首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Petrological and chemical variations, as well as oxygen and strontium isotopic data are presented for metagabbros from the Romanche and Vema fracture zones. These rocks were affected by several types and degrees of alterations ranging from slight hydrothermal alteration to complete amphibolitization. Five major kinds of alteration processes ranging from late-magmatic deuteric alteration (stage I) to low temperature (<150 °C) alteration (stage V) were identified. Water-rock interactions between 300 and 650 °C are the most dominant interactions resulting in the most prevailing secondary mineralogical assemblages which characterize the amphibolite and/or greenschist facies (amphibole ± plagioclase ± epidote ± titanite ± chlorite ± prehnite). Hydrothermal alteration of these gabbroic rocks results in isotopic exchanges between rocks and seawater-derived fluids. These exchanges lead to decrease of gabbroic δ18O toward values as low as +3.9‰, and larger Sr isotopic variations than other oceanic gabbroic rocks (87Sr/86Sr ratios shift to 0.7029–0.7051). Calculation of a chemical budget indicates that metagabbros are hydrated and enriched in Fe and probably in Mg and Cl, while Si, Ca and Ti are released to the hydrothermal fluids. In addition to metamorphic recrystallization and geochemical transformation, hydrothermal alteration of oceanic gabbros contributes to the control of the global ocean geochemistry. Received: 8 March 1999 / Accepted: 12 July 1999  相似文献   

2.
Summary The eastern Pyrenees host a large number of talc-chlorite mineralizations of Albian age (112–97 Ma), the largest of which occur in the St. Barthelemy massif. There talc develops by hydrothermal replacement of dolostones, which were formed by alteration of calcite marbles. This alteration is progressive. Unaltered calcite marbles have oxygen isotope composition of about 25‰ (V-SMOW). The δ18O values decrease down to values of 12‰ towards the contact with dolostones. This 18O depletion is accompanied by Mg enrichment, LREE fractionation and systematic shifts in the Sr isotope compositions, which vary from 87Sr/86Sr = 0.7087–0.7092 in unaltered calcite marbles to slightly more radiogenic compositions with 87Sr/86Sr = 0.7094 near dolomitization fronts. Dolostones have δ18O values (about 9‰) lower than calcitic marbles, higher REE content and more radiogenic Sr isotope composition (87Sr/86Sr = 0.7109 to 0.7130). Hydrothermal calcites have δ18O values close to dolostones but substantially lower δ13C values, down to −6.5‰, which is indicative of the contribution of organic matter. The REE content of hydrothermal calcite is one order of magnitude higher than that of calcitic marbles. Its highly radiogenic Sr composition with 87Sr/86Sr = 0.7091 to 0.7132 suggests that these elements were derived from silicate rocks, which experienced intense chlorite alteration during mineralization. The chemical and isotopic compositions of the calcite marbles, the dolostones and the hydrothermal calcites are interpreted as products of successive stages of fluid-rock interaction with increasing fluid-rock ratios. The hydrothermal quartz, calcite, talc and chlorite are in global mutual isotopic equilibrium. This allows the calculation of the O isotope composition of the infiltrating water at 300 °C, which is in the δ18O = 2–4.5‰ range. Hydrogen isotope compositions of talc and chlorite indicate a δD = 0 to −20‰. This water probably derived from seawater, with minor contribution of evolved continental water.  相似文献   

3.
The epithermal Au-Ag Shkol'noe deposit is located in the Kandjol ore field, Kurama Mountains. This region is a part of the east-west trending Late Hercynian Bel'tau-Kurama volcanic belt, an Andean-style collisional margin. The deposit comprises a number of quartz-carbonate veins hosted by the syn-subductional Middle Carboniferous Karamazar granodiorites. The Au-Ag mineralization is considered to be the result of the earliest hydrothermal event in the region. The Rb-Sr isochron age 296.3 ± 1.3 Ma and an initial 87Sr/86Sr0=0.7071 ± 2 ratio were obtained for an adularia-sericite-quartz-calcite sample from Au-Ag mineralization. The 87Sr/86Sr ratio range from 0.70645 ± 10 to 0.70741 ± 10 was obtained for the calcites from the earlier and later mineral assemblages. The Rb-Sr age is interpreted as a real geological age of the Au-Ag mineralization. It corresponds to the initial stage of the Late Carboniferous – Early Permian collision following the main syn-subduction stage of Bel'tau-Kurama volcanic belt evolution. The comparison of the Rb-Sr age with previously obtained 40Ar-39Ar and K-Ar data for adularia from the Au-Ag mineralization implies that gangue minerals of the Shkol'noe deposit bears the fingerprint of at least three events in its history. They are (1) Au-Ag mineralization at 296.3 ± 1.3 Ma; and (2) two subsequent thermal pulses at 277 ± 4 and 263–267 ± 8 Ma. The minimum time scale for the hydrothermal activity within the Shkol'noe deposit is thus approximately 30 million years. A general uniformity of the strontium source during the hydrothermal processes within the Au-Ag Shkol'noe deposit (87Sr/86Sr0=0.70645 ± 10 to 0.70741 ± 10) is suggested as well as within the Bel'tau-Kurama belt (87Sr/86Sr0=0.7051–0.707). The slight shift into a higher strontium isotope composition of the hydrothermal minerals of the Shkol'noe deposit in comparison with other deposits and rocks of the Bel'tau-Kurama belt may be ascribed to the contribution of relatively radiogenic strontium from the Karamazar-type granitoids. The mobilization of low radiogenic strontium during propylitic alteration of diabase dikes emplaced after the Au-Ag mineralization could be responsible for comparatively low 87Sr/86Sr ratios in some of the latest post-dike carbonates. Received: 4 August 1998 / Accepted: 25 August 1998  相似文献   

