共查询到20条相似文献,搜索用时 15 毫秒
1.
I. Ali Mohd. Asim T. A. Khan 《International Journal of Environmental Science and Technology》2013,10(2):377-384
Removal of arsenite from aqueous solution was carried out using electro-coagulation method. The experiments were conducted using copper–copper and zinc–zinc electrodes. The optimized experimental parameters were 2.0 mg/L initial concentration, 16.0-min processing time, 6.0 pH, 3.0-V applied voltage and 30 °C temperature for zinc–zinc electrodes while these values for copper–copper electrodes were 2.0 mg/L initial concentration, 20.0-min processing time, 7.0 pH, 5.0-V applied voltage and 30 °C temperature. The results demonstrated that zinc–zinc and copper–copper electrodes removed arsenite up to 99.89 and 99.56 %, respectively. The treated water was clear, colorless and odorless without any secondary contamination. There was no change in water quality after the removal of arsenite. The reported method is capable to remove arsenite from water at 6–7 pH range, which is a pH range of natural water. Therefore, this method may be the choice of arsenite removal from natural ground water. 相似文献
2.
3.
Gökhan Zengin 《Environmental Earth Sciences》2013,70(7):3031-3041
In this study, the feasibility of using a low-cost adsorbent mixture composed of leonardite (L) and clinoptilolite (C) was evaluated by batch adsorption method using different parameters such as mixing ratio, contact time, pH, temperature, and adsorbent amount for the removal of Zn (II) ions from an aqueous solution. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Additionally, leonardite–clinoptilolite mixture was analyzed by scanning electron microscopy coupled with energy dispersive X-ray. The Zn (II) adsorption along with an unprecedented adsorption capacity of 454.55 mg g?1 for unmodified natural sorbents was obtained by mixing leonardite and clinoptilolite (LC) without any pretreatment at a ratio of 3:1, using 0.1 g of sorbent at a pH 6, for 2 h of contact time. The experimental data showed a good fit for the Langmuir isotherm model. The thermodynamic parameters revealed that the present adsorption process was spontaneous and exothermic in nature (25–50 °C). The kinetic results of the adsorption showed that the Zn (II) adsorption onto the LC follows pseudo-second-order model. The resultant LC mixture has an excellent adsorption capacity of a Zn (II) aqueous solution, and data obtained may form the basis for utilization of LC as an unpretreated low-cost adsorbent for treatment of metalliferous industrial wastewater. 相似文献
4.
Qing LIN Xinying ZHANG Guijin LU 《中国地球化学学报》2006,25(B08):215-216
Lead is one of the major heavy-metal contaminants in water environments. It can exert a stress on the growth of submersed plants through changing the activities of carbon-fixation enzymes in their photosynthesis. In this work, a worldwide distributed species of submersed plants- Potamogeton pectinatus, which can survive in different water environments such as in Dianchi Lake, a severe eutrophic lake, was cultivated in improved Hoagland's solution and treated with different concentrations of lead. In order to realize the effect of lead on the photosynthesis of this plant, the chlorophyll contents were determined and the activities of carbon-fixation enzymes including ribulose bisphosphate carboxylase (RuBPc), phosphoenolpyruvate carboxylase (PEPc) and carbonic anhydrase (CA) were analyzed. 相似文献
5.
We conducted powder neutron diffraction for δ-AlOOH samples with and without Mg and Si ions under ambient conditions in order
to investigate the long-standing problem of the symmetry of this phase. The observed reflection conditions clearly show that
the space group of pure δ-AlOOH is P21
nm with ordered hydrogen bonds, whereas that of δ-(Al0.86Mg0.07Si0.07)OOH is Pnnm or Pnn2 with disordered hydrogen bonds. It is more likely that the space group of δ-(Al0.86Mg0.07Si0.07)OOH is Pnnm, because cation or hydrogen ordering that breaks the mirror plane perpendicular to c axis in the Pnnm structure would not occur. The previously reported inconsistency for the space group of this phase was caused by the substitution
of Mg and Si ions to Al site, i.e., the disordered cations with different valences may fluctuate hydrogen positions, and the
disordered hydrogen causes the symmetry change. 相似文献
6.
