首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geodinamica Acta》2013,26(6):417-430
The Longi-Taormina Unit forms the “Dorsale calcaire” of the Peloritani Alpine Belt (southern Calabria-Peloritani Arc). It is made by a thick sedimentary cover of Meso-Cenozoic age overlying a Variscan weakly metamorphosed Cambrian to Carboniferous succession.

The Palaeozoic series consists of pelitic to arenaceous sediments containing layers of acidic and basic volcanics. The acidic volcanics are affected by the “Caledonian” compressional deformations and are referred to Early Ordovician. The basic rocks belong to two different volcanic cycles; the first, not dated, is ascribed to the Caledonian cycle according to its geochemical signature; whereas the second, middle-late Devonian in age, is interpreted to have formed in the framework of pre-Variscan extensional tectonics. During the Variscan Orogeny (330 Ma), the area recorded metamorphism up to subgreenschist-to-greenschist facies and two main deformation phases, marked by syn-schistose early folds (Dv1), overprinted by dominantly NW-SE trending late folds (Dv2).

During the Aquitanian, deformation related to the Alpine Orogeny led to imbrication of the Palaeozoic and Meso-Cenozoic series. The sedimentary cover was affected by a series of N090° to N130° trending folds. Detailed stratigraphical and structural investigations on the tectonic contact between the Longi-Taormina Unit, and the overlying Fondachelli Unit indicate that this structure is part of a frontal thrust ramp which developed during the Aquitanian.

Our geological and structural studies on the Cambrian to Aquitanian rocks of the Longi-Taormina Unit of the Calabria-Peloritani Arc enable to unravel the complex geodynamic history of the central-western Mediterranean area.  相似文献   

2.
The amalgamation of Pangea during the Carboniferous produced a winding mountain belt: the Variscan orogen of West Europe. In the Iberian Peninsula, this tortuous geometry is dominated by two major structures: the Cantabrian Orocline, to the north, and the Central Iberian curve (CIC) to the south. Here, we perform a detailed structural analysis of an area within the core of the CIC. This core was intensively deformed resulting in a corrugated superimposed folding pattern. We have identified three different phases of deformation that can be linked to regional Variscan deformation phases. The main collisional event produced upright to moderately inclined cylindrical folds with an associated axial planar cleavage. These folds were subsequently folded during extensional collapse, in which a second fold system with subhorizontal axes and an intense subhorizontal cleavage formed. Finally, during the formation of the Cantabrian Orocline, a third folding event refolded the two previous fold systems. This later phase formed upright open folds with fold axis trending 100° to 130°, a crenulation cleavage and brittle–ductile transcurrent conjugated shearing. Our results show that the first and last deformation phases are close to coaxial, which does not allow the CIC to be formed as a product of vertical axis rotations, i.e. an orocline. The origin of the curvature in Central Iberia, if a single process, had to be coeval or previous to the first deformation phase.  相似文献   

3.
Blasband  B.  Brooijmans  P.  Dirks  P.  Visser  W.  White  S. 《Geologie en Mijnbouw》1997,76(3):247-266
In the late Precambrian history of the Wadi Kid area in the Sinai, Egypt, two deformation phases are clearly recognized. The first phase, D1 (pre-620 Ma), produced a steep regional foliation, axial planar to upright F1 folds, in rocks of a lower-greenschist grade. This compressional phase of deformation is interpreted in terms of subduction in an island-arc setting. The second phase, D1 (post-620 Ma), is mainly expressed by the widespread development of sub-horizontal mylonitic zones with a total thickness of 1.5 km. Shear sense indicators give a consistent regional transport direction to the northwest, with local indications of reversal to the southeast. This event is associated with regional LP/HT metamorphism, indicative of high thermal gradients. Because of the LP/HT metamorphism, the change in geochemical nature of the granitoids, and the orientation of the dykes, we interpret the mylonitic zones as low-angle normal shear zones related to core-complex development during an extensional event with the transport reversal being induced by doming. We postulate that orogenic collapse was responsible for the transition from the D1 compressional phase to the D1 extensional phase.  相似文献   