4.
The 40Ar/39Ar geochronological method was applied to date magmatic and hydrothermal alteration events in the Mantos Blancos mining district in the Coastal Cordillera of northern Chile, allowing the distinction of two separate mineralization events. The Late Jurassic Mantos Blancos orebody, hosted in Jurassic volcanic rocks, is a magmatic-hydrothermal breccia-style Cu deposit. Two superimposed mineralization events have been recently proposed. The first event is accompanied by a phyllic hydrothermal alteration affecting a rhyolitic dome. The second mineralization event is related to the intrusion of bimodal stocks and sills inside the deposit. Because of the superposition of several magmatic and hydrothermal events, the obtained 40Ar/39Ar age data are complex; however, with a careful interpretation of the age spectra, it is possible to detect complex histories of successive emplacement, alteration, mineralization, and thermal resetting. The extrusion of Jurassic basic to intermediate volcanic rocks of the La Negra Formation is dated at 156.3 ± 1.4 Ma (2σ) using plagioclase from an andesitic lava flow. The first mineralization event and associated phyllic alteration affecting the rhyolitic dome occurred around 155–156 Ma. A younger bimodal intrusive event, supposed to be equivalent to the bimodal stock and sill system inside the deposit, is probably responsible for the second mineralization event dated at ca. 142 Ma. Other low-temperature alteration events have been dated on sericitized plagioclase at ca. 145–146, 125, and 101 Ma. This is the first time that two distinct mineralization events have been documented from radiometric data for a copper deposit in the metallogenic belt of the Coastal Cordillera of northern Chile. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The Michilla mining district comprises one of the most important stratabound and breccia-style copper deposits of the Coastal Cordillera of northern Chile, hosted by the Middle Jurassic volcanic rocks of the La Negra Formation. 40Ar/39Ar analyses carried out on igneous and alteration minerals from volcanic and plutonic rocks in the district allow a chronological sequence of several magmatic and alteration events of the district to be established. The first event was the extrusion of a thick lava series of the La Negra Formation, dated at 159.9 ± 1.0 Ma (2σ) from the upper part of the series. A contemporaneous intrusion is dated at 159.6 ± 1.1 Ma, and later intrusive events are dated at 145.5 ± 2.8 and 137.4 ± 1.1 Ma, respectively. Analyzed alteration minerals such as adularia, sericite, and actinolite apparently give valid 40Ar/39Ar plateau and miniplateau ages. They indicate the occurrence of several alteration events at ca. 160–163, 154–157, 143–148, and 135–137 Ma. The first alteration event, being partly contemporaneous with volcanic and plutonic rocks, was probably produced in a high thermal gradient environment. The later events may be related either to a regional low-grade hydrothermal alteration/metamorphism process or to plutonic intrusions. The Cu mineralization of the Michilla district is robustly bracketed between 163.6 ± 1.9 and 137.4 ± 1.1 Ma, corresponding to dating of actinolite coexisting with early-stage chalcocite and a postmineralization barren dyke, respectively. More precisely, the association of small intrusives (a dated stock from the Michilla district) with Cu mineralization in the region strongly suggests that the main Michilla ore deposit is related to a magmatic/hydrothermal event that occurred between 157.4 ± 3.6 and 163.5 ± 1.9 Ma, contemporaneous or shortly after the extrusion of the volcanic sequence. This age is in agreement with the Re–Os age of 159 ± 16 Ma obtained from the mineralization itself (Tristá-Aguilera et al., Miner Depos, 41:99–105,2006).  相似文献   