7.
《International Geology Review》2012,54(1):116-129
The Arapuçandere Pb–Zn–Cu ore body is a typical vein-type lead–zinc deposit of the Biga Peninsula, and is currently being mined for lead and zinc. In the study area, Permian–Triassic metamorphic rocks, Triassic metaclastic and metabasic rocks, Oligocene–Miocene granitoids, Miocene volcanic rocks, and Quaternary terrigenous sediments crop out. The ore deposits developed as Pb–Zn–Cu-bearing veins along faults in Triassic metasandstone and metadiabase. Microscopic studies reveal that the veins contain galena, sphalerite, chalcopyrite, pyrite, marcasite, covellite, and specular hematite as ore minerals, and quartz, calcite, and barite as gangue minerals. Analysed sulphur-isotope compositions (δ34SVCDT) of galena, sphalerite, and chalcopyrite range from ? 5.9 to ? 1.9‰ (average ? 3.4‰), from ? 5.5 to ? 1.7‰ (average ? 4.2 ‰), and from ? 3.5 to ? 0.9‰ (average ? 2.6‰), respectively; that of H2S in the hydrothermal fluid was in the calculated range of ? 5.8 to +0.1‰ (average ? 2.5‰). These isotopic values suggest that magmatic sulphur dominates in sulphides, mixed with minor, isotopically light sulphur. Because no contemporaneous magmatic activity is associated with mineralization, it may be assumed that sulphur was leached from the surrounding Triassic units, mainly from metabasic, partly from metaclastic rocks. Lead-isotope studies indicate a model age of 114–63 Ma for the lead reservoir, in accord with possible sulphur-bearing local source rocks. Thus, the sulphur and lead deposited in the studied ore veins were probably leached from Triassic metabasic and metaclastic rocks some time during the Early Cretaceous to the Palaeocene. 相似文献
8.
9.
《International Geology Review》2012,54(5):375-387
We use updated rotations within the Pacific-Antarctica-Africa-North America plate circuit to calculate Pacific-North America plate reconstructions for times since chron 13 (33 Ma). The direction of motion of the Pacific plate relative to stable North America was fairly steady between chrons 13 and 4, and then changed and moved in a more northerly direction from chron 4 to the present (8 Ma to the present). No Pliocene changes in Pacific-North America plate motion are resolvable in these data, suggesting that Pliocene changes in deformation style along the boundary were not driven by changes in plate motion. However, the chron 4 change in Pacific-North America plate motion appears to correlate very closely to a change in direction of extension documented between the Sierra Nevada and the Colorado Plateau. Our best solution for the displacement with respect to stable North America of a point on the Pacific plate that is now near the Mendocino triple junction is that from 30 to 12 Ma the point was displaced along an azimuth of ~N60°W at rate of ~33 mm/yr; from 12 Ma to about 8 Ma the azimuth of displacement was about the same as previously, but the rate was faster (~52 mm/yr); and since 8 Ma the point was displaced along an azimuth of N37°W at a rate of ~52 mm/yr. We compare plate-circuit reconstructions of the edge of the Pacific plate to continental deformation reconstructions of North American tectonic elements across the Basin and Range province and elsewhere in order to evaluate the relationship of this deformation to the plate motions. The oceanic displacements correspond remarkably well to the continental reconstructions where deformations of the latter have been quantified along a path across the Colorado Plateau and central California. They also supply strong constraints for the deformation budgets of regions to the north and south, in Cascadia and northern Mexico, respectively. We examine slab-window formation and evolution in a detailed re-analysis of the spreading geometry of the post-Farallon microplates, from 28 to 19 Ma. Development of the slab window seems linked to early Miocene volcanism and deformation in the Mojave Desert, although detailed correlations await clarification of early Miocene reconstructions of the Tehachapi Mountains. We then trace the post-20 Ma motion of the Mendocino slab window edge beneath the Sierran-Great Valley block and find that it drifted steadily north, then stalled just north of Sutter Buttes at ~4 Ma. 相似文献
10.