4.
Detailed structural investigations were carried out in the Pevek area in order to verify the tectonic evolution of the Mesozoic thrust and fold belt in Chukotka. South-vergent F1 folds in Triassic rocks were proved to be the earliest structures formed during the first deformation stage DI. These structures were deformed by north-vergent folds F2 that were formed during the second deformation stage DII. North-vergent folds are the main structures of the Jurassic–Lower Cretaceous complex. The fold structures of the first two stages are deformed by shear folds F3 finishing the stage DII. All these structures are deformed by submeridionally trending normal faults referred to the deformation stage DIII.  相似文献   

5.
Large-scale structures, textures and mineral assemblages in the Precambrian rocks of the Banded Gneissic Complex and the overlying Delhi Group in north-central Aravalli Mountain reveal a complex deformational-crystallization history. In the basement Gneissic Complex at least three deformational events, D0, D1 and D2, and two separate episodes of metamorphism, M1 and M2, are recognized. The supracrustal Delhi Rocks display only two phases of deformation, D1 and D2, associated with a single protracted period of metamorphism, M2.The first phase of deformation (D1) of the Delhi orogeny (1650-900 m.y.) produced large isoclinal folds that are overturned towards the southeast and have gentle plunges in NE and SW directions. The second phase of deformation (D2) gave rise to tight open folds on the limbs and axial-plane surfaces of the D1 folds. These folds generally plunge towards the N and NNW at 30°–80°. In the Basement Complex one more deformation (D0) of the Pre-Delhi orogeny (> 2000 m.y.) is recorded by the presence of reclined and recumbent folds with W to WNW trending fold axes. The D0 folds were superimposed by D1 and D2 folds during the Delhi orogeny.The three deformational events have been correlated with the crystallization periods of minerals in the rocks and a setting in time is established for this part of the Aravalli range.  相似文献   

6.
In the Paleozoic basement of the southeast Oujda mountains, the Lower Ordovician, Silurian-Devonian and Devonian-Dinantian are dated for the first time through palynology. This paper shows the autochtonous character and continuous stratigraphy of the formations of the Lower Ordovician to Devonian or probably Dinantian. The Intra-Visean Olistostrome is interpreted as a tectono-sedimentary breccia associated with strike-slip faults. The structural Variscan evolution is characterized by two major phases, each of them being divided in three stages. The ante-Upper Visean early phase is characterized in chronological order by (1) submeridian folds, (2) northeast-southwest folds and (3) extensional, oblique-slip, east-west trending faults. The second phase post-dates the Westphalian C and is marked by open east-northeast - west-southwest trending folds cut by reverse faults with the same trend and by a set of north-south sinistral and east-west dextral strike-slip faults. These later faults have allowed the emplacement of late Hercynian granitoïds.A palaeogeographical and structural reconstruction comparable to that established in the rest of the Moroccan Meseta is proposed.  相似文献   

7.
The Arthur Lineament of northwestern Tasmania is a Cambrian (510 ± 10 Ma) high‐strain metamorphic belt. In the south it is composed of metasedimentary and mafic meta‐igneous lithologies of the ‘eastern’ Ahrberg Group, Bowry Formation and a high‐strain part of the Oonah Formation. Regionally, the lineament separates the Rocky Cape Group correlates and ‘western’ Ahrberg Group to its west from the relatively low‐strain parts of the Oonah Formation, and the correlated Burnie Formation, to its east. Early folding and thrusting caused emplacement of the allochthonous Bowry Formation, which is interpreted to occur as a fault‐bound slice, towards the eastern margin of the parautochthonous ‘eastern’ Ahrberg Group metasediments. The early stages of formation of the Arthur Lineament involved two folding events. The first deformation (CaD1) produced a schistose axial‐planar fabric and isoclinal folds synchronous with thrusting. The second deformation (CaD2) produced a coarser schistosity and tight to isoclinal folds. South‐plunging, north‐south stretching lineations, top to the south shear sense indicators, and south‐verging, downward‐facing folds in the Arthur Lineament suggest south‐directed transport. CaF1 and CaF2 were rotated to a north‐south trend in zones of high strain during the CaD2 event. CaD3, later in the Cambrian, folded the earlier foliations in the Arthur Lineament and produced west‐dipping steep thrusts, creating the linear expression of the structure.  相似文献   