6.
The Chelopech deposit is one of the largest European gold deposits and is located 60 km east of Sofia, within the northern part of the Panagyurishte mineral district. It lies within the Banat–Srednegorie metallogenic belt, which extends from Romania through Serbia to Bulgaria. The magmatic rocks define a typical calc-alkaline suite. The magmatic rocks surrounding the Chelopech deposit have been affected by propylitic, quartz–sericite, and advanced argillic alteration, but the igneous textures have been preserved. Alteration processes have resulted in leaching of Na2O, CaO, P2O5, and Sr and enrichment in K2O and Rb. Trace element variation diagrams are typical of subduction-related volcanism, with negative anomalies in high field strength elements (HFSE) and light element, lithophile elements. HFSE and rare earth elements were relatively immobile during the hydrothermal alteration related to ore formation. Based on immobile element classification diagrams, the magmatic rocks are andesitic to dacitic in compositions. Single zircon grains, from three different magmatic rocks spanning the time of the Chelopech magmatism, were dated by high-precision U–Pb geochronology. Zircons of an altered andesitic body, which has been thrust over the deposit, yield a concordant 206Pb/238U age of 92.21 ± 0.21 Ma. This age is interpreted as the crystallization age and the maximum age for magmatism at Chelopech. Zircon analyses of a dacitic dome-like body, which crops out to the north of the Chelopech deposit, give a mean 206Pb/238U age of 91.95 ± 0.28 Ma. Zircons of the andesitic hypabyssal body hosting the high-sulfidation mineralization and overprinted by hydrothermal alteration give a concordant 206Pb/238U age of 91.45 ± 0.15 Ma. This age is interpreted as the intrusion age of the andesite and as the maximum age of the Chelopech epithermal high-sulfidation deposit. 176Hf/177Hf isotope ratios of zircons from the Chelopech magmatic rocks, together with published data on the Chelopech area and the about 92-Ma-old Elatsite porphyry–Cu deposit, suggest two different magma sources in the Chelopech–Elatsite magmatic area. Magmatic rocks associated with the Elatsite porphyry–Cu deposit and the dacitic dome-like body north of Chelopech are characterized by zircons with ɛHfT90 values of ∼5, which suggest an important input of mantle-derived magma. Some zircons display lower ɛHfT90 values, as low as −6, and correlate with increasing 206Pb/238U ages up to about 350 Ma, suggesting assimilation of basement rocks during magmatism. In contrast, zircon grains in andesitic rocks from Chelopech are characterized by homogeneous 176Hf/177Hf isotope ratios with ɛHfT90 values of ∼1 and suggest a homogeneous mixed crust–mantle magma source. We conclude that the Elatsite porphyry–Cu and the Chelopech high-sulfidation epithermal deposits were formed within a very short time span and could be partly contemporaneous. However, they are related to two distinct upper crustal magmatic reservoirs, and they cannot be considered as a genetically paired porphyry–Cu and high-sulfidation epithermal related to a single magmatic–hydrothermal system centered on the same intrusion.  相似文献   

7.
Metasomatic and Sr-isotopic changes, associated with formation of zoned alteration halos along hydrothermal veins, are documented for a gneiss from the Artenberg quarry near Steinach (Kinzigtal, Schwarzwald, SW Germany). Veins are postorogenic, SW-NE-oriented, and cut straight through metaquartzdioritic Variscan gneiss, where flow of low-temperature fluids (~100–200°C) caused adularia-quartz-sericite-type alteration. Fluid-rock interaction occurred nearly 50 Ma after Variscan metamorphism, as constrained by a Rb–Sr multimineral isochron for unaltered gneiss of 327.1?±?3.1 Ma, and by two independent ages of 279.2?±?3.1 Ma and 274?±?13 Ma, based on Rb–Sr systematics of late-stage quartz from the veins. In a profile from unaltered gneiss towards a vein, alteration-induced mineralogical changes correlate with metasomatic net addition of K, Rb, and Cl to the alteration zone, combined with net loss of Na, Ca, and Sr. Strontium isotopes give a more detailed insight into the fluid-rock interaction process. 87Sr/86Sr ratios in a profile across the alteration zone are incompatible with simple Sr leaching but reflect partial replacement of the rocks’ Sr by fluid-derived Sr, the isotopic composition of which varied with time. Early fluids, with high 87Sr/86Sr ratios compared to unaltered gneiss, evolved into fluids with somewhat lower ratios, and finally reached a second maximum in 87Sr/86Sr ratios. This Sr-isotopic fluid evolution is equally revealed by the mineral sequence of the vein mineralization. It appears that the compositional evolution of the fluids correlates with the sequence of mineral breakdown reactions in the gneissic host rock, and that the Sr-isotopic evolution of the fluids can be fully explained as the result of internal, progressive reaction of fluid with the local rocks. Results also show that the spatial distributions of Sr isotopes in metasomatic alteration zones may reflect the complex evolution of fluid-rock interaction systems, and ultimately constrain the factors controlling both fluid compositions and alteration patterns.  相似文献   