Heinz-Günter Stosch Rolf L. Romer Farahnaz Daliran Dieter Rhede 《Mineralium Deposita》2011,46(1):9-21
Iron oxide–apatite (IOA) deposits, often referred to as Kiruna-type iron ore deposits, are known to have formed from the Proterozoic
to the Tertiary. They are commonly associated with calc–alkaline volcanic rocks and regional- to deposit-scale metasomatic
alteration. In the Bafq District in east Central Iran, economic iron oxide–apatite deposits occur within felsic volcanic tuffs
and volcanosedimentary sequences of Early Cambrian age. In order to constrain the age of formation of these ores and their
relationship with the Early Cambrian magmatic event, we have determined the U–Pb apatite age for five occurrences in the Bafq
District. In a 206Pb/238U vs. 207Pb/235U diagram, apatite free of or poor in inclusions of other minerals plots along the Concordia between 539 and 527 Ma with four
out of five samples from one deposit clustering at the upper end of this range. For this deposit, we interpret this cluster
to represent the age of apatite formation, whereas the spread towards younger ages may reflect either minor Pb loss or several
events of IOA formation. Apatite with inclusions of monazite (±xenotime) yields disturbed systems with inclusions having developed
after formation of the iron ore–apatite deposits, possibly as late as 130–140 Ma ago. Obtained apatite ages confirms that
(IOA) and the apatite-rich rocks (apatites) of the Bafq district formed coevally with the Early Cambrian magmatic (-metasomatic)
events. 相似文献
11.
12.
On the basis of an experimental study and thermodynamic calculation, the mechanisms of paragenesis and separation of silver, lead and zinc in the hydrothermal system have been studied. At acidic to nearly neutral pH, their chloride complexes are stable, and among them the chloride complexes of zinc are most stable. And the sulfide complexes are the dominant species at nearly neutral to alkaline pH,while the sulfide complexes of silver are most stable. With decreasing temperature, [ Cl^-] ,fO2, and increasing pH, the solubilities of silver, lead and zinc will decrease, leading to their deposition and separation. For sulfide complexes, the concentrations of reduced sulfur and pH are two important factors affecting their stabilities. Complexes of different forms and stabilities respond to the variation of conditions to different extents, which gave rise to the paragenesis and separation of silver, lead and zinc in the whole ore-forming process of dissolution, transport and deposition. 相似文献
13.
The carbon–alumina composite pellet was developed for the adsorption of acid fuchsin from its aqueous solution. The composite pellet was characterized using Brunauer–Emmett–Teller method, scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy. The adsorption capacity of commercial alumina, commercial activated carbon and the prepared composite pellet was investigated against acid fuchsin, and the adsorption capacity was found to be increased in the order of alumina < carbon–alumina composite pellet < activated carbon. Although the adsorption capacity of carbon–alumina composite pellets was less than that of activated carbon, the use of the pelletized form of the present adsorbent was proven to be advantageous for the use in the packed-bed column. The experimental data were fitted to Langmuir, Freundlich and Temkin adsorption isotherms, and the equilibrium behavior was well explained by Langmuir isotherm. Besides, the kinetic behavior was well predicted by pseudo-second-order kinetics. The effects of inlet dye concentration (10–20 mg/L), feed flowrate (5–15 mL/min) and bed height (2.54–7.62 cm) on the breakthrough characteristics were investigated using a fixed-bed column. The maximum removal capacity in the column study was found to be 343.87 mg/L with an initial dye concentration and flowrate of 20 and 10 mL/min according to Bohart–Adams model. The breakthrough behavior was also effectively described by the Yoon–Nelson and Clark models. 相似文献
14.
