首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The aim of this study is the evaluation of models that estimate daily global solar radiation on tilted surfaces from that measured on horizontal surfaces. Global solar radiation incident on a tilted plane consists of three components: beam radiation, diffuse radiation and reflected radiation from the ground. The Klein (1977) method, modified by Andersen (1980), was used for estimating direct solar radiation incident on tilted surfaces and an isotropic model was used for estimating reflected solar radiation incident on a tilted plane. In contrast models for the diffuse radiation component show major differences, which justifies a validation study which has been done. Eight models for derivation of daily slope diffuse irradiance from daily horizontal diffuse irradiance were tested against recorded slope irradiances at Karaj (35°55′ N; 50°56′ E), Iran. The following models were included: Badescu (2002), Tian et al. (2001), Reindl et al. (1990), Skartveit and Olseth (1986), Koronakis (1986), Steven and Unsworth (1980), Hay (1979) and Liu and Jordan (1962). All the models use the same method for calculating beam radiation as well as ground reflected radiation. However, only diffuse component of radiation was compared. Statistical indices showed that Reindl’s model gives the most accurate prediction for the south-facing surface and Koronakis’s model performs best for the west-facing surface. The Relative Root Mean Square Errors (%RMSE), except for Steven and Unsworth’s model that has unacceptable results, for whole data range from 1.02 to 10.42%. In general, Reindl’s model produces the best agreement with the measured tilted data.  相似文献   

3.
魏晓雯  陈亮  赵蕾  陈明 《气象科技》2021,49(5):754-761
本文以海南洋浦港为例,利用2015—2019年大风资料,通过合成分析等方法深入探讨了不同类型大风过程的环流特征、发生机制及其预报指标。结果表明:(1)洋浦港大风过程按照影响系统可分为冷空气型、切变线型、热带气旋型和热低压型4种。(2)冷空气型大风主要是由强冷平流引发的;当925hPa关键区24h降温超过6℃且北风分量大于11.5m/s时,洋浦港6h后易发生冷空气型大风;切变线型大风主要产生于强对流引发的雷暴大风、飑线等;当925hPa低空切变线、500hPa南支槽等天气尺度系统出现有利配置,对流有效位能CAPE≥1500J·kg~(-1),且具有较合适的对流抑制能量CIN值时,易发生切变线型大风;热低压型大风与海陆热力差异引起的海风锋密切相关;当海南岛西北部陆地与近海海面的6h变温之差≥3.5℃,CAPE≥1500J·kg~(-1),CIN≤20J·kg~(-1)时,海风锋极易触发雷暴大风等强对流天气;热带气旋型大风主要发生在TC中心附近的等压线密集带以及外围螺旋雨带的中小尺度对流系统中。业务预报时可在数值预报基础上结合统计规律以及卫星、雷达等实况资料综合判定风力等级。  相似文献   

4.
The Mei-yu front system occurring from 23 to 27 June 1999 consists of the Mei-yu front and the dewpoint front, which confine a warm core extending from the eastern flank of the Tibetan Plateau to the west of 145°E. To further understand the synopticscale physical mechanisms associated with the Mei-yu front system, the present study proposes another insight into the physical significance of the x-component relative vorticity (XRV) whose vertical circulation is expected to tilt isentropic surfaces. The XRV equation diagnoses exhibit that the twisting effect of the planetary vorticity (TEPV) is positive along the Mei-yu front and negative in the dewpoint front region, and tilts isentropic surfaces from south to north in the Mei-yu frontal zone. Conversely, the meridional gradient of the atmospheric buoyancy (MGAB) tilts isentropic surfaces in the opposite direction and maintains negative in the regions where the TEPV is positive and vice versa. Thus, the TEPV plays the role of the Mei-yu frontogenesis, whereas the MGAB demonstrates the Meiyu frontolysis factor. Both terms control the evolution of the cross-front circulation. The other terms show much minor contributions in this case study. The present simulations also indicate that the weakening of the upper-level jet evidently induces the weakening of the Mei-yu front and reduces the amplitude of the East Asia cold trough. Furthermore, the impact can also penetrate into the lower troposphere in terms of mesoscale disturbances and precipitation, proving that the upper-level jet imposes a noticeable top-down influence on the Mei-yu front system.  相似文献   