8.
Summary The timing of Zn–Pb mineralization hosted by early dolomitized lagoonal limestones (Crest facies) at Bleiberg (Carinthia, Austria) has been constrained using Sr-isotopes. This late stage Zn–Pb mineralization is a special feature of the Bleiberg deposit. Samples of the mineralized Crest facies are characterized by higher concentrations of minor and trace elements (except Ba and Sr) compared to samples from the weakly mineralized Wetterstein limestone of the lagoonal facies. The samples from the Crest facies indicate that a fluid with a minimum 87Sr/86Sr ratio of 0.7083 reacted at 210±30 Ma with carbonate rocks having 87Sr/86Sr ratios of approximately 0.7077 during a late stage of ore formation. The 87Sr/86Sr ratios correlate with the Mn and Cl concentrations. Lead isotope data of whole rock samples of Bleiberg yielded an isochron age of 180±40 Ma. They furthermore confirm the presence of two types of common lead; an isotopically distinct ore lead component is present within and close to the ore bodies. The other common Pb component is present in host rocks and in gangue minerals and is distinguished from the ore lead by lower 207Pb/204Pb and 208Pb/204Pb ratios. The Sr and the Pb ages are consistent with geological evidence indicating a Triassic age of Pb–Zn mineralization and support genetic models emphasizing the role of bacteriogenic sulfate reduction at low temperatures prior to subsidence and burial. Elevated 87Sr/86Sr values (>0.7080) of gangue minerals indicate an epigenetic origin of strontium. Our results are consistent with a genetic model postulating formation of the ore-bearing hydrothermal fluids “at depth” where they leached lead from pre-Upper Carboniferous basement rocks.  相似文献   

9.
 The molybdenite deposit of the Alpeinerscharte (Austria) is situated in Variscan greenschist- to amphibolite-facies metamorphosed granodiorites and granites of the western Tauern Window. These granitoids represent strongly fractionated calc-alkaline I-type magmas with minor S-type components and reveal post-orogenic affinities. Molybdenum contents (average 4.3 ppm) are slightly above the general background of average granites. Molybdenite mineralization is restricted to narrow quartz veins and quartz vein selvages which are presently composed of biotite and (almandine-grossular) garnet. These selvages show geochemical features typical of intermediate argillic alteration in a hydrothermal system postdating granite intrusion: instability of plagioclase causes removal of Na, Ba, Sr, Pb and Eu, while K and Ca remain nearly constant. Rare earth elements (apart from Eu) and metals are extremely enriched. Application of Fe-Mg exchange (garnet-biotite) and oxygen isotope (quartz-garnet, quartz-plagioclase) geothermometers to vein selvage mineral assemblages reveals temperatures of the late-Alpine (35–55 Ma) metamorphic overprint (∼540 °C, 7–10 kbar). Leucocratic rocks composed of mainly orthoclase and plagioclase are occasionally spatially related to molybdenite-bearing veins; they are interpreted as episyenites formed by hydrothermal alteration of the host granite. This episyenitic alteration is characterized by a mass loss of ca. 30%, relative enrichment of plagioclase components, extreme depletion of Si, and minor depletion of Fe, Zn, Cu and Mo. Received: 5 December 1993/Accepted: 24 October 1995  相似文献   

