首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a precise timing analysis of the accreting millisecond pulsar XTE J1814−338 during its 2003 outburst, observed by RXTE . A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period,   P orb= 15 388.7229(2)  s, and of the projected semimajor axis,   a sin  i / c = 0.390633(9)  light-second. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency  (ν= 314.356 108 79(1) Hz)  and the first estimate of the spin frequency derivative of this source while accreting     . This spin-down behaviour arises when both the fundamental frequency and the second harmonic are taken into consideration. We discuss this in the context of the interaction between the disc and the quickly rotating magnetosphere, at accretion rates sufficiently low to allow a threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. We also present indications of a jitter of the pulse phases around the mean trend, which we argue results from movements of the accreting hotspots in response to variations of the accretion rate.  相似文献   

2.
We have undertaken an extensive study of X-ray data from the accreting millisecond pulsar XTE J1751 − 305 observed by RXTE and XMM–Newton during its 2002 outburst. In all aspects this source is similar to the prototypical millisecond pulsar SAX J1808.4 − 3658, except for the higher peak luminosity of 13 per cent of Eddington, and the optical depth of the hard X-ray source, which is larger by a factor ∼2. Its broad-band X-ray spectrum can be modelled by three components. We interpret the two soft components as thermal emission from a colder  ( kT ∼ 0.6 keV)  accretion disc and a hotter (∼1 keV) spot on the neutron star surface. We interpret the hard component as thermal Comptonization in plasma of temperature ∼40 keV and optical depth ∼1.5 in a slab geometry. The plasma is heated by the accretion shock as the material collimated by the magnetic field impacts on to the surface. The seed photons for Comptonization are provided by the hotspot, not by the disc. The Compton reflection is weak and the disc is probably truncated into an optically thin flow above the magnetospheric radius. Rotation of the emission region with the star creates an almost sinusoidal pulse profile with an rms amplitude of 3.3 per cent. The energy-dependent soft phase lags can be modelled by two pulsating components shifted in phase, which is naturally explained by a different character of emission of the optically thick spot and optically thin shock combined with the action of the Doppler boosting. The observed variability amplitude constrains the hotspot to lie within 3°–4° of the rotational pole. We estimate the inner radius of the optically thick accreting disc to be about 40 km. In that case, the absence of emission from the antipodal spot, which can be blocked by the accretion disc, gives the inclination of the system as ≳70°.  相似文献   

3.
We have obtained optical and near-infrared images of the field of the accreting millisecond X-ray pulsar XTE J1751−305. There are no stars in the 0.7-arcsec error circle (0.7 arcsec is the overall uncertainty arising from tying the optical and X-ray images and from the intrinsic uncertainty in the Chandra X-ray astrometric solution). We derive limiting magnitudes for the counterpart of   R > 23.1, I > 21.6, Z > 20.6, J > 19.6  and   K > 19.2  . We compare these upper limits with the magnitudes one would expect for simple models for the possible donor stars and the accretion disc subject to the reddening observed in X-rays for XTE J1751−305 and when put at the distance of the Galactic Centre (8.5 kpc). We conclude that our non-detection does not constrain any of the models for the accretion disc or possible donor stars. Deep, near-infrared images obtained during quiescence will, however, constrain possible models for the donor stars in this ultracompact system.  相似文献   

4.
The optical counterpart of the transient, millisecond X-ray pulsar SAX J1808.4–3658 was observed in four colours ( BVRI ) for five weeks during the 2005 June–July outburst. The optical fluxes declined by ∼2 mag during the first 16d and then commenced quasi-periodic secondary outbursts, with time-scales of several days, similar to those seen in 2000 and 2002. The broad-band spectra derived from these measurements were generally consistent with emission from an X-ray heated accretion disc. During the first 16d decline in intensity the spectrum became redder. We suggest that the primary outburst was initiated by a viscosity change driven instability in the inner disc and note the contrast with another accreting millisecond pulsar, XTE J0929−314, for which the spectrum becomes bluer during the decline. On the night of 2005 June 5 (HJD 245 3527) the I -band flux was ∼0.45-mag brighter than on the preceding or following nights whereas the BV and R bands showed no obvious enhancement. A type I X-ray burst was detected by the Rossi X-ray Timing Explorer spacecraft during this I -band integration. It seems unlikely that reprocessed radiation from the burst was sufficient to explain the observed increase. We suggest that a major part of the I -band excess was due to synchrotron emission triggered by the X-ray burst. Several other significant short duration changes in V − I were detected. One occurred at about HJD 245 3546 in the early phase of the first secondary outburst and may be due to mass-transfer instability or to another synchrotron emission event.  相似文献   

