首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional baroclinic finite element model with a coarse and fine (i.e. local refinement along the shelf edge) grid is used to examine the influence of shelf edge grid refinement upon the internal tide generation and propagation off the west coast of Scotland. Comparisons are made with observations in the region and with a published solution using a finite difference model. The calculations show that provided that the finite element grid is refined in the internal tide generation area and the adjacent region through which the internal tide propagates, then a numerically accurate solution is obtained. In the regions of strong internal tide generation with a local grid refinement, internal wave energy can accumulate at small scales and must be removed by a scale-selective filter.  相似文献   

2.
A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback.Results indicate: (1) The new method exhibits quadratic convergence for homogenous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%.  相似文献   

3.
Huang J  Christ JA  Goltz MN 《Ground water》2008,46(6):882-892
When managing large-scale ground water contamination problems, it is often necessary to model flow and transport using finely discretized domains--for instance (1) to simulate flow and transport near a contamination source area or in the area where a remediation technology is being implemented; (2) to account for small-scale heterogeneities; (3) to represent ground water-surface water interactions; or (4) some combination of these scenarios. A model with a large domain and fine-grid resolution will need extensive computing resources. In this work, a domain decomposition-based assembly model implemented in a parallel computing environment is developed, which will allow efficient simulation of large-scale ground water flow and transport problems using domain-wide grid refinement. The method employs common ground water flow (MODFLOW) and transport (RT3D) simulators, enabling the solution of almost all commonly encountered ground water flow and transport problems. The basic approach partitions a large model domain into any number of subdomains. Parallel processors are used to solve the model equations within each subdomain. Schwarz iteration is applied to match the flow solution at the subdomain boundaries. For the transport model, an extended numerical array is implemented to permit the exchange of dispersive and advective flux information across subdomain boundaries. The model is verified using a conventional single-domain model. Model simulations demonstrate that the proposed model operated in a parallel computing environment can result in considerable savings in computer run times (between 50% and 80%) compared with conventional modeling approaches and may be used to simulate grid discretizations that were formerly intractable.  相似文献   

4.
This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497–511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, “cage-shell” interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size—a coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.  相似文献   

5.
This work examines the simulation of stream–aquifer interactions as grids are refined vertically and horizontally and suggests that traditional methods for calculating conductance can produce inappropriate values when the grid size is changed. Instead, different grid resolutions require different estimated values. Grid refinement strategies considered include global refinement of the entire model and local refinement of part of the stream. Three methods of calculating the conductance of the Cauchy boundary conditions are investigated. Single- and multi-layer models with narrow and wide streams produced stream leakages that differ by as much as 122% as the grid is refined. Similar results occur for globally and locally refined grids, but the latter required as little as one-quarter the computer execution time and memory and thus are useful for addressing some scale issues of stream–aquifer interactions. Results suggest that existing grid-size criteria for simulating stream–aquifer interactions are useful for one-layer models, but inadequate for three-dimensional models. The grid dependence of the conductance terms suggests that values for refined models using, for example, finite difference or finite-element methods, cannot be determined from previous coarse-grid models or field measurements. Our examples demonstrate the need for a method of obtaining conductances that can be translated to different grid resolutions and provide definitive test cases for investigating alternative conductance formulations.  相似文献   

6.
Many popular groundwater modeling codes are based on the finite differences or finite volume method for orthogonal grids. In cases of complex subsurface geometries this type of grid either leads to coarse geometric representations or to extremely fine meshes. We use a coordinate transformation method (CTM) to circumvent this shortcoming. In computational fluid dynamics (CFD), this method has been applied successfully to the general Navier–Stokes equation. The method is based on tensor analysis and performs a transformation of a curvilinear into a rectangular unit grid, on which a modified formulation of the differential equations is applied. Therefore, it is not necessary to reformulate the code in total. We applied the CTM to an existing three-dimensional code (SHEMAT), a simulator for heat conduction and advection in porous media. The finite volume discretization scheme for the non-orthogonal, structured, hexahedral grid leads to a 19-point stencil and a correspondingly banded system matrix. The implementation is straightforward and it is possible to use some existing routines without modification. The accuracy of the modified code is demonstrated for single phase flow on a two-dimensional analytical solution for flow and heat transport. Additionally, a simple case of potential flow is shown for a two-dimensional grid which is increasingly deformed. The result reveals that the corresponding error increases only slightly. Finally, a thermal free-convection benchmark is discussed. The result shows, that the solution obtained with the new code is in good agreement with the ones obtained by other codes.  相似文献   

