首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
H. Srensen  H. Bohse  J.C. Bailey 《Lithos》2006,91(1-4):286-300
Lujavrites are rare meso- to melanocratic agpaitic nepheline syenites that are characterized by elevated contents of elements such as Li, Be, Zr, REE, Nb, Th and U. They are the most evolved members of the three large composite agpaitic complexes – Lovozero, Kola Peninsula, Russia; Pilansberg, South Africa; and Ilímaussaq, South Greenland – and are inferred to stem from the same deep fractionating magma sources that fed the earlier members of the complexes. The composition of the melts that evolved into lujavrites is, however, not well known. The agpaitic part of the Ilímaussaq complex is divided into a roof series, a floor series of cumulates and an intermediate series of lujavrites sandwiched between the two. In the traditional view, the lujavrites formed from residual melts left between the downward crystallizing roof series and the floor cumulates. New field observations and geochemical data suggest that the floor cumulates and the main mass of lujavrites constituted a separate intrusive phase which was emplaced into the already consolidated roof series rocks largely by piecemeal stoping. Studies of the contact facies of the floor cumulates indicate that the initial magma of the floor cumulate–lujavrite sequence was peralkaline nepheline syenitic with enhanced contents of Zr, Hf, HREE, Y, Nb, Ta, F, Ba and Sr. Subsequent crystallization in a closed system resulted in the formation of the floor cumulates and lujavrites. Chemical analyses of dykes within and outside the complex represent stages in the magmatic evolution of the agpaitic rocks.  相似文献   

2.
J.C. Bailey   《Lithos》2006,91(1-4):319-330
The distribution of boron has been studied in rocks and minerals of the Ilímaussaq complex, South Greenland, using optical emission spectrometry. In the silica-undersaturated rocks of intrusive phases 1 and 3, average B contents increased from 5.6 ppm in augite syenite to a maximum of 8.9 ppm in sodalite-rich agpaitic nepheline syenite (naujaite roof cumulate) and then decreased to 5.4 ppm in the final lujavrites. Boron only behaved as an incompatible element during certain stages of the fractionation history. Starting at the naujaite stage, sodalite crystals (60–45 ppm B) were fractionated by flotation and were also trapped among the heavy cumulus phases of the bottom cumulates. This prevented the significant build-up of B in late derivatives as seen in other nepheline syenites. Nevertheless, in late pegmatites and veins associated with the agpaitic rocks, B was locally concentrated in certain Be minerals and metamict/reworked minerals. In the silica-oversaturated rocks of intrusive phase 2, average B contents increased from 8.6 ppm in quartz syenite to 13 ppm in alkali granite.  相似文献   

3.
J.C. Bailey  R. Gwozdz   《Lithos》1994,31(3-4):207-225
Li was analysed by activation analysis in 363 whole-rock samples and 53 minerals from a 200 m drill core through aegirine lujavrite I, Ilímaussaq intrusion. The rocks are interpreted as cumulates and Li is dominantly located in the intercumulus material which is thought to represent the coexisting magma with 540 ppm: whole-rock contents generally range from 80–260 ppm Li and reflect variations in the amount of intercumulus material from 25–48 wt. %. The proportion of intercumulus material is lowest in the deeper parts of the drill core, in layers with a moderate density stratification resulting from showers of near-liquidus crystals and in compressed cumulates beneath a large naujaite xenolith from the roof. Intercumulus arfvedsonite with an average of 2200 ppm Li contains the bulk of Li in most samples, but nearly every sample contains Li (0–176 ppm) outside the rock-forming minerals (Li-ORFM) which was unlocated by conventional mineral separation. Li-ORFM formed during late-magmatic crystallization (a) from the final residues of intercumulus magma which crystallised as accessory Li-mica and alteration products and (b) during in situ zeolitization of arvedsonite which released Li. A later, more intense zeolitization released Li from the rocks of the drill core. Naujaite xenoliths contain 42–130 ppm Li, except where Li-metasomatised, and are associated with low Li values in adjacent lujavrites. Shearing of consolidated lujavrite allowed mobilization of the Li and its reprecipitation along narrow channels (< 10 cm). Li is not concentrated in late hydrothermal coatings.  相似文献   