5.
Standard shot-noise models, which seek to explain the broadband noise variability that characterizes the X-ray light curves of X-ray binaries and active galaxies, predict that the power spectrum of the X-ray light curve is stationary (i.e. constant amplitude and shape) on short time-scales. We show that the broadband noise power spectra of the black hole candidate Cyg X-1 and the accreting millisecond pulsar SAX J1808.4−3658 are intrinsically non-stationary, in that rms variability scales linearly with flux. Flux-selected power spectra confirm that this effect is due to changes in power-spectral amplitude and not shape. The light curves of three Seyfert galaxies are also consistent with a linear relationship between rms variability and flux, suggesting that it is an intrinsic feature of the broadband noise variability in compact accreting systems over more than six decades of central object mass. The rms variability responds to flux variations on all measured time-scales, raising fundamental difficulties for shot-noise models which seek to explain this result by invoking variations in the shot parameters. We suggest that models should be explored where the longest time-scale variations are fundamental and precede the variations on shorter time-scales. Possible models which can explain the linear rms-flux relation include the fractal break-up of large coronal flares, or the propagation of fluctuations in mass accretion rate through the accretion disc. The linear relationship between rms variability and flux in Cyg X-1 and SAX J1808.4−3658 is offset on the flux axis, suggesting the presence of a second, constant-flux component to the light curve which contributes ∼25 per cent of the total flux. The spectrum of this constant component is similar to the total spectrum, suggesting that it may correspond to quiet, non-varying regions in the X-ray emitting corona.  相似文献   

6.
We report on new X-ray outbursts observed with Swift from three Supergiant Fast X-ray Transients (SFXTs): XTE J1739−302, IGR J17544−2619 and IGR J08408−4503. XTE J1739−302 underwent a new outburst on 2008 August 13, IGR J17544−2619 on 2008 September 4 and IGR J08408−4503 on 2008 September 21. While the XTE J1739−302 and IGR J08408−4503 bright emission triggered the Swift /Burst Alert Telescope, IGR J17544−2619 did not, thus we could perform a spectral investigation only of the spectrum below 10 keV. The broad-band spectra from XTE J1739−302 and IGR J08408−4503 were compatible with the X-ray spectral shape displayed during the previous flares. A variable absorbing column density during the flare was observed in XTE J1739−302 for the first time. The broad-band spectrum of IGR J08408−4503 requires the presence of two distinct photon populations, a cold one (∼0.3 keV) most likely from a thermal halo around the neutron star and a hotter one (1.4–1.8 keV) from the accreting column. The outburst from XTE J1739−302 could be monitored with a very good sampling, thus revealing a shape which can be explained with a second wind component in this SFXT, in analogy to what we have suggested in the periodic SFXT IGR J11215−5952. The outburst recurrence time-scale in IGR J17544−2619 during our monitoring campaign with Swift suggests a long orbital period of ∼150 d (in a highly eccentric orbit), compatible with what previously observed with INTEGRAL .  相似文献   

7.
The gravitational radiation from millisecond pulsars owing to glitches in their angular velocity is examined. It is assumed that the energy transferred from interior superfluid regions to the crust of a neutron star is converted into gravitational wave energy by damping oscillations of the matter in the star. The gravitational wave intensity and amplitude are calculated for fourteen millisecond pulsars. Gravitational radiation can explain the observed spin-down of millisecond pulsars and an estimate is given for the magnetic field at which the proposed mechanism predominates in the spin-down of these pulsars. __________ Translated from Astrofizika, Vol. 51, No. 3, pp. 479–486 (August 2008).  相似文献   

8.
Millisecond pulsars represent an evolutionarily distinct group among rotation-powered pulsars. Outside the radio band, the soft X-ray range (~0.1–10 keV) is most suitable for studying radiative mechanisms operating in these fascinating objects. X-ray observations revealed diverse properties of emission from millisecond pulsars. For the most of them, the bulk of radiation is of a thermal origin, emitted from small spots (polar caps) on the neutron star surface heated by relativistic particles produced in pulsar acceleration zones. On the other hand, a few other very fast rotating pulsars exhibit almost pure nonthermal emission generated, most probably, in pulsar magnetospheres. There are also examples of nonthermal emission detected from X-ray nebulae powered by millisecond pulsars, as well as from pulsar winds shocked in binary systems with millisecond pulsars as companions. These and other most important results obtained from X-ray observations of millisecond pulsars are reviewed in this paper, as well as results from the search for millisecond pulsations in X-ray flux of the radio-quite neutron star RX J1856.5-3754.  相似文献   