8.
对于朝鲜平南盆地沉积盖层内发育的倒转褶皱,过去一般认为是直立褶皱的次级从属褶皱。通过对平南盆地内倒转褶皱发育区详细的地质调查,结合煤炭开发过程中获得的地质及钻探资料,提出平南盆地内叠加褶皱的主要识别标志为:地质平面图上呈现不同类型的两组褶皱脊线的交叉;倒转褶皱的轴面被直立褶皱改造弯曲;直立褶皱的两翼发育的倒转褶皱表现为两组牵引褶皱。查明了平南盆地存在3个阶段的褶皱构造:第一阶段为东西向的倒转褶皱,形成于印支期;第二阶段褶皱为东西向的直立褶皱,形成于早燕山期;第三阶段褶皱为北北东向的直立褶皱,形成于晚燕山期。  相似文献   

9.
Structural overprinting relationships indicate that two discrete terranes, Mt. Stafford and Weldon, occur in the Anmatjira Range, northern Arunta Inlier, central Australia. In the Mt. Stafford terrane, early recumbent structures associated with D1a,1b deformation are restricted to areas of granulite facies metamorphism and are overprinted by upright, km-scale folds F1c), which extend into areas of lower metamorphic grade. Structural relationships are simple in the low—grade rocks, but complex and variable in higher grade equivalents. The three deformation events in the Mt. Stafford terrane constitute the first tectonic cycle (D1-D2) deformation in the Weldon terrane comprises the second tectonic cycle. The earliest foliation (S2a) was largely obliterated by the dominant reclined to recumbent mylonitic foliation (S2b), produced during progressive non-coaxial deformation, with local sheath folds and W- to SW-directed thrusts. Locally, (D2d) tectonites have been rotated by N—S-trending, upright (F2c) folds, but the regional upright fold event (F2d), also evident in the adjacent Reynolds Range, rotated earlier surfaces into shallow-plunging, NW—SE-trending folds that dominate the regional outcrop pattern.The terranes can be separated on structural, metamorphic and isotopic criteria. A high-strain D2 mylonite zone, produced during W- to SW-directed thrusting, separates the Weldon and Mt. Stafford terranes. 1820 Ma megacrystic granites in the Mt. Stafford terrane intruded high-grade metamorphic rocks that had undergone D1a and D1b deformation, but in turn were deformed by S1c, which provides a minimum age limit for the first structural—metamorphic event. 1760 Ma charnockites in the Weldon terrane were emplaced post-D2a, and metamorphosed under granulite facies conditions during D2b, constraining the second tectonic cycle to this period.Each terrane is associated with low-P, high-T metamorphism, characterized by anticlockwise PTt paths, with the thermal peaks occurring before or very early in the tectonic cycle. These relations are not compatible with continental-style collision, nor with extensional tectonics as the deformation was compressional. The preferred model involves thickening of previously thinned lithosphere, at a stage significantly after (>50 Ma) the early extensional event. Compression was driven by external forces such as plate convergence, but deformation was largely confined to and around composite granitoid sheets in the mid-crust. The sheets comprise up to 80% of the terranes and induced low-P, high-T metamorphism, including migmatization, thereby markedly reducing the yield strength and accelerating deformation of the country rocks. Mid-crustal ductile shearing and reclined to recumbent folding resulted, followed by upright folding that extended beyond the thermal anomaly. Thus, thermal softening induced by heat-focusing is capable of generating discrete structural terranes characterized by subhorizontal ductile shear in the mid-crust, localized around large granitoid intrusions.  相似文献   

10.
Apúlia is a small Portuguese sector in NW of Central-Iberian Zone, that have been deformed in a non-coaxial sinistral transpressive regime during the first and main Variscan tectonic event (D1). This deformation give rise to a major NW–SE anticline, where the S1 N–S cleavage transect the inverted short NE limb; two and three-dimensional strains analysis have been done in the low metamorphic grade Ordovician quartzites of this limb using Fry and Rf/ϕ methods. The data show that most deformation was due to intergranular deformation mechanisms. The intragranular deformation leading to the distortion of strain markers and to cleavage was very incipient and a latter event in the D1 phase. The apparent plane strain ellipsoids (if no volume change is assumed) related to the intragranular mechanisms contrast with the more prolate strain ellipsoids related to the bulk deformation of Apúlia Quartzites. This constrictional bulk strain fabrics are characteristic of the sinistral transpressive regimes dominant in the northern sectors of the Central-Iberian Zone.  相似文献   