4.
The most evolved rocks of the Pilansberg alkaline complex are aegirine lujavrites in which three varieties of eudialyte are recognized on the basis of textural relationships and composition. Manganoan eudialyte-I is a relict orthomagmatic phase occurring as poikilitic plates or as relict grains in pseudomorphed euhedral phenocrysts. Late eudialyte-II ranges in composition from manganoan eudialyte through kentbrooksite to taseqite-like varieties and is considered to be formed by cation exchange with eudialyte-I and alkaline fluids. Eudialyte-III is a hydrothermal phase replacing eudialyte-II, and has either taseqite-like (5–7.3 wt.% SrO, < 2.0 wt.% REE2O3) or kentbrooksite (< 1.5 wt.% SrO,  8.5 wt.% REE2O3) compositions. Three styles of replacement of eudialyte-I and -II are recognizable. Type 1 involves replacement by complex aggregates of zircon, fergusonite-(Ce), allanite-(Ce), britholite-(Ce), titanite, pyrochlore, albite and potassium feldspar, i.e. a “miaskitic” paragenesis. Type 2 alteration consists of complex aggregates dominated by deuteric Na–Zr-silicates (?catapleiite), stronalsite, strontium-apatite and lamprophyllite replacing eudialyte-I and -II and relicts of the “miaskitic paragenesis”, i.e. a highly sodic “agpaitic-to-hyperagpaitic” paragenesis. Type 3 replacement involves mantling of any residual eudialyte-II and zircon, and replacement of deuteric Na–Zr-silicates by eudialyte-III together with barytolamprophyllite as late hydrothermal phases. Further alteration and replacement resulted in the superposition of natrolite, britholite, pyrochlore, allanite and diverse Ba- and Mn-based minerals onto the types 2 and 3 assemblages, and ultimately to the deposition of allanite-(La), La-dominant REE carbonates and rarely a silica phase. All of the alteration styles are considered to have occurred in situ under subsolidus conditions (< 450 °C) by interaction of pre-existing eudialyte and other minerals with deuteric, sodium- and chlorine-bearing aqueous fluids. The evolution of the replacement products is from a miaskitic through an agpaitic to a hyperagpaitic paragenesis and ultimately back to a low agpaitic-to-miaskitic assemblage, reflecting changes in the a(Na+)/a(Cl) ratio and alkalinity of the deuteric/hydrothermal fluids.  相似文献   

5.
Aenigmatite in the Ilímaussaq intrusion shows a variety of textural relations to the other mafic minerals and an unusual range in chemical compositions. The saturated and oversaturated rocks contain zoned aenigmatities with Ca, Al, Fe2+-rich cores coexisting with katophorite, and near-ideal Ti-aenigmatite rims coexisting with arfvedsonite and aegirine. The aenigmatite substitutions are outlined, and the varying chemistry discussed. A no-oxide field seems to have existed in the (log fO2, T) space for the undersaturated magma, and an arfvedsonite-aenigmatite oxygen buffer equilibrium is suggested for the coexisting Fe3+-rich aenigmatite and katophorite. This buffer was later invalidated by the stabilisation of aegirine, whereby the Fe3+-aenigmatite component broke down, causing extensive recrystallisation into near-ideal Ti-aenigmatite.  相似文献   

6.
Sm-Nd isotopic compositions were determined for the peralkaline Ilímaussaq Complex of the Gardar Province of southern Greenland. The majority of the samples in the agpaitic and augite syenitic units have near chondritic initial Nd(≈ 0), whereas a few samples trend towards Nd values as low as − 6 at the time of intrusion (1143 Ma). This latter value, from a sample taken from the margin of the complex, lying on the evolutionary trend for Ketilidian country-rock granitoids, suggests that large-scale contamination took place only at the margins of the complex. The similarity of the Nd isotopic compositions of the augite syenite and agpaitic units suggests that their parental magmas were derived from the same reservoir. A comparison of the Nd with existing Sr and Hf isotopic data for the complex suggests an origin by combined assimilation fractionation processes. Assimilation-fractional crystallization modeling of the isotopic compositions indicates that the Ilímaussaq magmas could have formed through fractional crystallization of a basaltic melt while assimilating granitic crust. The model requires initially higher assimilation rates from basalt to augite syenite composition with subsequent decreasing assimilation rates from augite syenite to agpaitic compositions. Alkali granites, which formed after the intrusion of the augite syenites, have isotopic compositions intermediate between those of the augite syenites and the surrounding Ketilidian basement. This implies even greater amounts of assimilation and is interpreted as evidence for an origin through fractionation of a basaltic or augite syenite magma with concurrent assimilation of Ketilidian crust.  相似文献   