5.
6.
This study examines the vorticity budgets, turbulent extended exergy and kinetic energy evolution equations to investigate the major dynamical and energy conversion processes contributing to the initiation and intensification of the cold vortex over Northeast China that occurred during June 19–22, 2009. The results show that the cyclonic vorticity was initiated in the lower troposphere due to the intense convergence of horizontal winds. The growth of cyclonic vorticity in the middle troposphere is mainly due to the vertical transportation of the vorticity, yet the increase of cyclonic vorticity in the upper troposphere primarily results from the horizontal advection of vorticity. Of special interest in this study is the evaluation of the role of thermal advections in the baroclinic development of the cold vortex. The results indicate that the rising of the air over relatively warm areas and the sinking of the air in relatively cold regions are favorable for releasing turbulent extended exergy $ \left( {e_{\text{t}} } \right) $ , which is later converted to turbulent kinetic energy $ \left( {k_{\text{t}} } \right) $ , and this process occurs during the initiation and intensification of the cold vortex. In addition, barotropic energy conversion is another important process that contributes to the growth of k t, and it strengthens gradually after the initiation of the cold vortex. Other than frictional consumption, the flux of k t in the vertical direction also depletes some of k t. The fluxes of e t, baroclinic energy conversions and diabatic generations are favorable factors for the growth of e t, whereas it decreases with time as a result of a large amount of e t that is released. Most of the energy conversion processes, including the baroclinic and the barotropic energy transformations and the energy conversions from e t to k t, as well as the fluxes of e t, are stronger in the lower troposphere than the other areas during the formation of the cold vortex. This accounts for the initiation of the cyclonic vorticity in the lower troposphere. Finally, the fact that the turbulent extended exergy releases primarily in the middle troposphere through the vertical thermal circulation is consistent with our understanding based on the vorticity budget analyses.  相似文献   

7.
Parameterization of evaporation from a non-plant-covered surface is very important in the hierarchy strategy of modelling land surface processes. One of the representations frequently used in its computation is the resistance formulation. The performance of the evaporation schemes using the , , and their combination resistance approaches to parameterize evaporation from bare soil surfaces is discussed. For that purpose, the nine schemes, based on a different dependence of and on volumetric soil moisture content and its saturated value, are used.The tests of performances of the considered schemes are based on time integrations by the land surface module (BARESOIL) using observed data. The 23 data sets at a bare surface experimental site in Rimski anevi, Yugoslavia on chernozem soil, were used for the resistance algorithm evaluation. The quality of the schemes was compared with the observed values of the latent heat flux using several statistical parameters.  相似文献   

8.
Summary This study presents high-resolution numerical simulations of north foehn in the Austrian Inn Valley which have been performed with the Penn State/NCAR mesoscale model MM5. As the Inn Valley is located north of the Alpine crest, north foehn occurs comparatively rarely in this valley, and there are only sparse observations available for this phenomenon. Simulations of the 24 January 1993 case as well as idealized simulations are performed to get a deeper insight into the dynamics of the north foehn. Moreover, the synoptic conditions leading to the occurrence of north foehn in the Inn Valley are investigated. The simulations indicate that there are at least four different paths for the foehn to penetrate into the valley. Two of them are running along side valleys entering the upper Inn Valley from the west. These flow paths appear to be most important when the large-scale flow has a significant westerly component. The other possible flow paths enter the Inn Valley from the northwest or north and require a strong northerly component of the large-scale flow. From a dynamical point of view, north foehn appears to be similar to the well researched south foehn in that vertically propagating gravity waves force the descent of the ambient flow into the valleys. However, there are also indications that trapped lee waves have a significant impact on the surface wind field, which has not been reported for south foehn so far. Moreover, the model results show that a precondition for the formation of north foehn in the Inn Valley is the absence of significant orographic precipitation. Evaporative cooling induced by precipitation falling into subsaturated air not only reduces the surface temperatures but also inhibits the formation of large-amplitude gravity waves, suppressing the development of stormy surface winds.  相似文献   