Triton X-100 (TX100) and Brij 35 (B35) were used to investigate the elevated critical micelle concentration (CMC) induced by surfactant sorption and its influence on PAH removal in soil washing systems. The surface tension technique was applied to determine the CMC and the apparent CMC (CMCsoil) in soil–water systems. Surfactant sorption experiments were conducted by the batch equilibration technique. Surfactants sorbed on the soil at concentrations below the CMCsoil were quantified with data from the surface tension experiments for both an aqueous system and a soil–water system. Due to sorption, the CMCsoil values of the two surfactants are 2.75 and 6.31 times their corresponding CMC values in aqueous solutions, respectively. At concentrations below CMCsoil, the loss of B35 (92–99.7 %) was greater than that of TX100 (63–92 %). The PAH removal efficiencies are greatly dependent on the CMCsoil value. At surfactant concentrations below CMCsoil, the PAH removal is very low and remains almost invariable. Whereas, at concentrations above CMCsoil, the PAH removal increases greatly. B35 inhibited PAH desorption at concentrations below its CMCsoil. For TX100, some degree of PAH desorption enhancement was observed at concentrations below its CMCsoil. CMCsoil is a key parameter while selecting a surfactant for a specific soil washing system, only surfactant concentrations above their CMCsoil should be evaluated. 相似文献
15.
Guodong ZHENG Dimitris Dermatas Zhiguang SONG Gang SHEN Xuanfeng XU 《中国地球化学学报》2006,25(B08):128-128
Lead (Pb) is normally considered as a trace element in soils and sediments for geochemical study. However, the concentration of Pb in firing range soils is generally so high that it should be considered as a major element during the evaluation of the soil geochemical properties. Soil organic matter (SOM) has been reported as one of the major factors to expedite the corrosion of metallic lead (Pb) in acidic and organic-rich soils. The main impacts of SOM on the fate and transport of Pb in firing range soils lie in the following two aspects; (1) the complexation of organic matter with Pb, which has received lots of attention, and; (2) changes in soil redox potential due to the transformation of SOM and its subsequent impact on Pb speciation, which has rarely been investigated. Soils from 6 different firing ranges are selected for this study. These samples have been stored under a closed condition for more than 3 years. The soil moisture contents were well-retained, as all the samples were kept in closed plastic buckets. The analytical data showed that the summation of the soil total organic carbon content (TOC) and inorganic carbon contents (TIC) were consistent with soil total carbon contents (TC) measured in previous years, although the TOC and TIC contents have changed respectively after years of storage. In general, it is observed that the soil TOC decreased against an increase of TIC. The mass balance on such a transformation suggested a major conversion of organic carbon (Corg) to inorganic carbon (CO3^2-) in the stored soils. 相似文献
16.
Tongjing Zou Tingxuan Li Xizhou Zhang Haiying Yu Huagang Huang 《Environmental Earth Sciences》2012,65(3):621-630
Screening out plants that are hyper-tolerant to certain heavy metals plays a fundamental role in remediation of mine tailing.
In this study, nine dominant plant species growing on lead–zinc mine tailing and their corresponding non-mining ecotypes were
investigated for their potential phytostabilization of lead. Lead concentration in roots of these plants was higher than in
shoots, and the highest concentrations of lead were found in Athyrium wardii: 15542 and 10720 mg kg−1 in the early growth stage (May) and vigorous growth stage (August) respectively, which were 426 and 455 times higher than
those of the non-mining ecotypes. Because of poor lead translocation ability, lead accumulation in roots reached as high as
42 mg per plant. Available lead in the rhizosphere soils of A. wardii was 310 mg kg−1, which was 17 times higher than that of the non-rhizosphere soil. Lead concentrations of roots for the nine mining ecotypes
were positively correlated with available lead in the rhizosphere soils, whereas a negative correlation was observed in the
non-mining ecotypes. These results suggest that A. wardii was the most promising candidate among the tested species for lead accumulation in roots, and it could be used for phytostabilization
in lead polluted soils. 相似文献
17.
Li SUN Yuangen YANG Wei Yang BAI 《中国地球化学学报》2006,25(B08):38-38
A study of soils and four flourish plants in the heavy metal polluted area by lead/zinc mine in northwestem Guizhou Province. In this study four plants were collected, the species were: Sambucus Chinensis Linn, lxeris gracilis (DC.) stebb, Buddlej daxidii Franch.ex.sinarum lmp. and Senecio scandens. The fractions of heavy metals in the soil were distinguished by the short sequential extraction procedure (I. Maiz, 1997), the available fractions and residual fractions of heavy metals in the soil could be separated. The plant digestion was effected by means of the microwave digest system (Durali Mendil, 2004). In each step Pb, Zn and Cd were analyzed by FAAS. This study analyzed the heavy metals (Pb, Zn, Cd) contents of the soil and plant. It is found that the contents in the plant increased linearly with heavy metal concentrations in soil. The concentrations of Pb, Zn, Cd in the four plants follow the order of Zn〉Pb〉Cd. Sambucus Chinensis Linn and lxeris gracilis (DC.) stebb were proved to have good metal-enrichment and transport ability for heavy metals in the soil. 相似文献
18.