9.
We re-examine the correlation between the frequencies of upper and lower kHz quasi-periodic oscillations (QPO) in bright neutron star low-mass X-ray binaries. By including the kHz QPO frequencies of the X-ray binary Cir X-1 and two accreting millisecond pulsars in our sample, we show that the full sample does not support the class of theoretical models based on a single resonance, while models based on relativistic precession or Alfvén waves describe the data better. Moreover, we show that the fact that all sources follow roughly the same correlation over a finite frequency range creates a correlation between the linear parameters of the fits to any subsample.  相似文献   

10.
We report on multi-epoch, multifrequency observations of 64 pulsars with high spectral and time resolution. Scintillation parameters were obtained for 49 pulsars, including 13 millisecond pulsars. Scintillation speeds were derived for all 49, which doubles the number of pulsars with speeds measured in this way. There is excellent agreement between the scintillation speed and proper motion for the millisecond pulsars in our sample using the simple assumption of a mid-placed scattering screen. This indicates that the scaleheight of scattering electrons is similar to that of the dispersing electrons. In addition, we present observations of the Vela pulsar at 14 and 23 GHz, and show that the scintillation bandwidth scales as ν3.93 over a factor of 100 in observing frequency. We show that for PSR J0742−2822, and perhaps PSR J0837−4135, the Gum nebula is responsible for the high level of turbulence along their lines of sight, contrary to previous indications. There is a significant correlation between the scintillation speeds and the product of the pulsar's period and period derivative for the 'normal' pulsars. However, we believe this to be caused by selection effects both in pulsar detection experiments and in the choice of pulsars used in scintillation studies.  相似文献   

11.
In the advent of next generation gamma-ray missions, we present general properties of spectral features of high-energy emission above 1 MeV expected for a class of millisecond, low magnetic field (∼109 G) pulsars. We extend polar-cap model calculations of Rudak & Dyks by including inverse Compton scattering events in an ambient field of thermal X-ray photons and by allowing for two models of particle acceleration. In the range between 1 MeV and a few hundred GeV, the main spectral component is the result of curvature radiation of primary particles. The synchrotron component arising from secondary pairs becomes dominant only below 1 MeV. The slope of the curvature radiation spectrum in the energy range from 100 MeV to 10 GeV strongly depends on the model of longitudinal acceleration, whereas below ∼100 MeV all slopes converge to a unique value of 4/3 (in a ν ℱ ν convention). The thermal soft X-ray photons, which come either from the polar cap or from the surface, are Compton upscattered to a very high energy domain and form a separate spectral component peaking at ∼1 TeV. We discuss the observability of millisecond pulsars by future high‐energy instruments and present two rankings relevant for GLAST and MAGIC. We point to the pulsar J0437−4715 as a promising candidate for observations.  相似文献   

12.
We report on searches of the globular cluster Terzan 5 for low-luminosity and accelerated radio pulsars using the 64-m Parkes radio telescope. One new millisecond pulsar, designated PSR J1748−2446C, was discovered, having a period of 8.44 ms. Timing measurements using the 76-m Lovell radio telescope at Jodrell Bank show that it is a solitary pulsar and lies close to the core of the cluster. We also present the results of timing measurements which show that the longer period pulsar PSR J1748−2444 (formerly known as PSR B1744−24B) lies 10 arcmin from the core of the cluster and is unlikely to be associated with the cluster. We conclude that there are further pulsars to be detected in the cluster.  相似文献   

13.
We compare ultraviolet (UV) spectra of the recent soft X-ray transients XTE J1118+480 and XTE J1859+226. The emission line strengths in XTE J1118+480 strongly suggest that the accreting material has been CNO processed. We show that this system must have come into contact with a secondary star of about 1.5 M, and an orbital period ∼15 h, very close to the bifurcation value at which the nuclear and angular momentum loss time-scales are similar. Subsequent evolution to the current period of 4.1 h was driven by angular momentum loss. In passing through a period of 7.75 h the secondary star would have shown essentially normal surface abundances. XTE J1118+480 could thus represent a slightly later evolutionary stage of A0620-00. We briefly discuss the broad Ly α absorption wings in XTE J1118+480.  相似文献   