10.
Abstract: Hydrothermally altered areas forming pyrophyllite‐kaolin‐sericite‐alunite deposits are distributed in Chonnam and Kyongsang areas, Cretaceous volcanic field of the Yuchon Group. The Chonnam alteration area is located within depression zone which is composed of volcanic and granitic rocks of late Cretaceous age. The clay deposits of this area show the genetic relationship with silicic lava domes. The Kyongsang alteration area is mainly distributed within Kyongsang Basin comprising volcanic, sedimentary and granitic rocks of Cretaceous and Tertiary age. Most of the clay deposits of this area are closely related to cauldrons. Paleozoic clay deposit occurs in the contact zone between Precambrian Hongjesa granite gneiss and Paleozoic Jangsan quartzite of Choson Supergroup. Cretaceous igneous rocks of the both alteration areas belong to high K calc‐alkaline series formed in the volcanic arc of continental margin by subduction‐related magmatism. Chonnam igneous rocks show more enrichment of crustal components such as K, La, Ce, Sm, Nd and Ba, higher (La/Yb)cn ratio, and higher initial 87Sr/86Sr ratio (0. 708 to 0. 712) than those of Kyongsang igneous rocks. This might be due to the difference of degree of crustal contamination during Cretaceous magmatism. The most characteristic alteration minerals of Chonnam clay deposits are alunite, kaolin, quartz, pyrophyllite and diaspore which were formed by acidic solution. Those of Kyongsang clay deposits are sericite, quartz and pyrophyllite which were formed by weak acid and neutral solution. The formation ages of the clay deposits of two alteration areas range from 70. 1 to 81. 4 Ma and 39. 7 to 79. 4 Ma, respectively. The Daehyun clay deposit in Ponghwa area of Kyongsang province shows the alteration age range from 290 to 336 Ma. This result shows the different alteration episode from the hydrothermal alteration of Cretaceous to early Tertiary in the Kyongsang and Chonnam alteration areas. These data indicate, at least, three hydrothermal activities of Tertiary (middle to late Eocene), late Cretaceous (Santonian to Maastrichtian) and Paleozoic Carboniferous Periods in South Korea.  相似文献   

11.
This paper presents and discusses the isotopic data from the hydrothermal studies of the Poços de Caldas Natural Analogue Project. The purpose of these studies was to elucidate the mass transport of relevant elements and isotopes associated with hydrothermal mineralization and alteration at the Osamu Utsumi uranium mine, as applicable to high-temperature radwaste isolation (particularly in the U.S. nuclear waste program). Research efforts were focused on studying the thermal, chemical and hydrologic nature of the palaeohydrothermal regime associated with a breccia pipe at the Osamu Utsumi mine, and related to the geochemical, geochronological and petrological characterization studies of unaltered regional nepheline syenite and phonolite.The regional rocks studies have a vertically elongated δD, δ18O pattern, which possibly indicates meteoric water/rock interaction. Regression of Rb---Sr whole-rock isotopic data for the regional nepheline syenite and phonolite samples did not produce isochrons. An internal, mineral-separate isochron regression from a nepheline syenite sample, considered representative of unaltered nepheline syenite of the Poços de Caldas plateau, yields an age of 78 Ma, and an initial ratio of approximately 0.7051. The initial ratios of the regional nepheline syenites are possibly indicative of a mantle source for the alkaline magmatism, with some incorporation of old, high Rb/Sr crustal material. The greater-than-mantle values of δ18O, if not due solely to surficial processes, also appear to require some assimilation of crustal material. Sm---Nd isotopic data for the regional rocks do not define any isochrons, although the nepheline syenite samples conform very well to a calculated reference isochron for 78 Ma and a fixed initial 143Nd/144Nd of 0.512359. The regional phonolite samples lie markedly off this isochron. This is probably due to the phonolite samples having different initial 143Nd/144Nd values. All regional samples lie within the “Mantle Array” trend. Their location within NdSr space indicates as asthenospheric Mid Ocean Ridge Basalt (MORB)-type source magma also contaminated by continental igneous and metamorphic rocks (e.g. the Precambrian gneiss surrounding the Poços de Caldas plateau).The rocks studied at the Osamu Utsumi mine from the F4 drillcore have experienced varying degrees of hydrothermal mineralization and metasomatism, and deep weathering. The hydrothermally altered rocks have a quite pronounced δD shift, with only a slight δ18O shift. The δD-δ18O trend of the hydrothermally altered F4 samples most likely reflects the variability of temperature, hydrologic flow, mineralogical alteration and, therefore, water/rock interaction and isotopic exchange in the palaeohydrothermal regime.Regression of Rb---Sr whole-rock isotopic data for subsamples from a nepheline syenite xenolith sample yields an age of 76 Ma and an initial ratio of approximately 0.7053. Due to the marked hydrothermal alteration and metasomatism of this sample, the Rb---Sr isotopic system is interpreted as being re-equilibrated and thus the regressed age is the age of the hydrothermal event. Using a versus 1/Sr mixing diagram, distinct trends are seen for hydrothermal alteration, mineralization and weathering. Again, the F4 nepheline syenite samples do not define an Sm---Nd isochron, but conform very well to a calculated model isochron for 78 Ma and an initial 143Nd/144Nd of 0.512365. The Sm---Nd isotopic data also exhibit a possible disturbance by the hydrothermal, metasomatic alteration. A lamproite dyke which crosscuts the hydrothermal alteration in the Osamu Utsumi mine gives an age of 76 Ma, which is essentially the same as the Rb---Sr age of the hydrothermally altered nepheline syenite subsamples.  相似文献   