Shiyong Yan Yi Li Zhiguo Li Guang Liu Zhixing Ruan Zian Li 《Environmental Earth Sciences》2018,77(23):773
Mountain glacier is one of the extremely sensitive indicators for climate change, and its surface motion distribution and corresponding variation are valuable information for understanding ice mass exchange and glacier dynamics. This paper presents the long-term ice velocity distributions of Inylchek Glacier in the Tianshan region by pixel-tracking algorithm with time-series Landsat imagery acquired during 2006–2016. Then the monitored ice motion fields of Inylchek Glacier were carefully analyzed and revealed a generally similar spatial distribution characteristic. Most of the ice of the North Inylchek Glacier remains in a stagnant state except for the upstream part, but a relatively high velocity of 20–40 cm/day with an RMSE of 3 cm/day was observed on most part of the South Inylchek Glacier, except for the slow-moving glacier terminus. We also state the glacier dynamics around Lake Merzbacher and their possible effect on its glacier lake outburst flood (GLOF) risk. Besides, the surface velocity distribution on South Inylchek Glacier surface during the ablation period from 2014 to 2016 was also established and also compared with annual velocity. The corresponding difference yields that there is a positive relation between ice motion and temperature variation. Therefore, the time-series ice surface motion yielded by the Landsat imagery thus could provide us an efficient and low-cost way to analyze the current state and changes in glaciers, thanks to the continuous and regular spaceborne observations provided by the Landsat satellites. 相似文献
19.
Yu LIU Huanyan XU 《中国地球化学学报》2006,25(B08):104-105
The sorption of aqueous cadmium on carbonate-hydroxyapatite (CHap) is a complicated non-homogeneous solid/water reaction, From kinetic point of view, it can be described by two stages: at the earlier stage, reaction rate is so fast that its kinetic course is intricate, and at the later stage, the rate of reaction becomes slow and the process of reaction accords with one order reaction kinetic equation. Experimental results show that the relationship between reaction rate constant kl and temperature T accords to Arrhenius Equation, and the activation energy of sorption (Ea) is 6.075 J/mol and frequency factor (A) is 220 s^-1. At the same time, reaction rate constant kl increases with decreasing Cd^2+ initial concentration, on the contrary, with increasing pH and CHap dosage. 相似文献
20.
G. Makharadze G. Supatashvili T. Makharadze 《International Journal of Environmental Science and Technology》2018,15(10):2165-2168
Natural macromolecular organic substances—fulvic acids—take an active part in complex formation processes and stipulate migration forms of heavy metals in natural waters. In spite of researches, experimental data on stability constants of complex compounds of fulvic acids with heavy metals (among them zinc) are heterogenous and they differ in several lines from each other. One of the reasons of such condition is ignoring an average molecular weight of the associates of fulvic acids, which finally causes the wrong results. Complex formation process between zinc (II) and fulvic acids was studied by the solubility method at pH = 8.0. ZnO suspension was used as a solid phase. Fulvic acids were isolated from Paravani lake by the adsorption chromatographic method. This article shows that during the complex formation process, every 1/5 part of an associate of fulvic acids inculcates into zinc’s (II) inner coordination sphere, as an integral ligand. So it may assume that the average molecular weight of the associate of fulvic acids which takes part in complex formation process equals to 1252. This part of the associate of fulvic acids was conventionally called an “active associate.” The average molecular weight of the “active associate” was used for determining the composition of zinc fulvate complex, the concentration of free ligand and stability constant, which equals to \(1.6 \times 10^{4}\). 相似文献