首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
Based on the atmospheric analogy principle, the inverse problem that the information of historical analogue data is utilized to estimate model errors is put forward and a method of analogue correction of errors (ACE) of model is developed in this paper. The ACE can combine effectively statistical and dynamical methods, and need not change the current numerical prediction models. The new method not only adequately utilizes dynamical achievements but also can reasonably absorb the information of a great many analogues in historical data in order to reduce model errors and improve forecast skill. Furthermore, the ACE may identify specific historical data for the solution of the inverse problem in terms of the particularity of current forecast. The qualitative analyses show that the ACE is theoretically equivalent to the principle of the previous analogue-dynamical model, but need not rebuild the complicated analogue-deviation model, so has better feasibility and operational foreground. Moreover, under the ideal situations, when numerical models or historical analogues are perfect, the forecast of the ACE would transform into the forecast of dynamical or statistical method, respectively.  相似文献   

2.
In this study, a method of analogue-based correction of errors(ACE) was introduced to improve El Ni?o-Southern Oscillation(ENSO) prediction produced by climate models. The ACE method is based on the hypothesis that the flow-dependent model prediction errors are to some degree similar under analogous historical climate states, and so the historical errors can be used to effectively reduce such flow-dependent errors. With this method, the unknown errors in current ENSO predictions can be empirically estimated by using the known prediction errors which are diagnosed by the same model based on historical analogue states. The authors first propose the basic idea for applying the ACE method to ENSO prediction and then establish an analogue-dynamical ENSO prediction system based on an operational climate prediction model. The authors present some experimental results which clearly show the possibility of correcting the flow-dependent errors in ENSO prediction, and thus the potential of applying the ACE method to operational ENSO prediction based on climate models.  相似文献   

3.
Since the last International Union of Geodesy and Geophysics General Assembly(2003),predictability studies in China have made significant progress.For dynamic forecasts,two novel approaches of conditional nonlinear optimal perturbation and nonlinear local Lyapunov exponents were proposed to cope with the predictability problems of weather and climate,which are superior to the corresponding linear theory.A possible mechanism for the"spring predictability barrier"phenomenon for the El Ni(?)o-Southern Oscillation (ENSO)was provided based on a theoretical model.To improve the forecast skill of an intermediate coupled ENSO model,a new initialization scheme was developed,and its applicability was illustrated by hindcast experiments.Using the reconstruction phase space theory and the spatio-temporal series predictive method, Chinese scientists also proposed a new approach to improve dynamical extended range(monthly)prediction and successfully applied it to the monthly-scale predictability of short-term climate variations.In statistical forecasts,it was found that the effects of sea surface temperature on precipitation in China have obvious spatial and temporal distribution features,and that summer precipitation patterns over east China are closely related to the northern atmospheric circulation.For ensemble forecasts,a new initial perturbation method was used to forecast heavy rain in Guangdong and Fujian Provinces on 8 June 1998.Additionally, the ensemble forecast approach was also used for the prediction of a tropical typhoons.A new downscaling model consisting of dynamical and statistical methods was provided to improve the prediction of the monthly mean precipitation.This new downsealing model showed a relatively higher score than the issued operational forecast.  相似文献   