12.
The Pb-Zn-Ba(-Ag-Au) mineralization in the Triades and Galana mine areas is hosted in 2.5–1.4 Ma pyroclastic rocks, and structurally controlled mostly by NE-SW or N-S trending brittle faults. Proximal pervasive silica and distal pervasive sericite-illite alteration are the two main alteration types present at the surface. The distribution of mineralization-alteration in the district suggests at least two hydrothermal events or that hydrothermal activity lasted longer at Galana. The Sr isotope signature of sphalerite and barite (87Sr/86Sr = 0.709162 to 0.710214) and calculated oxygen isotope composition of a fluid in equilibrium with barite and associated quartz at temperatures of around 230°C are suggestive of a seawater hydrothermal system and fluid/rock interaction. Lead isotope ratios of galena and sphalerite (206Pb/204Pb from 18.8384 to 18.8711; 207Pb/204Pb from 15.6695 to 15.6976; 208Pb/204Pb from 38.9158 to 39.0161) are similar to those of South Aegean Arc volcanic and Aegean Miocene plutonic rocks, and compatible with Pb derived from an igneous source. Galena and sphalerite from Triades-Galana have δ34SVCDT values ranging from +1 to +3.6‰, whereas barite sulfate shows δ34SVCDT values from +22.8 to +24.4‰. The sulfur isotope signatures of these minerals are explained by seawater sulfate reduction processes. The new analytical data are consistent with a seawater-dominated hydrothermal system and interaction of the hydrothermal fluid with the country rocks, which are the source of the ore metals.  相似文献   

13.
The paper presents data on the structure, composition, and age of granitoid associations (Tokhtogeshil’skii Complex) composing the Kharanur and Sharatologoi polychronous plutons in the northern part of the Ozernala zone in western Mongolia. The Tokhtogeshil’skii Complex was determined to consist of a number of independent magmatic associations, which were formed at 540–450 Ma, within three age intervals (540–520, 510–485, and 475–450 Ma), have different composition, were derived from different sources, and were emplaced in different geodynamic environments. During the first, island-arc stage (540–520 Ma), high-Al plagiogranites were produced, which belong to tonalite-plagiogranite (531 ± 10 Ma) and diorite (529 ±6 Ma) associations in the Kharanur pluton, low-Al plagiogranites of the tonalite-plagiogranite association (519 ± 8 Ma) in the Sharatologoi pluton, and rocks of the Khirgisnur peridotite-pyroxenite-gabbronorite complex (Kharachulu and Dzabkhan massifs). The rocks of the diorite and plagiogranite associations of the Kharanur pluton have ɛNd(T) from +7.9 to +7.4, TNd(DM) = 0.65 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039. The plagiogranites of the Sharatologoi pluton (tonalite-plagiogranite association) are characterized by ɛNd(T) from +6.5 to +6.6, TNd(DM) = 0.73–0.70 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039, which suggest predominantly juvenile subduction sources of the parental melts at a subordinate role of ancient crustal material. During the second, accretionary stage (510–485 Ma), low-Al plagiogranites of the diorite-tonalite-plagiogranite association of the Sharatologoi pluton (494 ± 10 Ma, M type) were formed. The Sr-Nd isotopic characteristics of these rocks ɛNd(T) = +6.6, (87Sr/86Sr)0 = 0.7039 are analogous to those of the plagiogranitoids of the early type. This suggests that the melted sources were similar in composition. During the third, postcollisional stage (475–450 Ma), rocks of the diorite-granodiorite-granite association were formed (459 ± 10 Ma, type I) in the Kharanur pluton. These rocks have ɛNd(T) = +5.1, TNd(DM) = 0.74 Ga, and (87Sr/86Sr)0 = 0.7096. The parental melts were supposedly derived by means of partial melting of “the Caledonian” juvenile crust with the addition of more ancient crustal material.  相似文献   