11.
The general structure of the Chinese Altai has been traditionally regarded as being formed by five tectono-stratigraphic ‘terranes’ bounded by large-scale faults. However, numerous detrital zircon studies of the Paleozoic volcano-sedimentary sequences shown that the variably metamorphosed Cambro-Ordovician sequence, known as the Habahe Group, is present at least in four ‘terranes’. It structurally represents deepest rocks unconformably covered by Devonian and Carboniferous sedimentary and volcanic rocks. Calc-alkaline, mostly Devonian, granitoids that intruded all the terranes revealed their syn-subduction related setting. Geochemistry and isotope features of the syn-subduction granitoids have shown that they originated mainly from the melting of youthful sediments derived from an eroded Ordovician arc further north. In contrast, Permian alkaline granitoids, mostly located in the southern part of the Chinese Altai, reflect a post-subduction intraplate setting. The metamorphic evolution of the metasedimentary sequences shows an early MP-MT Barrovian event, followed by two Buchan events: LP-HT mid-Devonian (ca. 400–380 Ma) and UHT-HT Permian (ca. 300–270 Ma) cycles. The Barrovian metamorphism is linked to the formation of a regional sub-horizontal possibly Early Devonian fabric and the burial of the Cambro-Ordovician sequence. The Middle Devonian Buchan type event is related to intrusions of the syn-subduction granitoids during an extensional setting and followed by Late Devonian-Early Carboniferous NE-SW trending upright folding and crustal scale doming during a general NW-SE shortening, responsible for the exhumation of the hot lower crust. The last Permian deformation formed NW-SE trending upright folds and vertical zones of deformation related to the extrusion of migmatites, anatectic granitoids and granulite rocks, and to the intrusions of gabbros and granites along the southern border of the Chinese Altai. Finally, the Permo-Triassic cooling and thrust systems affected the whole mountain range from ca. 265 to 230 Ma. In conclusion, the Chinese Altai represents different crustal levels of the lower, middle and upper orogenic crust of a single Cambro-Ordovician accretionary wedge, heterogeneously affected by the Devonian polyphase metamorphism and deformation followed by the Permian tectono-thermal reworking event related to the collision with the Junggar arc. It is the interference of Devonian and Permian upright folding events that formed vertical boundaries surrounding the variously exhumed and eroded crustal segments. Consequently, these crustal segments should not be regarded as individual suspect terranes.  相似文献   

12.
In the Shoalhaven River Gorge, in the eastern Lachlan Fold Belt, the Ordovician quartz‐turbidite succession (Adaminaby Group) is affected by one major phase of deformation with northerly trending, gently plunging, upright, close to tight folds (F1) characterised by a range in half wavelengths up to 3 km. Several anticlinoria and synclinoria are developed and folds occur in at least four orders; these characteristics are consistent with buckling occurring at several scales and are controlled by the thickness of competent units in the multilayered succession. F1 folding is thick‐skinned in style with the whole crust probably having been affected by deformation. D1 occurred during the Silurian to Middle Devonian interval and was associated with crustal thickening and the shallowing of depositional environments over time. Locally, F1 is overprinted by south‐southeast‐trending, steeply to moderately inclined F2 that reorients F1 to recumbent attitudes. D2 is of Early to Middle Carboniferous age. Both deformations are related to convergence in an intra‐arc to backarc region and occurred inboard of a subduction zone, remnants of which occur in the New England Fold Belt.  相似文献   