14.
We present a modified scenario of gamma-ray emission from pulsars within the framework of polar cap models. Our model incorporates the possible acceleration of electron–positron pairs created in magnetospheres, and their subsequent contribution to the gamma-ray luminosity L γ. It also reproduces the empirical trend in L γ for seven pulsars detected with Compton Gamma-Ray Observatory ( CGRO ) experiments. At the same time it avoids basic difficulties faced by theoretical models when confronted with observational constraints.   We show that the classical and millisecond pulsars form two distinct branches in the L γ— L sd diagram (where L sd is the spin-down luminosity). In particular, we explain why the millisecond pulsar J0437−4715 has not been detected with any of the CGRO instruments despite its very high position in the ranking list of spin-down fluxes (i.e. L sd/ D 2, where D is a distance). The gamma-ray luminosity predicted for this particular object is about one order of magnitude below the upper limit set by EGRET.  相似文献   

15.
Using X-ray data from the Rossi X-ray Timing Explorer , we report the pulse timing results of the accretion-powered, high-mass X-ray binary pulsar 4U 1907+09, covering a time-span of almost two years. We measured three new pulse periods in addition to the previously measured four pulse periods. We are able to connect pulse arrival times in phase for more than a year. The source has been spinning down almost at a constant rate, with a spin-down rate of     for more than 15 yr. Residuals of pulse arrival times yield a very low level of random-walk noise, with a strength of ∼     on a time-scale of 383 d, which is 40 times lower than that of the high-mass X-ray binary pulsar Vela X-1. The noise strength is only a factor of 5 greater than that of the low-mass X-ray binary pulsar 4U 1626−67. The low level of the timing noise and the very stable spin-down rate of 4U 1907+09 make this source unique among the high-mass X-ray binary pulsars, providing another example, in addition to 4U 1626−67, of long-term quiet spin down from an accreting source. These examples show that the extended quiet spin-down episodes observed in the anomalous X-ray pulsars 1RXS J170849.0−400910 and 1E 2259+586 do not necessarily imply that these sources are not accreting pulsars.  相似文献   

16.
The Parkes High-Latitude pulsar survey covers a region of the sky enclosed by Galactic longitudes 220° < l < 260° and Galactic latitudes | b | < 60°. The observations have been performed using the 20-cm multibeam receiver on the Parkes 64-m radio telescope. A total of 6456 pointings of 265 s each have been collected. The system adopted provided a sensitivity limit, for long-period pulsars with 5 per cent duty cycles, of ∼0.5 mJy. Data analysis resulted in the detection of 42 pulsars of which 18 were new discoveries. Four of these belong to the class of the millisecond – or recycled – pulsars; three of these four are in binary systems. The double pulsar system J0737−3039 is among those and has been presented elsewhere. Here, we discuss the other discoveries and provide timing parameters for the objects for which we have a phase-connected solution.  相似文献   

17.
We present results from our Chandra and XMM–Newton observations of two low-luminosity X-ray pulsators  SAX J1324.4−6200  and  SAX J1452.8−5949  which have spin periods of 172 and 437 s, respectively. The XMM–Newton spectra for both sources can be fitted well with a simple power-law model of photon index,  Γ∼ 1.0  . A blackbody model can equally well fit the spectra with a temperature,   kT ∼  2 keV, for both sources. During our XMM–Newton observations,  SAX J1324.4−6200  is detected with coherent X-ray pulsations at a period of 172.86 ± 0.02 s while no pulsations with a pulse fraction greater than 18 per cent (at 95 per cent confidence level) in 0.2–12 keV energy band are detected in  SAX J1452.8−5949  . The spin period of  SAX J1324.4−6200  is found to be increasing on a time-scale of     which would suggest that the accretor is a neutron star and not a white dwarf. Using subarcsec spatial resolution of the Chandra telescope, possible counterparts are seen for both sources in the near-infrared images obtained with the son of infrared spectrometer and array camera (SOFI) instrument on the New Technology Telescope. The X-ray and near-infrared properties of  SAX J1324.4−6200  suggest it to be a persistent high-mass accreting X-ray pulsar at a distance  ≤8 kpc  . We identify the near-infrared counterpart of  SAX J1452.8−5949  to be a late-type main-sequence star at a distance ≤10 kpc, thus ruling out  SAX J1452.8−5949  to be a high-mass X-ray binary. However, with the present X-ray and near-infrared observations, we cannot make any further conclusive conclusion about the nature of  SAX J1452.8−5949  .  相似文献   