7.
Sector zoned aegirine crystals occur in the interstices of peralkaline nepheline syenites in Ilímaussaq. The crystals have grass-green [001] sectors enriched in Ca and Fe2+ (as CaFeSi2O6), Mn and Zr; pale green {010} sectors enriched in Al (as NaAlSi2O6); blue-green {110} sectors enriched in Ti (as NaTi0.5Fe 0.5 2+ Si2O6); and light green {100} sectors enriched in Fe3+ (as NaFe3+ Si2O6).The crystals grew in the liquid with a rate that did not exceed the diffusion rate of most elements in the liquid. However. Fe3+ seems to have had diffusion rates lower than the crystal growth rate, and this probably caused the development of some sectors enriched in acmite and others enriched in the hedenbergite component. For Al, Ti and Zr a crystal structural control is envisaged although a recent structure-based model for sector zoning fails to explain the efficient separation of these elements into different sectors.Three more occurrences of sector zoned aegirine are noted, all from peralkaline nepheline syenites. The phenomenon is probably more widespread than hitherto realised.Contribution to the mineralogy of Ilímaussaq no. 62  相似文献   

8.
Within the 1.16 Ga old Ilímaussaq intrusion, up to 700 m large autoliths occur in one stratigraphic unit of the layered floor series of agpaitic nepheline syenites (kakortokites). These autoliths consist of two different rock types: augite syenite and naujaite (agpaitic nepheline syenite). All three rock types show a number of alteration features related to the entrapment of the autoliths in the kakortokite magma caused by the interaction with a fluid phase.

In the kakortokites, the oxidation of primary arfvedsonite to aegirine and fluorite is restricted to the close proximity to the autoliths. Close to the surrounding kakortokite, the primary mafic phases of the augite syenites (augite, fayalite, Fe–Ti oxides) are completely replaced by arfvedsonite, aenigmatite, biotite, aegirine and fluorite. The decomposition of primary hastingsite to spectacular aegirine–augite–nepheline–aenigmatite symplectites can be observed up to several meters inside the autoliths. Additionally, fluorite formed at grain boundaries of primary nepheline. In the naujaite autoliths, primary arfvedsonite is replaced by aegirine–biotite intergrowths and abundant aenigmatite is occasionally replaced by Ti-rich aegirine and Fe–Ti oxides.

The mineral reactions in the autoliths are used to decipher details of the late to post-magmatic processes in a peralkaline syenitic intrusion. Mineral equilibria record an evolution governed by falling temperature (620 to ca. 500 °C) and increasing relative oxygen fugacity from FMQ + 1 to above FMQ + 4. Quantification of the observed mineral reactions reveals the infiltration of the autoliths with an oxidizing fluid phase rich in Na and F and minor addition of K. Volatiles (H and F) and in some cases also Fe, Ti and Ca (± Mg) released from primary autolith phases were mainly just relocated within the autoliths.  相似文献   


9.
Agpaitic rocks comprise most of the exposed part of the 1.16 Ga old, 8 × 17 km large and about 1700 m thick Ilímaussaq intrusion in South Greenland. Within these, more than 600 m thick sequence of sodalite-rich “naujaites” (mainly sodalite + arfvedsonite + alkali feldspar + nepheline + eudialyte + aenigmatite) are interpreted as a sodalite flotation cumulate. Sodalites show two to three different zones in cathodoluminescence (CL) and at least two zones in thin sections. The CL zones can be related to chemical differences detectable by electron microprobe, whereas relations with optical zonations are less obvious. Compositional trends in sodalite reflect trends in the evolution of volatile contents in the melt. The sodalite at Ilímaussaq is almost free of Ca and closely corresponds to the pure Na–Cl sodalite endmember with about 7 wt.% of Cl; S contents reach up to 0.9 wt.%. Cl/Br ratios range from 500 to 1700. Raman spectroscopy shows that S is present as [SO4]2− in sodalite, although sphalerite (ZnS) is a stable phase in naujaites. Peralkalinity and fO2 conditions allow S2− and [SO4]2− to be present contemporaneously.