7.
瞬变电磁三维FDTD正演多分辨网格方法   总被引:1,自引:0,他引:1       下载免费PDF全文
瞬变电磁三维时域有限差分(FDTD)正演的网格剖分受最小网格尺寸、时间步长、边界条件、目标尺寸、模型尺寸等的影响,结构化网格一直存在最小网格尺寸受限于异常目标尺寸的矛盾;尽管非均匀网格能够在保证模型尺寸的前提下尽可能的降低网格数量,但由于Yee网格结构的限制,非均匀网格不能无限制的扩大单一方向的尺寸,这是为了避免边界网格区域出现长宽比过大的畸形网格,影响计算精度甚至导致结果发散.在非均匀网格剖分的基础上,本文提出了瞬变电磁三维FDTD正演的多尺度网格方法,即首先使用较大尺寸的粗网格进行第一次剖分,然后在希望加密的区域进行二次剖分,使计算域中包含粗、细两套网格.尽管细网格包含在粗网格内部,但其具有Yee网格的全部属性,因而可以在网格中设置不同的电性参数模拟不同形状的目标.基于Maxwell方程组推导了细网格内电场和磁场的迭代公式,基于泰勒展开给出了设置粗、细网格后产生的内部边界条件,使电磁场的传播在粗、细网格和时间步进上得到统一.采用均匀半空间中包含三维低阻异常的经典模型和三维接触带复杂模型进行精度验证,发现多分辨网格方法计算结果满足精度要求.使用"L"型异常模型计算采用多分辨网格方法和不采用多分辨网格的传统FDTD方法对比计算效率,发现多分辨网格算法能够显著提高计算效率,并能够保证计算精度.  相似文献   

8.
Mehl S  Hill MC  Leake SA 《Ground water》2006,44(6):792-796
Many ground water modeling efforts use a finite-difference method to solve the ground water flow equation, and many of these models require a relatively fine-grid discretization to accurately represent the selected process in limited areas of interest. Use of a fine grid over the entire domain can be computationally prohibitive; using a variably spaced grid can lead to cells with a large aspect ratio and refinement in areas where detail is not needed. One solution is to use local-grid refinement (LGR) whereby the grid is only refined in the area of interest. This work reviews some LGR methods and identifies advantages and drawbacks in test cases using MODFLOW-2000. The first test case is two dimensional and heterogeneous; the second is three dimensional and includes interaction with a meandering river. Results include simulations using a uniform fine grid, a variably spaced grid, a traditional method of LGR without feedback, and a new shared node method with feedback. Discrepancies from the solution obtained with the uniform fine grid are investigated. For the models tested, the traditional one-way coupled approaches produced discrepancies in head up to 6.8% and discrepancies in cell-to-cell fluxes up to 7.1%, while the new method has head and cell-to-cell flux discrepancies of 0.089% and 0.14%, respectively. Additional results highlight the accuracy, flexibility, and CPU time trade-off of these methods and demonstrate how the new method can be successfully implemented to model surface water-ground water interactions.  相似文献   

9.
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.  相似文献   

10.
Groundwater flow in a 3-D domain with fracture planes is numerically investigated using the finite element method. A flexible mesh generation method for discretization is proposed in this paper. The method, based on Delaunay triangulation, divides the whole domain into subdomains separated by fracture planes. It then triangulates each subdomain independently into tetrahedra which are further subdivided into hexahedra. By putting together all of the meshes of the subdomain, a finite element mesh of the whole domain is obtained. The appropriateness of the mesh generation method is topologically proved. Several applications of the proposed method are given, and the numerical solutions are in good agreement with those obtained with a structured grid. It is concluded that the proposed mesh generation method can replace the structured grid.  相似文献   

11.
Regional finite‐difference models often have cell sizes that are too large to sufficiently model well‐stream interactions. Here, a steady‐state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell‐by‐cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real‐world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined “benchmark” MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost‐effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite‐difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady‐state conditions.  相似文献   

12.
本文提出了地下流体渗流问题的三维解粗化算法,在粗网格内流体压强分布用直接解法求解三维渗流方程,用这些解计算粗网格的等效渗透率,在流体流速大的区域仍采用精细网格的计算方法.用所得等效渗透率计算了粗化网格的渗流场的压强分布,结果表明渗流方程的三维粗化解非常逼近采用精细网格的解,但计算的速度比采用精细网格提高了100多倍.  相似文献   