14.
The Baishitouquan amazonite and topaz-bearing granite is one of the typical high-rubidium and high-fluorine granites in the eastern part of the Mid-Tianshan belt. This intrusion is in sharp contact with Mid-Proterozoic schists, gneisses and marbles, and is composed of four zones transitional from the bottom upwards: leucogranite, amazonite granite, topaz-bearing amazonite granite and topaz quartz albitite. The Baishitouquan granite contains highly ordered K-feldspar, Li-rich mica, Mn-rich garnet, α-quartz and low temperature zircon and is chemically high in Si, K, Na, Al, Li, Rb, Cs and F, and low in Ti, Fe, Ca, Mg, P, Co, Ni, Cr, V, Sr and Ba, with Na2O<K2O. Amazonite from the amazonite granite zone contains 1867 ppm Rb. The F contents of bulk rocks are 3040 and 4597 for the amazonite granite and topaz-bearing amazonite granite zones, respectively. These two zones have δ18O values of 8.97–9.85‰ (SMOW) and show flat REE distribution patterns with strong Eu depletion. K-Ar and Rb-Sr ages of this intrusion are 226. 6 Ma and 209. 6 Ma respectively, with an initial87Sr/86Sr ratio of 0.987±0.213. The Baishitouquan granite is the product of crystallization of a low temperature, and water, rubidium and fluorine-rich magma, which may have been derived from partial melting of muscovite-rich crustal rocks. Consolidation of this granite involved two contrasting and successive stages: melt crystallization and hydrothermal metasomatism and precipitation. Various geological features of this granite were formed during the transition from the magmatic to the hydrothermal stage.  相似文献   

15.
 Latest Devonian to early Carboniferous plutonic rocks from the Odenwald accretionary complex reflect the transition from a subduction to a collisional setting. For ∼362 Ma old gabbroic rocks from the northern tectonometamorphic unit I, initial isotopic compositions (εNd=+3.4 to +3.8;87Sr/86Sr =0.7035–0.7053;δ18O=6.8–8.0‰) and chemical signatures (e.g., low Nb/Th, Nb/U, Ce/Pb, Th/U, Rb/Cs) indicate a subduction-related origin by partial melting of a shallow depleted mantle source metasomatized by water-rich, large ion lithophile element-loaded fluids. In the central (unit II) and southern (unit III) Odenwald, syncollisional mafic to felsic granitoids were emplaced in a transtensional setting at approximately 340–335 Ma B.P. Unit II comprises a mafic and a felsic suite that are genetically unrelated. Both suites are intermediate between the medium-K and high-K series and have similar initial Nd and Sr signatures (εNd=0.0 to –2.5;87Sr/86Sr=0.7044–0.7056) but different oxygen isotopic compositions (δ18O=7.3–8.7‰ in mafic vs 9.3–9.5‰ in felsic rocks). These characteristics, in conjunction with the chemical signatures, suggest an enriched mantle source for the mafic magmas and a shallow metaluminous crustal source for the felsic magmas. Younger intrusives of unit II have higher Sr/Y, Zr/Y, and Tb/Yb ratios suggesting magma segregation at greater depths. Mafic high-K to shoshonitic intrusives of the southern unit III have initial isotopic compositions (εNd=–1.1 to –1.8;87Sr/86Sr =0.7054–0.7062;δ18O=7.2–7.6‰) and chemical characteristics (e.g., high Sr/Y, Zr/Y, Tb/Yb) that are strongly indicative of a deep-seated enriched mantle source. Spatially associated felsic high-K to shoshonitic rocks of unit III may be derived by dehydration melting of garnet-rich metaluminous crustal source rocks or may represent hybrid magmas. Received: 7 December 1998 / Accepted: 27 April 1999  相似文献   

16.
西藏波龙斑岩铜金矿床是新近在青藏高原中部发现的规模最大的斑岩型矿床。文章对该矿床内的蚀变钾长石和蚀变绢云母进行了40Ar/39Ar年代学测试,获得蚀变钾长石的40Ar/39Ar坪年龄为(118.33±0.60) Ma,反等时线年龄为(118.49±0.74) Ma (初始40Ar/36Ar=286.1±8.4),表明波龙斑岩铜金矿床的钾化蚀变年龄为118~119 Ma;蚀变绢云母的40Ar/39Ar坪年龄为(121.61±0.67) Ma,反等时线年龄为(121.1±2.0) Ma (初始40Ar/36Ar=279±19)。由于蚀变绢云母测试样品内可能混入了斜长石,受其影响,蚀变绢云母测年结果的下限可能代表了该矿床绢英岩化蚀变年龄。这些蚀变钾长石和蚀变绢云母40Ar/39Ar测年结果与波龙矿床的成岩年龄值和成矿年龄值在误差范围内基本一致,表明该矿床的钾化和绢英岩化与成岩、成矿同期,该矿床的岩浆-热液活动过程的时限为121~118 Ma。  相似文献   