9.
10.
This paper addresses the relation between the net-radiation (Q *) and the ground heat flux (Q G), the energy stored in the soil ( $\Updelta Q_{\rm S}$ ), and the residual of the energy partition (R = Q * ? Q H  ? Q E ) of urban and suburban areas of Oklahoma City, USA. These three forms of energy were observed or estimated from observations taken during Joint Urban 2003 Campaign. The database includes net-radiation, soil temperature, ground heat flux, and turbulent fluxes. In most cases the estimates of the energy stored in the soil were obtained by assuming roughly a certain type of soil and an effective soil depth. From the residuals it seems to be possible to distinguish the urban boundary layer from the suburban boundary layer when plotted as a function of net-radiation. Hysteresis coefficients were computed for fits of net-radiation against R, $\Updelta Q_{\rm S}$ and Q G. In particular, the hysteresis patterns show that Q * vs. R represents clearer urban areas or suburban areas under the influence of an urban “plume”. On the other hand, hysteresis curves obtained from $\Updelta Q_{\rm S}$ or Q G account for better the ground composition. A possible consequence is that the land use of urban areas could be roughly inferred from curve shapes such as Q * vs. R, or Q * versus another input variable representing the storage term. The objective is to show the variability of the subsurface-related energy fluxes across an urban area using these three different quantities and also to show that $\Updelta Q_{\rm S}, \,Q_{\rm G}$ , or R (and their corresponding hysteresis curves) are likely to be quantitatively different, which have not been clearly stated in the literature.  相似文献   

11.
12.
利用2007年锦州玉米农田生态系统野外观测站玉米生长季辐射资料,对地表反照率综合模型、半经验双层模型和简化双层模型模拟精度进行比较。结果表明:简化双层模型在玉米生育初期模拟能力较差,其他时段模拟能力都较强,尤其在玉米生育后期更为明显;半经验双层模型除在玉米叶面积指数处于最大时期模拟误差较小外,其他时段基本无法模拟。综合模型大部分时段模拟能力都较强,仅在玉米生育后期模拟能力稍差,该模型对实现玉米农田地表反照率动态参数化更为理想,可为改进陆面过程模型提供参考。  相似文献   

13.
The mesoscale orographic effects on typhoon Aere's precipitation are simulated using an Advanced Regional Eta-coordinate Model (AREM) version 3.0. In particular, the effects of the latent heat release are studied by two comparable experiments: with and without condensational heating. The results show that the typhoon rainfall is tripled by the southeastern China mesoscale terrain, and the condensational heating is responsible for at least half of the increase. One role of the latent heat release is to warm the atmosphere, leading to a depression of the surface pressure, which then causes a larger pressure difference in the zonal direction. This pressure gradient guides the water vapour to flow into the foothills, which in turn amplifies the water vapour flux divergence amplified, causing the typhoon rainfall to increase eventually. The other role of the latent heat release is to make the convection more organized, resulting in a relatively smaller rain area and stronger precipitation.  相似文献   

14.
Climate change and human activities: a case study in Xinjiang, China   总被引:4,自引:0,他引:4  
We examined both long-term climate variability and anthropogenic contributions to current climate change for Xinjiang province of northwest China. Xinjiang encompasses several mountain ranges and inter-mountain basins and is comprised of a northern semiarid region and a more arid southern region. Climate over the last three centuries was reconstructed from tree rings and temperature series were calculated for the past 50 years using weather station data. Three major conclusions from these analyses are: (1) Although temperature varied considerably in Xinjiang over the last 200 years, it was non-directional until the last 50 years when a substantial warming trend occurred; (2) The semiarid North Xinjiang was representative of the northern hemisphere climate, while the more arid South Xinjiang resembled the southern hemisphere climate, meanwhile, (3) The entire Xinjiang province captured the global-scale climate signal. We also compared human contributions to global change between North and South Xinjiang, including land cover/land use, population, and greenhouse gas production. For both regions, urban areas acted as heat islands; and large areas of grassland and forest were converted to barren land, especially in North Xinjiang. Additionally, North Xinjiang also showed larger increase in population and greenhouse gas emissions mainly associated with animal production than those in South Xinjiang. Although Xinjiang province is a geographically coupled mountain–basin system, the two regions have distinct climate patterns and anthropogenic activities related to land cover conversion and greenhouse gas production.  相似文献   

15.
16.
Theoretical and Applied Climatology - Temperature and precipitation are the basic elements of climate, and their variation can change the water demands of different uses. In this study, the trend...  相似文献   