4.
This paper summarizes recent progress at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences in studies on targeted observations, data assimilation, and ensemble prediction, which are three effective strategies to reduce the prediction uncertainties and improve the forecast skill of weather and climate events. Considering the limitations of traditional targeted observation approaches, LASG researchers have developed a conditional nonlinear optimal perturbation-based targeted observation strategy to optimize the design of the observing network. This strategy has been employed to identify sensitive areas for targeted observations of the El Ni?o–Southern Oscillation, Indian Ocean dipole, and tropical cyclones, and has been demonstrated to be effective in improving the forecast skill of these events. To assimilate the targeted observations into the initial state of a numerical model, a dimension-reducedprojection-based four-dimensional variational data assimilation(DRP-4DVar) approach has been proposed and is used operationally to supply accurate initial conditions in numerical forecasts. The performance of DRP-4DVar is good, and its computational cost is much lower than the standard 4DVar approach. Besides, ensemble prediction,which is a practical approach to generate probabilistic forecasts of the future state of a particular system, can be used to reduce the prediction uncertainties of single forecasts by taking the ensemble mean of forecast members. In this field, LASG researchers have proposed an ensemble forecast method that uses nonlinear local Lyapunov vectors(NLLVs) to yield ensemble initial perturbations. Its application in simple models has shown that NLLVs are more useful than bred vectors and singular vectors in improving the skill of the ensemble forecast. Therefore, NLLVs represent a candidate for possible development as an ensemble method in operational forecasts. Despite the considerable efforts made towards developing these methods to reduce prediction uncertainties, much challenging but highly important work remains in terms of improving the methods to further increase the skill in forecasting such weather and climate events.  相似文献   

5.
It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic(or single) forecasts. However, few studies have focused on quantifying the relationship between their forecast errors, especially in individual prediction cases. Clarification of the characteristics of deterministic and ensemble mean forecasts from the perspective of attractors of dynamical systems has also rarely been involved. In this paper, two attractor statistics—namely, the global and local attractor radii(GAR and LAR, respectively)—are applied to reveal the relationship between deterministic and ensemble mean forecast errors. The practical forecast experiments are implemented in a perfect model scenario with the Lorenz96 model as the numerical results for verification. The sample mean errors of deterministic and ensemble mean forecasts can be expressed by GAR and LAR, respectively, and their ratio is found to approach2~(1/2) with lead time. Meanwhile, the LAR can provide the expected ratio of the ensemble mean and deterministic forecast errors in individual cases.  相似文献   

6.
This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-dimensional data assimilation system for the Weather Research and Forecast (WRF) model (WRF 3D-Var). The TAMDAR data assimilation capability is added to WRF 3D-Var by incorporating the TAMDAR observation operator and corresponding observation processing procedure. Two 6-h cycling data assimilation and forecast experiments are conducted. Track and intensity forecasts are verified against the best track data from the National Hurricane Center. The results show that, on average, assimilating TAMDAR observations has a positive impact on the forecasts of hurricane Ike. The TAMDAR data assimilation reduces the track errors by about 30 km for 72-h forecasts. Improvements in intensity forecasts are also seen after four 6-h data assimilation cycles. Diagnostics show that assimilation of TAMDAR data improves subtropical ridge and steering flow in regions along Ike’s track, resulting in better forecasts.  相似文献   

7.
Tropical cyclone (TC) genesis forecasting is essential for daily operational practices during the typhoon season.The updated version of the Tropical Regional Atmosphere Model for the South China Sea (CMA-TRAMS) offersforecasters reliable numerical weather prediction (NWP) products with improved configurations and fine resolution. Whiletraditional evaluation of typhoon forecasts has focused on track and intensity, the increasing accuracy of TC genesisforecasts calls for more comprehensive evaluation methods to assess the reliability of these predictions. This study aims toevaluate the effectiveness of the CMA-TRAMS for cyclogenesis forecasts over the western North Pacific and South ChinaSea. Based on previous research and typhoon observation data over five years, a set of localized, objective criteria has beenproposed. The analysis results indicate that the CMA-TRAMS demonstrated superiority in cyclogenesis forecasts, pre dicting 6 out of 22 TCs with a forecast lead time of up to 144 h. Additionally, over 80% of the total could be predicted 72 hin advance. The model also showed an average TC genesis position error of 218.3 km, comparable to the track errors ofoperational models according to the annual evaluation. The study also briefly investigated the forecast of Noul (2011). Theforecast field of the CMA-TRAMS depicted thermal and dynamical conditions that could trigger typhoon genesis, con sistent with the analysis field. The 96-hour forecast field of the CMA-TRAMS displayed a relatively organized three dimensional structure of the typhoon. These results can enhance understanding of the mechanism behind typhoon genesis,fine-tune model configurations and dynamical frameworks, and provide reliable forecasts for forecasters.  相似文献   