13.
Abstract

The Braganca amd Morais Massifs (NE Portugal) comprise a pile of four nappes on lop of the Autochthon of the Central-Iberian Zone : a Parautochthon (PTC), a Lower Allochthon (LATC), an Ophiolitic Complex (OTC) and an Upper Allochton (UATC). This article focuses on the tectonic evolution of the prc-Variscan basement preserved in the Upper Allochthonous Thrust Complex. (1) In the Morais Massif, the UATC is mainly composed of orthogneisscs, micaschists and high-grade melamorphic rocks restricted to a small duplex between the orthogneisses and the ophiolitic complex. The orthogneisses are pervasively deformed by D6 (Variscan D1). characterized by NNW-SSE stretching lineation, C-S structures, and sense of shear to the SSE. The high-grade melamorphic rocks show at least three ductile deformation phases older than the gneisses deformation. The micaschists and the orthogneisses are cut by mafic sills and dykes transformed into amphibolites by the Variscan tec-tonometamorphic evolution. In a restricted domain where dykes arc less deformed, two deformation events can be recognized and arc considered to be pre-Variscan. The walls of the dykes show a N-S stretching and mineral lineation interpreted as resulting from D6 (Variscan D1). (2) In the Braganca Massif, the UATC comprises mafic to ultrainafic igneous and high-grade melamorphic rocks, and paragncisses with ky-eclogite lenses. Six ductile deformation phases are recognized. The D1 to D4 events may correspond to a complete pre-Variscan orogenic cycle, from subduction (D1) to collision (D2-DS) and thrusting of the high-grade metamorphic rocks to upper levels in the crust (D3-D4); D5 may result from the Lower Palaeozoic extensional event that marks the begining of the Variscan Wilson cycle; D6 is interpreted as the first Variscan orogenic event with southward movement. The UATC of the Cabo Ortegal anil Braganca Massifs comprise mainly upper mantle/lower erustal rocks. By contrast, the UATC of the Ordenes and Morais Massifs is mainly composed of middle to upper erustal rocks. Vic propose that this is the result of a regional ductile normal fault (extensional event) that was active prior to the Variscan orogeny, in Lower Palaeozoic times, and affected a Precambrian basement.  相似文献   

14.
A new structural evolution consisting of both extensional and contractional events has been defined for the St Ives Goldfield in the south-central Kalgoorlie Terrane of the eastern Yilgarn Craton in Western Australia. These events shaped the development of the fault architecture, which controlled the location of the regional anticlines, the magmatic centres, and the deposition of the Archaean greenstone successions. The fundamental grain of the St Ives Goldfield is north-northwest-trending. This trend is marked by faults which developed during D1 extension, which was oriented east-northeast–west-southwest. Across these faults we map major stratigraphic changes in the thickness and composition of units, especially of the previously undivided Black Flag Group volcaniclastic rocks. The centre of the St Ives Goldfield is dominated by the Kambalda Anticline. This north-northwest-trending regional fold was likely established early during the D1 extensional history, and was fully established during subsequent east-northeast-oriented D2 contraction. The regional anticline is an important architectural element because (1) magmatism and gold mineralising fluids were focussed into this domed region, and (2) deformation was partitioned across the limbs and crest of this structure. The D3 event involved regional uplift and extension, resulting in the formation of late basins (Merougil Conglomerate locally) and the emplacement of granitoids sourced from a metasomatised mantle wedge (Mafic-type porphyries). The most significant gold event in terms of endowment occurred during D4b sinistral strike-slip shearing and associated thrusting (e.g., Tramways and Republican thrusts). These thrusts were previously interpreted as the first contractional structures to deform the area (‘D1’), but are here reinterpreted as relatively late (D4b). In this D4b event, the north-northwest-trending faults underwent sinistral strike-slip shearing and were linked across the Kambalda Anticline by accommodation structures represented by generally east- to east-northeast-trending thrusts. Reactivation of D1 transfer structures may have influenced the location of these later accommodation structures. Late-stage mineralisation during D5 was the result of dextral strike-slip brittle shearing.  相似文献   