The whole naujaite sequence is divided into two parts, an upper part with low, homogeneous S contents and Cl/Br ratios in the sodalite cores, and a lower part with strongly variable and higher S contents and with Cl/Br ratios, which are decreasing downwards. The details of the S content and the Cl/Br ratio evolution show that sodalite strongly influences the halogen contents of the melt by scavenging Cl and Br.

The naujaites were formed from a highly reduced, halogen-rich magma in equilibrium with magmatic methane at about 800 °C, which, upon ascent, cooling and fractionation, exsolved an aqueous fluid phase. Both fluids were trapped in separate inclusions indicating their immiscibility.

Micrometer-sized aegirine crystals and primary hydrocarbon-bearing inclusions are abundant in the crystal cores. The inclusions were trapped at pressures up to 4 kbar, although the emplacement pressure of the intrusion is about 1 kbar. This indicates growth of the sodalite during melt ascent and a very effective mechanism of trace element scavenging during sodalite growth. Sodalite rims are devoid of aegirine or primary hydrocarbon inclusions and probably reflect the emplacement stage.  相似文献   


10.
A. Steenfelt  H. Bohse 《Lithos》1975,8(1):39-45
Uranium analyses by the fission-track method on eudialytes from the undersaturated rocks of the Ilímaussaq intrusion demonstrate that uranium enters eudialyte in isomorphous substitution. The content of uranium in the eudialytes varies with the crystallization of the magma in two ways.In the downwards-crystallizing roof rocks, eudialyte is interstitial and the content of uranium in eudialyte decreases with proceeding crystallization, whereas in the bottom rocks, formed by upwards accumulation of liquidus minerals including eudialyte, the uranium content in eudialyte increases with crystallization. The reason for the abnormal trend in the roof rocks is discussed and compared with similar trends elsewhere.  相似文献   

11.
Summary The Ruten Sequence of the basic Fongen-Hyllingen complex is composed of rhythmically layered olivine-plagioclase-clinopyroxene-orthopyroxene-Fe–Ti oxide cumulates. Phase layering is defined by the entry of orthopyroxene and Fe–Ti oxides. Only limited cryptic variation occurs through the c. 1800 m thick cumulate sequence. Rhythmically repeated units of interlayered dunite and troctolite are common throughout most of the sequence. Dunite units range from laminae a few centimeters thick to massive units 2–3 m thick. The modal abundance of olivine in the cumulates varies from 7 to 100 wt.%. In cumulates with MgO above 15 wt.% plagioclase and clinopyroxene occur in relatively fixed ratios between 4:1 and 3:2. Clinopyroxene-rich layers less than a centimeter thick are present only in olivine gabbros. In these, with MgO below 15 wt.%, modal variation of clinopyroxene in part controls the chemical variation of the cumulates. The modal and normative proportions of cumulus phases in the olivine gabbros can be related to equilibrium cotectics in the natural basalt system at approximately 5 kbar. It is suggested that the olivine-rich layers originated by supersaturated nucleation and growth of olivine.
Chemie der Kumulate und ihre Bedeutung für die Entstehung der Schichtung, dargestellt am Beispiel des basischen Komplexes von Fongen-Hyllingen (Norwegen)
Zusammenfassung Die Ruten-Sequenz des basischen Fongen-Hyllingen-Komplexes setzt sich zusammen aus rhythmisch abgelagerten Kumulaten aus Olivin, Plagioklas, Klinopyroxen, Orthopyroxen und Eisentitanoxid. Phasenschichtung/Ablagerung wird durch das erste Auftreten von Orthopyroxen und Eisentitanoxiden charakterisiert. In der ca. 1800 m mächtigen Sequenz tritt kryptische Variation nur begrenzt auf; rhythmische Wiederholung eingeschalteter Dunit- und Troktolithorizon te dagegen häufig. Die Mächtigkeit der Dunite reicht von wenige Zentimeter dünnen Schichten bis zu zwei bis drei Meter dicken Bänken. Der Modalbestand an Olivin in den Kumulaten variiert zwischen 7 und 100 Gew.%. In Kumulaten mit einem MgO-Gehalt von über 15 Gew.% liegt das Mengenverhältnis von Plagioklas zu Klinopyroxen relativ konstant bei 4:1 bis 3:2. Klinopyroxen-reiche, weniger als zentimeterdicke Lagen finden sich nur in Olivingabbros. In diesen ist der MgO-Gehalt weniger als 15 Gew.% und die modale Variation des Klinopyroxens steuert teilweise die chemische Variation der Kumulate. Die modalen und normativen Verhältnisse der Kumulusphasen im Olivingabbro lassen sich in Beziehung setzen zu dem kotektischen Gleichgewicht natürlicher Basaltsysteme bei 5 kbar. Die olivinreichen Lagen suggerieren Bildung durch übersättigte Nukleation und Kristallisation.