8.
Predicting the intensity of tropical cyclones(TCs)is challenging in operational weather prediction systems,partly due to the difficulty in defining the initial vortex.In an attempt to solve this problem,this study investigated the effect of initial vortex intensity correction on the prediction of the intensity of TCs by the operational numerical prediction system GRAPES_TYM(Global and Regional Assimilation and Prediction System_Typhoon Model)of the National Meteorological Center of the China Meteorological Administration.The statistical results based on experiments using data for major TCs in 2018 show that initial vortex intensity correction can reduce the errors in mean intensity for up to 120-h integration,with a noticeable decrease in the negative bias of intensity and a slight increase in the mean track error.The correction leads to an increase in the correlation coefficient of Vmax(maximum wind speed at 10-m height)for the severe typhoon and super typhoon stages.Analyses of the errors in intensity at different stages of intensity(including tropical storms,severe tropical storms,typhoons,severe typhoons,and super typhoons)show that vortex intensity correction has a remarkable positive influence on the prediction of super typhoons from 0 to 120h.Analyses of the errors in intensity for TCs with different initial intensities indicate that initial vortex correction can significantly improve the prediction of intensity from 24 to 96 h for weak TCs(including tropical storms and severe tropical storms at the initial time)and up to 24 h for strong TCs(including severe typhoons and super typhoons at the initial time).The effect of the initial vortex intensity correction is more important for developing TCs than for weakening TCs.  相似文献   

9.
Large-scale atmospheric information plays an important role in the regional model for the forecasts of weather such as tropical cyclone (TC). However, it is difficult to be fully represented in regional models due to domain size and a lack of observation data, particularly at sea used in regional data assimilation. Blending analysis has been developed and implemented in regional models to reintroduce large-scale information from global model to regional analysis. Research of the impact of this large-scale blending scheme for the Global / Regional Assimilation and PrEdiction System (CMA-MESO) regional model on TC forecasting is limited and this study attempts to further progress by examining the adaptivity of the blending scheme using the two-dimensional Discrete Cosine Transform (2D-DCT) filter on the model forecast of Typhoon Haima over Shenzhen, China in 2016 and considering various cut-off wavelengths. Results showed that the error of the 24-hour typhoon track forecast can be reduced to less than 25 km by applying the scale-dependent blending scheme, indicating that the blending analysis is effectively able to minimise the large-scale bias for the initial fields. The improvement of the wind forecast is more evident for u-wind component according to the reduced root mean square errors (RMSEs) by comparing the experiments with and without blending analysis. Furthermore, the higher equitable threat score (ETS) provided implications that the precipitation prediction skills were increased in the 24h forecast by improving the representation of the large-scale feature in the CMA-MESO analysis. Furthermore, significant differences of the track error forecast were found by applying the blending analysis with different cut-off wavelengths from 400 km to 1200 km and the track error can be reduced less than by 10 km with 400 km cut-off wavelength in the first 6h forecast. It highlighted that the blending scheme with dynamic cut-off wavelengths adapted to the development of different TC systems is necessary in order to optimally introduce and ingest the large-scale information from global model to the regional model for improving the TC forecast. In this paper, the methods and data applied in this study will be firstly introduced, before discussion of the results regarding the performance of the blending analysis and its impacts on the wind and precipitation forecast correspondingly, followed by the discussion of the effects of different blending scheme on TC forecasts and the conclusion section.  相似文献   

10.
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOPtype errors, we find that for the normal states and the relatively weak E1 Nifio events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong E1 Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of E1 Nifio in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.  相似文献   