15.
桐柏碰撞造山带及其邻区变形特征与构造格局   总被引:3,自引:2,他引:1  
桐柏碰撞造山带及其邻区可以划分为九个大地构造单元,自北向南分别是:华北克拉通南缘岩石构造单元——宽坪岩群、具弧后盆地性质的二郎坪岩石构造单元、具岛弧性质的秦岭杂岩单元、龟山岩组和南湾岩组构成的俯冲前缘楔构造带、构造混杂岩带、桐柏北部高压岩片单元、桐柏核部杂岩单元、桐柏南部高压岩片单元以及随州构造变形带。根据详细的构造解析以及新的地质年代学资料,本文将中生代以来的构造变形划分为五幕,前两幕变形主要发育在构造混杂岩带以南的各个岩石构造单元中,之后的三幕变形则波及整个研究区。第一幕变形的时间约为255~238Ma,以发育区域上透入性的片理及北西西向的拉伸线理为主,并导致了高压岩片早期自西向东的挤出。第二幕变形的时间约为230~215Ma,以自北向南的逆冲推覆构造为主,使得高压岩片进一步垂向抬升。第三幕变形应早于下侏罗统,以近北西西向的宽缓褶皱为主要特征,该幕变形期间桐柏核部杂岩及其两侧高压岩片单元发生同步的抬升。第四幕变形大致发生在140~130Ma之间,主要表现为桐柏核部杂岩两侧走滑型韧性剪切带的活动,桐柏核部杂岩表现出向东的挤出。第五幕变形发生在120~80Ma,表现为北西向及北东向的脆性断裂活动,并切割以上所有构造形迹。桐柏高压岩片的抬升剥露受多幕变形控制,呈阶段性的抬升。  相似文献   

16.
We document two phases of folding within the central part of the Late Palaeozoic Anti‐Atlas chain of Morocco. A first generation of SW–NE folds involve a horizontal shortening of 10–20%, accommodated by polyharmonic buckle folding of contrasting wavelengths in Ordovician Jbel Bani quartzites and Devonian Jbel Rich carbonates. A second generation of folds with similar style and wavelengths in an E–W direction lead to complex interference patterns. Dome and basins are developed within the Jbel Rich and within Lower Cambrian dolomites. Both folding phases are related to thick‐skinned uplift of Precambrian basement in a Laramide style. In contrast to the typical Rocky Mountain foreland style, however, cover deformation in the Anti‐Atlas is mostly decoupled from the undying basement along thick incompetent horizons such as the Lower Cambrian Lie‐de‐Vin and Silurian shales.  相似文献   

17.
Geometric and kinematic analysis was performed in an area located in the central part of the Seridó Belt (NE Brazil), where supracrustal rocks affected by polyphase deformation are well exposed. The first event recognized in this area (and regionally known as the D2 deformation) is characterized by top to the south thrust tectonics while a second one (D3 deformation) is marked by upright folds, strike-slip or transpressive shear zones and the development of flower structures. Major pegmatite swarms were emplaced during and late as regards the second event (dated ca. 580 Ma), being part of the Brasiliano orogeny; similar dyke swarms are known from the Nigerian Shield. These pegmatite swarms provide reliable kinematic markers of the late evolutionary stage of the Neoproterozoic Trans-Sahara-Borborema collisional belt. Mineralogical, geometric and kinematic features support two stages of pegmatite emplacement during the strike-slip event: (i) older, syn-D3 homogeneous pegmatites intruded mostly along lithological and structural discontinuities, such as foliation surfaces; (ii) late, D3 heterogeneous pegmatites were emplaced along tension gashes and other dilation structures. The heterogeneous pegmatites are economically more important, being exploited for precious metals and stones, as well as industrial minerals.  相似文献   