With 13 Figures  相似文献   

12.
The Sivamalai alkaline complex comprises ferro-, pyroxene-hornblende- and nepheline-syenites. Field relations show that the nepheline syenites followed the emplacement of non-feldspathoidal syenites. Mineralogical data on the syenite suite have been reviewed. The Sivamalai alkaline rocks are not strongly enriched in rare-earth elements like most miaskites. Rb-Sr isotopic analyses of a suite of six samples from the various members of the complex define an isochron corresponding to an age of 623 ±21 Ma () and initial Sr ratio of 0.70376 ±14 (2σ). This is consistent with a model of fractional crystallization of a parent magma derived from an upper mantle source with apparently no isotopic evidence for more than one magma source for the complex. The Sivamalai alkaline complex represents a Pan-African alkaline magmatic event in the southern granulite terrane of Peninsular India.  相似文献   

13.
Dioritic plugs (< 1 km across) are common associates of the late Caledonian, post-tectonic granites of the Scottish Highlands. These contain a very wide range of rock types from ultramafic through mesocratic diorites to anorthositic and granitic. These rocks form steeply dipping, wall-parallel layers and zones within the plugs. Outer layers are shown to form first, inner layers later. Mafic zones are composed of the minerals seen as phenocrysts in chilled margins and have the chemical characteristics of cumulates. The inner margins of the mafic zones reflect the onset of plagioclase crystallization. Core zones also show inward variations in mineralogy and texture which define vertical, wall-parallel cylinders. These variations are ascribed to fractional crystallization accompanying accretion of rock onto the pipe walls. Cores in different intrusions may be mafic, mesocratic, or leucocratic, which indicates vertical zonation in the bodies. The mafic cores additionally show that recharge with less evolved magma occurred in some cases. The few larger (> 1 km diameter) intrusions show examples of layering and lamination dipping at low to moderate angles. These indicate the beginning of a change from wall-dominated to floor-dominated crystallization as intrusion diameter increases. A comparison is made with the nature and origin of layering in other intrusions.  相似文献   

14.
J. Winter 《Lithos》1974,7(4):235-238
On the basis of chemical charactiristics (major elements) it is concluded that the investigated amphibolite was formed as a result of high-grade regional metamorphism of a calcareous sediment mixed with basic igneous material, probably in the form of tuff. In view of the many recent publications on the origin of amphibolites it seems justified to propose a new definition of the term ‘para-amphibolite‘.  相似文献   

15.
Basanites and alkali basalts from Oberon, NSW, Australia contain variable abundances of small Cr-diopside lherzolite xenoliths. Despite a limited range in (metamorphic) textures and modal mineralogy, there is significant variation in mineral chemistry. Mineral thermometric data applied to the geotherm of O'Reilly and Griffin (1985) suggests equilibration over a narrow pressure interval corresponding to depths of 30–45 km. These data show that significant compositional variations exist over a small depth interval in the subcontinental mantle.Basaltic host rocks show near-primary chemical characteristics. Mildly and strongly incompatible element (i.e. D< 1 and D1 respectively) concentrations have been used to constrain the modal amounts of clinopyroxene and garnet in a presumed garnet peridotite mantle source. Estimated proportions of (ol+opx)=73%; cpx=16%; gar= 11% closely resemble source compositions for other basaltic rocks of eastern Australia. Batch partial melting of this source in the range F=9.5–15% applied to the available REE data suggests the source is enriched relative to chondrite 8–10 × La, 2.1–2.4 × Tb and 2.5–3.7 × Yb.  相似文献   