11.
数值预报中自由度的压缩及误差相似性规律   总被引:2,自引:2,他引:2       下载免费PDF全文
利用历史资料的有用信息提高数值模式预报水平是长期以来人们努力的目标。该文提出了一种在气候吸引子上缩小初始场自由度的相似选取方法,有效滤除了小尺度分量,避开了原有相似选取中自由度太大,相似选取困难的问题。分析表明:相似初值间的模式预报误差存在相似性,依此估计的预报误差与实际预报误差很接近。在空间分布特征上,相似初值间的模式预报误差也有很好的一致性。这为发展相似-动力方法,利用历史资料改进数值模式提供了支持。  相似文献   

12.
Based on the National Climate Center (NCC) of China operational seasonal prediction model results for the period 1983–2009 and the US National Weather Service Climate Prediction Center merged analysis of precipitation in the same period, together with the 74 circulation indices of NCC Climate System Diagnostic Division and 40 climate indices of NOAA of US during 1951–2009, an analogue-dynamical technique for objective and quantitative prediction of monsoon precipitation in Northeast China is proposed and implemented. Useful information is extracted from the historical data to estimate the model forecast errors. Dominant predictors and the predictors that exhibit evolving analogues are identified through cross validating the anomaly correlation coefficients (ACC) among single predictors, meanwhile with reference of the results from the dynamic analogue bias correction using four analogue samples. Next, an optimal configuration of multiple predictors is set up and compared with historical optimal multi-predictor configurations and then dynamically adjusted. Finally, the model errors are evaluated and utilized to correct the NCC operational seasonal prediction model results, and the forecast of monsoon precipitation is obtained at last. The independent sample validation shows that this technique has effectively improved the monsoon precipitation prediction skill during 2005–2009. This study demonstrates that the analogue-dynamical approach is feasible in operational prediction of monsoon precipitation.  相似文献   

13.
最优多因子动态配置的东北汛期降水相似动力预报试验   总被引:4,自引:0,他引:4  
基于中国气象局国家气候中心季节预报业务模式27a(1983—2009年)预报结果和同期美国气候预报中心组合降水分析(CMAP)资料及国家气候中心气候系统诊断预报室74项环流指数和NOAA40个气候指数(1951—2009年),提出了客观定量化的最优多因子动态配置汛期降水相似-动力预测新技术,并对中国东北地区汛期降水进行了预报试验。利用历史资料有用信息估算模式预报误差原理,选取4个历史相似年对应模式误差来估算当前模式预报误差。通过单因子交叉检验距平相关系数确定主导因子及演化相似因子,结合当前及前期优化多因子组合配置确定预报因子集,最后利用历史相似年对应模式误差来估算当前模式预报误差并订正国家气候中心季节预报业务模式的预报结果,得到预报的汛期降水。对2005—2009年进行独立样本检验的结果表明,此技术对中国东北地区汛期降水有一定预报技巧。证实了利用历史资料估计业务模式预报误差的另类途径是可行的,显示了在业务预报应用中的潜在能力。  相似文献   

14.
在动力相似预报中引入多个参考态的更新   总被引:7,自引:2,他引:7  
任宏利  丑纪范 《气象学报》2006,64(3):315-324
针对如何更有效地利用历史资料中的相似信息提高预报水平的问题,在已有相似-动力模式研究基础上,进一步探讨了相似误差订正方法(ACE)的若干理论和技术问题,分析表明,ACE是对以相似离差方程和相似误差订正方程为理论依据的方法的再发展。在此基础上,提出了相似的更新问题和多个参考态的引入,并进而发展出一种考虑多参考态更新的动力相似预报新方法(MRSU)。这一方法通过引入相似更新周期的新概念,在预报进行到相似更新周期时重新选取多个参考态,并采用超平面近似法将相似-动力模式产生的多个预报估计成最佳预报向量,这样的“选取-估计”过程循环往复,从而完成整个时段的预报。Lorenz模式试验显示,相比于以往的相似-动力模式预报,MRSU能更有效减小预报误差,提高预报技巧,并且,ACE的理论优势应用前景也被初步证实。综合诸多研究结果,给出了MRSU的概念流程,这里针对复杂数值模式采用了ACE,能够等价实现相似-动力模式预报过程,无需重建模式,更易于推广。  相似文献   