18.
Structural studies of Lower Permian sequences exposed on wave‐cut platforms within the Nambucca Block, indicate that one to two ductile and two to three brittle — ductile/brittle events are recorded in the lower grade (sub‐greenschist facies) rocks; evidence for four, possibly five, ductile and at least three brittle — ductile/brittle events occurs in the higher grade (greenschist facies) rocks. Veins formed prior to the second ductile event are present in some outcrops. Further, the studies reveal a change in fold style from west‐southwest‐trending, open, south‐southeast‐verging, inclined folds (F1 0) at Grassy Head in the south, to east‐northeast‐trending, recumbent, isoclinal folds (F1 0; F2 0) at Nambucca Heads to the north, suggesting that strain increases towards the Coffs Harbour Block. A solution cleavage formed during D1 in the lower grade rocks and cleavages defined by neocrystalline white mica developed during D1 and D2 in the higher grade rocks. South‐ to south‐southwest‐directed tectonic transport and north‐south shortening operated during these earlier events. Subsequently, north‐northeast‐trending, open, upright F3 2 folds and inclined, northwest‐verging, northeast‐trending F4 2 folds developed with poorly to moderately developed axial planar, crenulation cleavage (S3 and S4) formed by solution transfer processes. These folds formed heterogeneously in S2 throughout the higher grade areas. Later northeast‐southwest shortening resulted in the formation of en échelon vein arrays and kink bands in both the lower and higher grade rocks. Shortening changed to east‐northeast‐west‐southwest during later north‐northeast to northeast, dextral, strike‐slip faulting and then to approximately northwest‐southeast during the formation of east‐southeast to southeast‐trending, strike‐slip faults. Cessation of faulting occurred prior to the emplacement of Triassic (229 Ma) granitoids. On a regional scale, S1 trends east‐west and dips moderately to the north in areas unaffected by later events. S2 has a similar trend to S1 in less‐deformed areas, but is refolded about east‐west axes during D3. S3 is folded about east‐west axes in the highest grade, multiply deformed central part of the Nambucca Block. The deformation and regional metamorphism in the Nambucca Block is believed to be the result of indenter tectonics, whereby south‐directed movement of the Coffs Harbour Block during oroclinal bending, sequentially produced the east‐west‐trending structures. The effects of the Coffs Harbour Block were greatest during D1 and D2.  相似文献   

19.
《Geodinamica Acta》2013,26(4):157-163
The Terena Formation is located in the central part of the Ossa-Morena Zone (OMZ) and outcrops in the core of a latter (D3) first order syncline. This Formation is a Lower Devonian flysch and shows an unusual “Z” shape, with a central sector trending nearly N-S, and the tips trending NW-SE. This central sector is crossed by the cleavage (NW-SE) showing an apparent dextral (clockwise) transection pattern, anomalous and opposite to the regional widespread sinistral (anti-clockwise) transpression. The same sector with cartographic dextral transection, shows at outcrop scale, mesoscopic folds with a sinistral transection. During the Lower Devonian a N-S trending basin was developed as an effect of an early tectonic deformation phase. This trough was filled with turbidites and its elongated geometry determined the shape of the main syncline. We propose that the dextral transection pattern, at cartographic scale, result from the superposition of the NW-SE upright S3 cleavage on this major regional structure controlled by a sedimentary trough. The mesoscopic folds, observed on the upper levels of the sedimentary sequence were not influenced by the topographic anisotropy of the basin, and therefore they developed a left transection, according to the regional deformation mechanisms.

The “Z” shape of the syncline could be explained as a consequence of two major tectonic shear zones situated along the north and south boundaries of the OMZ, respectively the Tomar-Badajoz-Cordoba Shear Zone and the South Iberian Suture, lined by the Beja-Acebuches Ophiolitic Complex. Both shear zones have a sinistral transpressive character and were active during late Variscan tectonic events.  相似文献   

20.
The Hastings Block is a weakly cleaved and complexly folded and faulted terrain made up of Devonian, Carboniferous and Permian sedimentary and volcanic rocks. The map pattern of bedding suggests a major boundary exists that divides the Hastings Block into northern and southern parts. Bedding north of this boundary defines an upright box-like Parrabel Anticline that plunges gently northwest. Four cleavage/fold populations are recognised namely: E–W-striking, steeply dipping cleavage S1 that is axial surface to gently to moderately E- or W-plunging; F1 folds that were re-oriented during the formation of the Parrabel Anticline with less common N–S-trending, steeply dipping cleavage S2, axial surface to gently to moderately N-plunging F2 folds; poorly developed NW–SE-striking, steeply dipping cleavage S3 axial surface to mesoscopic, mainly NW-plunging F3 folds; and finally, a weakly developed NE–SW-striking, steeply dipping S4 cleavage formed axial surface to mainly NE-plunging F4. The Parrabel Anticline is considered to have formed during the D3 deformation. The more intense development of S2 and S3 on the western margin of the Northern Hastings Block reflects increasing strain related to major shortening of the sequences adjacent to the Tablelands Complex during the Hunter–Bowen Orogeny. The pattern of multiple deformation we have recorded is inconsistent with previous suggestions that the Hastings Block is part of an S-shaped orocline folded about near vertically plunging axes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号