16.
D.R.C. Kempe  W.A. Deer 《Lithos》1976,9(2):111-123
Evidence of layering and physical conditions of emplacement are discussed for this saucer-shaped, differentiated syenite mass. The intrusion is thought to derive from a magma of quartz trachytic composition,rather than from partial melting of the basement gneiss. The derivation of an undersaturated residual liquid, necessary to produce the pulaskite and the foyaite, is discussed, together with the mechanism whereby the ‘thermal barrier’ is crossed. Possible explanations considered are the depression of the thermal barrier through increased vapour pressure; the formation of iron-bearing feldspar; escape of silica and some potassium with volatile constituents; and crystal ? liquid equilibrium control.  相似文献   

17.
The alkaline ultrabasic rooks (damkjernite) of the Fen alkaline complex contain abundant rounded inclusions of spinel lherzolite, closely similar in composition and mineralogy to the nodules found in many undersaturated basaltic rocks. Clinopyroxene compositions indicate crystallization at P=10–13 KB, T=1200–1250° C. A model involving partial melting in a rising diapir of mantle peridotite allows interpretation of the nodules either as mantle fragments or as cognate cumulates, and suggests that crustal thinning in the Oslo area possibly began as early as 500–600 m.y. ago. The presence of the nodules indicates that the damkjernite did not pause for intracrustal differentiation during its rapid ascent to the surface. The crustal contamination suggested by recent Sr-isotope studies may have occurred during differentiation at the base of the continental crust.Contribution No. 62 in The Norwegian Geotraverse Project.  相似文献   

18.
碱性造岩矿物能够记录碱性岩源区特征、岩浆演化以及晚期成矿的重要信息,是开展碱性岩成岩成矿研究的有效手段.波孜果尔碱性花岗岩型铌-钽-锆-铷-稀土矿床位于塔里木北缘-中亚南天山晚古生代造山带,是塔里木地块北缘铌成矿带中典型的碱性岩型矿床.本文通过对含矿岩体中的霓石和钠铁闪石开展矿物学研究,结合全岩成分揭示波孜果尔稀有-稀...  相似文献   

19.
Perovskite and melilite crystals from melilitolites of the ultramafic alkaline Gardiner complex (East Greenland) contain crystallised melt inclusions derived from: (1) melilitite; (2) low-alkali carbonatite; (3) natrocarbonatite. The melilitite inclusion (1) homogenisation temperature of 1060 °C is similar to liquidus temperatures of experimentally investigated natural melilitites. The compositions are peralkaline, low in MgO (ca.␣5 wt%), Ni and Cr, and they are low-pressure fractionates of more magnesian larnite-normative ultramafic lamprophyre-type melts of primary mantle origin. Low-alkali carbonatite compositions (2) homogenise at 1060–1030 °C and are compositionally similar to immiscible calcite carbonatite dykes derived from the melilitolite magma. Natrocarbonatite inclusions (3) homogenise between 1030 and 900 °C and are compositionally similar to natrocarbonatite lava from Oldoinyo Lengai. Nephelinitic to phonolitic dykes which are related to the calcite carbonatite dykes, are very Zr-rich and agpaitic (molecular Na2O + K2O/Al2O3 > 1.2) and resemble nephelinites of Oldoinyo Lengai. The petrographic, geochemical and temporal relationships indicate unmixing of carbonatite compositions (ca. 10% alkalies) from evolving melilitite melt and continued fractionation of melilitite to nephelinite. It is suggested that the natrocarbonatite compositions represent degassed supercritical high temperature fluid formed in a cooling body of strongly larnite-normative nephelinite or evolved melilitite. The Gardiner complex and similar melilitolite and carbonatite-bearing ultramafic alkaline complexes are believed to represent subvolcanic complexes formed beneath volcanoes comparable to Oldoinyo Lengai and that the suggested origin of natrocarbonatite may be applied to natrocarbonatites of Oldoinyo Lengai. Received: 18 January 1996 / Accepted: 2 September 1996  相似文献   

20.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号