13.
We present a 2-D inversion code incorporating a damped least-squares and a minimum-model approach for plane wave electromagnetic (EM) methods using an adaptive unstructured grid finite element forward operator. Unstructured triangular grids permit efficient discretization of arbitrary 2-D model geometries and, hence, allow for modeling arbitrary topography. The inversion model is parameterized on a coarse parameter grid which constitutes a subset of the forward modeling grid. The mapping from parameter to forward modeling grid is obtained by adaptive mesh refinement. Sensitivities are determined by solving a modified sensitivity equation system arising from the derivative of the finite element equations with respect to the model parameters. Firstly, we demonstrate that surface topography may induce significant effects on the EM response and in the inversion result, and that it cannot be ignored when the scale length of topographic variations is in the order of magnitude of the skin depth. Secondly, the dependency of the inversion on the starting model is discussed for VLF and VLF-R data. Thirdly, we demonstrate the inversion of a synthetic data set obtained from a model with topography. Finally, the inversion approach is applied to field data collected in a region with undulating topography.  相似文献   

14.
Widely used numerical models of solute transport processes in subsurface aquifers are limited to nonlocally refined rectangular, or logically rectangular, structured grids. This presents an unsuitable option to efficient numerical simulations maintaining an acceptable level of accuracy. Optimal selection of locally refined cells for efficient solute transport models is challenging to the current generation of numerical models. We present a novel and relatively simple to implement algorithm addressing these shortcomings. This method operates in four steps involving travel times simulations, a grid coarsening stage followed by a selective local grid refinement based on a cell-wise indicator, and a final postprocessing step. The refinement index is the sum of weighted logarithmic distributions of scaled forward and backward travel times. We calculate representative flow and transport properties at the two scales of the composite grid with a flow-based upscaling technique. We present two test problems to demonstrate the performances of this new gridding algorithm. We obtain the most important speedups for composite grids generated with the highest indicator thresholds. When hydrodynamic dispersion effects increase, we obtain less important speedups. An important outcome of this work is that grid design depends on nature and strength of the underlying flow and solute transport processes. Therefore, we suggest developing solute transport workflows integrating this grid generation algorithm as an integral component to build comprehensive and efficient groundwater models.  相似文献   

15.
伪谱法是一种高效、高精度计算非均匀介质地震波传播的数值算法,由于它的微分算子的全局性,一般认为该方法不适于并行计算. 本文介绍了并行计算非均匀介质中地震波传播的重叠区域分解算法,给出了一种基于傅里叶伪谱法的并行算法. 文中给出的算法将介质划分为相互重叠的若干区域,在各个子域上单独求解,利用重叠部分的解的传递,将各个子域连接起来,实现了伪谱法在分布式并行处理机上的计算. 文中给出了一个将二维区域分解的算例,比较了并行算法和整体算法的结果,分析了并行算法的计算精度. 结果表明,并行算法会有效降低计算时间,并且保证计算精度. 该方法在大规模三维非均匀介质的地震波场模拟方面有应用价值.   相似文献   

16.
Pseudospectral method is an efficient and high accuracy numerical method for simulating seismic wave propaga- tion in heterogeneous earth medium. Since its derivative operator is global, this method is commonly considered not suitable for parallel computation. In this paper, we introduce the parallel overlap domain decomposition scheme and give a parallel pseudospectral method implemented on distributed memory PC cluster system for modeling seismic wave propagation in heterogeneous medium. In this parallel method, the medium is decomposed into several subdomains and the wave equations are solved in each subdomain simultaneously. The solutions in each subdomain are connected through the transferring at the overlapped region. Using 2D models, we compared the parallel and traditional pseudospectral method, analyzed the accuracy of the parallel method. The results show that the parallel method can efficiently reduce computation time for the same accuracy as the traditional method. This method could be applied to large scale modeling of seismic wave propagation in 3D heterogeneous medium.  相似文献   