17.
Theoretical and Applied Climatology - This study investigates the spatial and temporal patterns of trends and magnitude of rainfall on monthly, seasonal and annual time scales of 13 districts of...  相似文献   

18.
Cloud and precipitation parameterization schemes are evaluated, and their sensitivity to the method and/or parameters used to determine cloud physical processes is examined using a singlecolumn version of the Unified Model (SCUM). In the experiment for TWP-ICE, cloud fraction is overestimated (underestimated) in the upper (lower) troposphere due to the wet (dry) bias. The precipitation rate is well simulated during the active monsoon period, but overestimated during the suppressed monsoon and clear skies periods. In the moist convection scheme, trigger condition and entrainment process affect the lower tropospheric humidity through the impact on convective occurrence frequency and intensity, respectively. Strengthening the trigger condition and using the adaptive entrainment method alleviate the low-level dry bias. In the microphysics scheme, more large-scale precipitation is produced with prognostic rain, due to rain sedimentation considering vertical velocity of rain drop, than with diagnostic rain. Less ice/snow deposition with the prognostic two-ice category results in lower ice water content and upper-level cloud fraction than with the diagnostic splitting method for the twoice category. In the cloud macrophysics scheme, the prognostic cloud fraction and cloud/ice water content scheme produces a larger cloud fraction and more cloud/ice water content than the diagnostic scheme, mainly due to detrainment from moist convection (cloud source) that surpasses the effect of convective heating and drying (cloud sink). This affects temperature by influencing the radiative, convective, and microphysical processes. The experiment with combined modifications in cloud and precipitation schemes shows that interaction between modified moist convection and cloud macrophysics schemes results in more alleviation of the cold bias not only at the lower levels but also at the upper levels.  相似文献   

19.
Accurate sea-level rise (SLR) vulnerability assessments are essential in developing effective management strategies for coastal systems at risk. In this study, we evaluate the effect of combining vertical uncertainties in Light Detection and Ranging (LiDAR) elevation data, datum transformation and future SLR estimates on estimating potential land area and land cover loss, and whether including uncertainty in future SLR estimates has implications for adaptation decisions in Kahului, Maui. Monte Carlo simulation is used to propagate probability distributions through our inundation model, and the output probability surfaces are generalized as areas of high and low probability of inundation. Our results show that considering uncertainty in just LiDAR and transformation overestimates vulnerable land area by about 3 % for the high probability threshold, resulting in conservative adaptation decisions, and underestimates vulnerable land area by about 14 % for the low probability threshold, resulting in less reliable adaptation decisions for Kahului. Not considering uncertainty in future SLR estimates in addition to LiDAR and transformation has variable effect on SLR adaptation decisions depending on the land cover category and how the high and low probability thresholds are defined. Monte Carlo simulation is a valuable approach to SLR vulnerability assessments because errors are not required to follow a Gaussian distribution.  相似文献   

20.
A number of turbulence parameterization schemes are available in the latest version (6.0) of the Regional Atmospheric Modelling System (RAMS). Chan in Meteorol Atmos Phys 103:145–157, (2009), studied the performance of these schemes by simulating the eddy dissipation rate (EDR) distribution in the vicinity of the Hong Kong International Airport (HKIA) and comparing with the EDR measurements of remote-sensing instruments at the airport. For the e-l (turbulent kinetic energy ? mixing length) scheme considered in that study, the asymptotic mixing length was assumed to be a constant. This assumption is changed in the present paper, a variable asymptotic mixing length is chosen and simulations of EDR fields are repeated for terrain-disrupted airflow in the vicinity of HKIA. It is found that, with a variable asymptotic mixing length, the performance of the e-l scheme is greatly improved. With suitable choice of the empirical constants in the turbulence closure, the accuracy of the EDR profile (in comparison with LIDAR and wind profiler measurements) is found to be comparable with that predicted by the Deardorff scheme. A study on the sensitivity of the simulation results to these empirical constants has also been performed. Moreover, as a follow-up of the previous study of Chan in Meteorol Atmos Phys 103:145–157, (2009), case studies have been conducted on the following issues of the model simulation of turbulence for aviation application: (a) the effect of vertical gridding on the simulation results, (b) possibility of false alarm (such as over-forecasting of EDR value) in light turbulence cases, and (c) the performance in the simulation of other turbulence intensity metric for aviation purpose, e.g. TKE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号