17.
Isotopic (Nd and Sr) and chemical compositions of the 177 Ma Kirkpatrick Basalt and Ferrar Dolerite from north Victoria Land, Antarctica, are examined in order to address the role of crustal assimilation and the characteristics of their mantle source. Results for the Scarab Peak chemical type (SPCT) that constitutes the flow unit capping the lava sequence [Mg-number, Mg/(Mg+Fe+2)=24, MgO=2.4%, SiO2=57.1%, initial87Sr/86Sr=0.7087–0.7097, (εNd=−4.3) conform previous reports that attribute variations in the concentrations of the more mobile elements and calculated initial87Sr/86Sr to mid-Cretaceous alteration and elevated δ18O to low-temperature interaction with meteoric water. The underlying lavas and the sills that are of the Mt. Fazio chemical type (MFCT) display a much wider range of both chemical and isotopic compositions (Mg-number=40–65, MgO=3.7 7.5%; SiO2=52.6–58.3%, initial87Sr/86Sr=0.7087–0.7117, εNd=−5.6 to −4.8). The effects of rock alteration on apparent initial87Sr/86Sr are demonstrated by large differences between the initial ratio of mineral separates or leached fractions and whole rocks. Cretaceous alteration produced Rb and Sr redistribution within the lava sequence that results in erroneous calculated initial87Sr/86Sr ratios. These effects are responsible for the large initial87Sr/86Sr variations previousl7 proposed which, combined with the large range in whole-rock δ18O, were purported to show very large degrees of crustal assimilation. The variations in εNd are restricted and indicate much smaller degrees of assimilation. The least altered of the MFCT rocks show good chemical and isotopic correlations that can be integrated into a model involving fractionation of pyroxene and plagioclase coupled with assimilation of material similar to early Paleozoic basement. The lower87Sr/86Sr and higher εNd of the SPCT suggest that they were derived by extensive fractionation of a more primitive, less contaminated, precursor of the MFCT. The most isotopically primitive Ferrar rocks from the region still have a high initial87Sr/86Sr and low initial143Nd/144Nd; this may reflect either earlier assimilation or an enriched source. The chemical and isotopic similarities, as well as the close geographic correspondence of the Ferrar Group to granitoids produced during the early Paleozoic Ross Orogeny suggest that in either case Ross-type material may have been involved in the development of the enriched isotopic signature. Editorial responsibility: I. Parsons  相似文献   

18.
Whole rock and mineral stable isotope and microprobe analyses are presented from granitoids of the North Chilean Precordillera. The Cretaceous to Tertiary plutonic rocks contain important ore deposits and frequently display compositional and textural evidence of hydrothermal alteration even in barren rocks. Deuteric alteration includes replacement of biotite and amphibole by chlorite and epidote, sericitization and saussuritization of feldspars, and uralitization of clinopyroxene and/or amphibole. While whole rock compositions are not significantly affected, compositional variations in amphiboles suggest two types of hydrothermal alteration. Hornblende with actinolitic patches and rims and tight compositional trends from hornblende to Mg-rich actinolite indicate increasing oxygen fugacity from magmatic to hydrothermal conditions. Uralitic amphiboles exhibiting irregular Mg-Fe distribution and variable Al content are interpreted as reflecting subsolidus hydration reactions at low temperatures. The δD values of hydrous silicates vary from −63 to −105‰. Most δ18O values of whole rocks are in the range of 5.7 to 7.7‰ and are considered normal for igneous rocks in the Andes. These δ18O values also coincide well with the oxygen isotope composition of geochemically similar recent volcanics from the Central Andean Volcanic Zone (δ18O = 7.0–7.4‰). Only one sample in this study (δ18O = 3.0‰) appears to be depleted by isotope exchange with light meteoric water at high temperatures. The formation of secondary minerals in all other intrusions is mainly the product of deuteric alteration. This also holds true for the sample from El Abra, the only pluton associated with mineralization. This indicates the dominant role of a magmatic rather than a meteoric fluid in the alteration of the Cretaceous and Tertiary granitoids in northern Chile. Received: 8 July 1998 / Accepted: 15 April 1999  相似文献   

19.
This study uses Sr isotope chemostratigraphy to place constraints on the depositional age of carbonate rocks from the Tuva-Mongolian microcontinent. The age of carbonate rocks of the Irkut Formation (87Sr/86Sr initial ratio equal to 0.70480–0.70485) is determined to be older than 1250 Ma, whereas carbonates of the Zabit (0.70706–0.70727 and 0.70828–0.70848) and Agarin Gol (0.70725–0.70743) formations were deposited in the interval 630–560 Ma.  相似文献   

20.
晋东北地区是金银矿床成矿有利地区。本文通过该区次火山岩Rb-Sr同位素及次火山岩和金银矿的稳定同位素研究,揭示了次火山岩和金银矿的生成时代及它们成因的内在联系,并指出了找矿标志。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号