17.
This work studies costs and benefits of utilizing local-grid refinement (LGR) as implemented in MODFLOW-LGR to simulate groundwater flow in a buried tunnel valley interacting with a regional aquifer. Two alternative LGR methods were used: the shared-node (SN) method and the ghost-node (GN) method. To conserve flows the SN method requires correction of sources and sinks in cells at the refined/coarse-grid interface. We found that the optimal correction method is case dependent and difficult to identify in practice. However, the results showed little difference and suggest that identifying the optimal method was of minor importance in our case. The GN method does not require corrections at the models' interface, and it uses a simpler head interpolation scheme than the SN method. The simpler scheme is faster but less accurate so that more iterations may be necessary. However, the GN method solved our flow problem more efficiently than the SN method. The MODFLOW-LGR results were compared with the results obtained using a globally coarse (GC) grid. The LGR simulations required one to two orders of magnitude longer run times than the GC model. However, the improvements of the numerical resolution around the buried valley substantially increased the accuracy of simulated heads and flows compared with the GC simulation. Accuracy further increased locally around the valley flanks when improving the geological resolution using the refined grid. Finally, comparing MODFLOW-LGR simulation with a globally refined (GR) grid showed that the refinement proportion of the model should not exceed 10% to 15% in order to secure method efficiency.  相似文献   

18.
We present an adaptation of the full multigrid algorithm in DC resistivity modelling in an effort to increase its accuracy. There is a great difficulty with conventional multigrid solvers in representing the physics of an arbitrary distribution of electrical conductivity on a very coarse grid. In general, conventional rectangular finite‐difference or 5‐point approximations of Poisson's equation cannot represent, at a coarse grid level, the effective anisotropy on a coarse scale which results from fine structure in the model. An exception to this generalization occurs when the principal axes of structural anisotropy are aligned with the coordinate axis. Additional and similarly generated problems arise when a coarse cell is obliged to represent fine structure containing very high conductivity contrasts. We have developed an adaptation of the usual resistive‐network representation of the continuum, which avoids some of these problems, and have compared it with the traditional resistive network currently used. The network adaptation consists of replacing the usual 5‐point Laplacian operator stencil used on the finite‐difference grid with a 9‐point stencil, and the conductivity scalar with a 6‐parameter conductivity parametrization. This parametrization permits representation of arbitrarily orientated anisotropy as well as more complex behaviour related to high conductivity contrasts. The importance of multigrid solvers does not lie in their speed at forward modelling (which is comparable with other methods), but rather in their potential for inverse modelling. Inverse solvers which proceed by refinement of an initially very coarse solution can, in principle, take time only linearly proportional to the number of gridpoints in the final desired model.  相似文献   

19.
20.
Numerical techniques for subsurface flow and transport modeling are often limited by computational limitations including fine mesh and small time steps to control artificial dispersion. Particle-tracking simulation offers a robust alternative for modeling solute transport in subsurface formations. However, the modeling scale usually differs substantially from the rock measurement scale, and the scale-up of measurements have to be made accounting for the pattern of spatial heterogeneity exhibited at different scales. Therefore, it is important to construct accurate coarse-scale simulations that are capable of capturing the uncertainties in reservoir and transport attributes due to scale-up. A statistical scale-up procedure developed in our previous work is extended by considering the effects of unresolved (residual) heterogeneity below the resolution of the finest modeling scale in 3D. First, a scale-up procedure based on the concept of volume variance is employed to construct realizations of permeability and porosity at the (coarse) transport modeling scale, at which flow or transport simulation is performed. Next, to compute various effective transport parameters, a series of realizations exhibiting detailed heterogeneities at the fine scale, whose domain size is the same as the transport modeling scale, are generated. These realizations are subjected to a hybrid particle-tracking simulation. Probabilistic transition time is considered, borrowing the idea from the continuous time random walk (CTRW) technique to account for any sub-scale heterogeneity at the fine scale level. The approach is validated against analytical solutions and general CTRW formulation. Finally, coarse-scale transport variables (i.e., dispersivities and parameterization of transition time distribution) are calibrated by minimizing the mismatch in effluent history with the equivalent averaged models. Construction of conditional probability distributions of effective parameters is facilitated by integrating the results over the entire suite of realizations. The proposed method is flexible, as it does not invoke any explicit assumption regarding the multivariate distribution of the heterogeneity. In contrast to other hierarchical CTRW formulation for modeling multi-scale heterogeneities, the proposed approach does not impose any length scale requirement regarding sub-grid heterogeneities. In fact, it aims to capture the uncertainty in effective reservoir and transport properties due to the presence of heterogeneity at the intermediate scale, which is larger than the finest resolution of heterogeneity but smaller than the representative elementary volume, but it is often comparable to the transport modeling scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号