15.
统计-动力相结合的相似误差订正法   总被引:28,自引:6,他引:22  
任宏利  丑纪范 《气象学报》2005,63(6):988-993
根据大气相似性原理,提出了利用历史资料的相似信息估计模式误差的反问题,并发展了一种相似误差订正(ACE)方法。该方法将统计和动力两种方法有机结合,在不改变现有数值预报模式的前提下,既充分利用了动力学发展的成就,又能够有效提取大量历史资料中的相似信息,达到减小模式误差、改进当前预报的目的。而且,ACE方法能够针对当前预报的特殊性来区分所利用过去资料的特殊性,提取历史相似信息间接求解反问题。定性分析表明,ACE方法与以往相似-动力模式原理是等价的,但无需重新建立复杂的相似离差预报模式,更具可行性和业务应用前景。在理想化的极限情形下,当数值模式或历史相似完全准确时,ACE方法的预报结果将分别蜕变为动力或统计学方法的预报结果。  相似文献   

16.
数值天气预报———另类途径的必要性和可行性   总被引:5,自引:6,他引:5       下载免费PDF全文
通过讨论省 (甚至地、市) 气象部门要不要开展数值天气预报工作的问题, 认为不是所有的地方都要开展, 只是那些希望搞科研型业务、迫切要求提高当地高影响天气的预报准确率的地方要开展。对于如何开展的问题, 提出不是去重复类似于主流途径的做法, 而是开辟另类途径, 并阐述了另类途径的内容、方法和意义。强调开展另类途径无需构建模式 (这是非常困难的工作), 只需运转现成的模式, 借助所关心的现象的历史数据来改造现成模式, 使之本地化, 是完全可行的。  相似文献   

17.
数值天气预报和气候预测可预报性研究的若干动力学方法   总被引:2,自引:2,他引:2  
简要回顾了数值天气预报和气候预测可预报性研究的若干动力学方法,包括用于研究第一类可预报性问题的线性奇异向量(LSV)和条件非线性最优初始扰动(CNOP-I)方法,以及Lyapunov指数和非线性局部Lyapunov指数方法。前两种方法用于研究预报或预测的预报误差问题,可以用于估计天气预报和气候预测的最大预报误差,而且根据导致最大预报误差的初始误差结构的信息,这两种方法可以用于确定预报或预测的初值敏感区。应该指出的是,LSV是基于线性化模式,对于描述非线性大气和海洋的运动具有局限性。因而,对于非线性模式,应该选择使用CNOP-I估计最大预报误差。Lyapunov指数和非线性局部Lyapunov指数可以用于研究第一类可预报性问题中的预报时限问题,前者是基于线性模式,不能解释非线性对预报时限的影响,而非线性局部Lyapunov指数方法则考虑了非线性的影响,能够较好地估计实际天气和气候的预报时限。第二类可预报性问题的研究方法相对较少,本文仅介绍了由我国科学家提出的关于模式参数扰动的条件非线性最优参数扰动(CNOP-P)方法,该方法可以用于寻找到对预报有最大影响的参数扰动,并可以进一步确定哪些参数最应该利用观测资料进行校准。另一方面,通过对比CNOP-I和CNOP-P对预报误差的影响,可以判断导致预报不确定性的主要误差因子,进而指导人们着力改进模式或者初始场。  相似文献   

18.
The correction of model forecast is an important step in evaluating weather forecast results. In recent years,post-processing models based on deep learning have become prominent. In this paper, a deep learning model named ED-ConvLSTM based on encoder-decoder structure and ConvLSTM is developed, which appears to be able to effectively correct numerical weather forecasts. Compared with traditional post-processing methods and convolutional neural networks, ED-ConvLSTM has strong collaborative extra...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号