flux convergence in equilibrium. Feedback between ice extent and the meridional oceanic heat flux obtained by scaling the oceanic heat diffusion coefficient by the ice-free fraction regulates the feedback between ice extent and mean annual air-sea heat fluxes in polar regions, and has a modest effect on model-simulated high latitude temperature change.Accounting for the partial masking effect of vegetation on snow-covered land reduces the Northern Hemisphere mean temperature response to a 2% solar constant decrease or increase by 20% and 10%, respectively, even though the radiative forcing change caused by land snowcover changes is about 3 times larger in the absence of vegetational masking. Two parameterizations of the tundra fraction are tested: one based on mean annual land air temperature, and the other based on July land air temperature. The enhancement of the mean Northern Hemisphere temperature response to solar constant changes when the forest-tundra ecotone is allowed to shift with climate is only 1/3 to 1/2 that obtained by Otterman et al. (1984) when the mean annual parameterization is used here, and only 1/4 to 1/3 as large using the July parameterization.The parameterized temperature dependence of ice and snow albedo is found to enhance the global mean temperature response to a 2% solar constant increase by only 0.04 °C, in sharp contrast to the results of Washington and Meehl (1986) obtained with a mean annual model. However, there are significant differences in the method used here and in Washington and Meehl to estimate the importance of this feedback process. When their approach is used in a mean annual version of the present model, closer agreement to their results is obtained.  相似文献   

15.
陈英仪 《气象学报》1982,40(2):175-184
本文应用一个非定常的二维能量平衡气候模式,用数值解方法研究了极冰-温度-反照率的反馈对气候的影响问题。计算表明,定常解是确实存在的。与国外一维模式的结果不同,对应于观测的太阳常数,只能得到唯一的现在气候解。若出现小冰河期(即冰界在50°N左右),则太阳常数要比现在的值减小17%左右。同时发现各种参数值即使改变±20%,这种冰界纬度对太阳常数的变化也不敏感。这表明,现代气候对于太阳常数的变化,是处于相当稳定的状态,而气候状态对参数的依赖性,以热量的垂直湍流交换系数和对辐射的吸收系数为最重要。这也说明了能量的垂直输送过程在决定气候状态中是起重要作用的,而这恰好是国外一维能量平衡模式所没有考虑的过程,因而必然会得到不同的结论。  相似文献   

16.
Results from a two-dimensional energy balance model with a realistic land-ocean distribution show that the small ice cap instability exists in the Southern Hemisphere, but not in the Northern Hemisphere. A series of experiments with a one-dimensional energy balance model with idealized geography are used to study the roles of the seasonal cycle and the land-ocean distribution. The results indicate that the seasonal cycle and land-ocean distribution can influence the strength of the albedo feedback, which is responsible for the small ice cap instability, through two factors: the temperature gradient and the amplitude of the seasonal cycle. The land-ocean distribution in the Southern Hemisphere favors the small ice cap instability, while the land-ocean distribution in the Northern Hemisphere does not. Because of the longitudinal variations of land-ocean distribution in the Northern Hemisphere, the behavior of ice lines in the Northern Hemisphere cannot be simulated and explained by the model with zonally symmetric land-ocean distribution. Model results suggest that the small ice cap instability may be a possible mechanism for the formation of the Antarctic icesheet. The model results cast doubt, however, on the role of the small ice cap instability in Northern Hemisphere glaciations. Offprint requests to: J Huang  相似文献   

17.
We use a seasonal energy balance climate model to study the behavior of the snowline cycle as a function of external parameters such as the solar constant. Our studies are confined in this study to cases with zonally symmetric land-sea distributions (bands or caps of land). The model is nonlinear in that the seasonally varying snow/sea ice line modifies the energy receipt through its different albedo from open land or water. The repeating steady-state seasonal cycle of the model is solved by a truncated Fourier series in time. This method is several thousand times faster than a time stepping approach. The results are interesting in that a number of bifurcations in the snowline behavior are found and studied for various geographies. Polar land caps and land bands positioned near the poles exhibit a variety of discontinuous summer snow cover behaviors (abrupt transitions as a parameter such as solar constant is slowly varied), which may be relevant to the inception and decay of continental ice sheets.  相似文献   

18.
Summary Measurements of the surface heat budget were conducted on an ice cap in the Andes of Southern Peru at 5645 m during an expedition in July 1977. Because of the high surface albedo, net software radiative gain is nearly offset by the longwave loss in the average over the diurnal cycle. The diurnal temperature wave has at the surface an amplitude of about 5°C, and by 50 cm depth this is nearly dampened out. During the day, the shortwave radiative gain is in part used to balance the longwave loss, some heat is stored in the top snow layer and lost by sensible heat transfer to the overlying atmosphere, and the greater part fuels the sublimation. At night, the longwave radiative loss is not completely compensated by heat depletion and downward directed sensible heat transfer. This deficit is made up by the downward transfer of latent heat, resulting in heat release at the surface and deposition. Regarding the mass balance, the nighttime deposition approximately cancels the daytime sublimation. At lower elevations of the ice cap, albedo is much less, allowing larger absorption of solar radiation. As a consequence, more energy is available for ablation. Melting occurs during the day, so that re-freezing and concurrent latent heat release can help to compensate the longwave radiative loss at night.With 4 Figures  相似文献   

19.
为了理解行星反照率时空变化规律及成因,基于CERES数据对全球行星反照率的大气(主要为云与气溶胶等)和地表贡献进行了分解,通过Theil-Sen+Mann-Kendall方法得到了2001~2018年全球行星反照率及其大气和地表贡献的时空变化趋势,并基于回归分析方法对典型区域的变化趋势进行了初步解释.研究结果表明:1)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号