18.
We present an analysis of the Swift Burst Alert Telescope (BAT) and X-ray telescope (XRT) data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type I X-ray burst) from the surface of an accreting neutron star in a binary system. The X-ray binary nature is further confirmed by the report of a detection of a faint point source at the position of the XRT counterpart of the burst in archival XMM–Newton data approximately six year before the burst and in more recent XMM–Newton data obtained at the end of 2006 September (nearly four months after the burst). Since the source is very likely not a gamma-ray burst, we rename the source Swift J1749.4−2807, based on the Swift /BAT discovery coordinates. Using the BAT data of the type I X-ray burst, we determined that the source is at most at a distance of  6.7 ± 1.3 kpc  . For a transiently accreting X-ray binary, its soft X-ray behaviour is atypical: its 2–10 keV X-ray luminosity (as measured using the Swift /XRT data) decreased by nearly three orders of magnitude in about 1 day, much faster than what is usually seen for X-ray transients. If the earlier phases of the outburst also evolved this rapidly, then many similar systems might remain undiscovered because the X-rays are difficult to detect and the type I X-ray bursts might be missed by all the sky surveying instruments. This source might be part of a class of very fast transient low-mass X-ray binary systems of which there may be a significant population in our Galaxy.  相似文献   

19.
We present results from modelling of quasi-simultaneous broad-band (radio through X-ray) observations of the Galactic stellar black hole (BH) transient X-ray binary (XRB) systems XTE J1118+480 and GX 339−4 using an irradiated disc + compact jet model. In addition to quantifying the physical properties of the jet, we have developed a new irradiated disc model which also constrains the geometry and temperature of the outer accretion disc by assuming a disc heated by viscous energy release and X-ray irradiation from the inner regions. For the source XTE J1118+480, which has better spectral coverage of the two in optical and near-infrared (OIR) wavelengths, we show that the entire broad-band continuum can be well described by an outflow-dominated model + an irradiated disc. The best-fitting radius of the outer edge of the disc is consistent with the Roche lobe geometry of the system, and the temperature of the outer edge of the accretion disc is similar to those found for other XRBs. Irradiation of the disc by the jet is found to be negligible for this source. For GX 339−4, the entire continuum is well described by the jet-dominated model only, with no disc component required. For the two XRBs, which have very different physical and orbital parameters and were in different accretion states during the observations, the sizes of the jet base are similar and both seem to prefer a high fraction of non-thermal electrons in the acceleration/shock region and a magnetically dominated plasma in the jet. These results, along with recent similar results from modelling other galactic XRBs and AGNs, may suggest an inherent unity in diversity in the geometric and radiative properties of compact jets from accreting black holes.  相似文献   

20.
The accretion-induced neutron star (NS) magnetic field evolution is studied through considering the accretion flow to drag the field lines aside and dilute the polar-field strength, and as a result the equatorial field strength increases, which is buried inside the crust on account of the accretion-induced global compression of star crust. The main conclusions of model are as follows: (i) the polar field decays with increase in the accreted mass; (ii) the bottom magnetic field strength of about 108 G can occur when the NS magnetosphere radius approaches the star radius, and it depends on the accretion rate as     ; and (iii) the NS magnetosphere radius decreases with accretion until it reaches the star radius, and its evolution is little influenced by the initial field and the accretion rate after accreting  ∼0.01 M  , which implies that the magnetosphere radii of NSs in low-mass X-ray binaries would be homogeneous if they accreted the comparable masses. As an extension, the physical effects of the possible strong magnetic zone in the X-ray NSs and recycled pulsars are discussed. Moreover, the strong magnetic fields in the binary pulsars PSR 1831−00 and PSR 1718−19 after accreting about  0.5 M  in the binary-accretion phase,  8.7 × 1010  and  1.28 × 1012 G  , respectively, can be explained through considering the incomplete frozen flow in the polar zone. As an expectation of the model, the existence of the low magnetic field  (∼3 × 107 G)  NSs or millisecond pulsars is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号