首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
The paper is concerned with the propagation of the Love waves in an inhomogeneous transversely isotropic fluid saturated porous layered half-space with linearly varying properties. The analysis is based on Biot's theory. Firstly, the dispersion equation in the complex form for the Love waves in an inhomogeneous porous layer is derived. Then the equation is solved by an iterative method. Detailed numerical calculation is presented for an inhomogeneous fluid saturated porous layer overlying a purely elastic half-space. The dispersion and attenuation of the Love waves are discussed. In addition, the upper and lower bounds of the Love wave speed are explored.  相似文献   

2.
This paper aims to study the propagation of Love waves in fiber-reinforced layer lying over a gravitating anisotropic porous half-space. The closed form of dispersion equation has been derived for the Love waves in terms of Whittaker function and its derivative, which are further expanded asymptotically, retaining the terms up to second degree. The frequency equation shows that the transverse and longitudinal rigidity of reinforced material, as well as gravity and porosity of the porous halfspace have significant effect on the propagation of Love waves. The study reveals that the increment in width of reinforced layer decreases the phase velocity. For a particular width of the reinforced layer, it is also observed that the phase velocity increases with increasing porosity of the half-space, but it decreases with increasing gravity.  相似文献   

3.
Rayleigh's principle and the concept of the local wave number have been utilised for the approximate determination of the dispersion of Love waves propagating in a laterally heterogeneous layer lying over a homogeneous half-space. The shear wave velocity and the rigidity in the surface layer have been assumed to decrease with the increase of the lateral distance from the origin. The range of validity of the dispersion equation obtained by this method has been examined critically. It was found that: (a) for existence of Love waves the minimum value of shear wave velocity in the layer must be less than that in the matter below, and (b) the phase velocity of Love waves decreases with the increase of the lateral distance from the origin.  相似文献   

4.
竖向非均匀介质中的Love面波   总被引:2,自引:0,他引:2  
本利用KWBJ2(即几何近似)理论研究介质参数随深度作连续变化的竖向非均匀弹性半空间上覆盖一层厚度为H的元首中向同性的弹性介质时Love面波的频散问题。给出了频散方程。中以剪切弹性模量和质量密度随深度呈抛物线变化的非均匀介质为例,给出其最低阶振型的频散曲线  相似文献   

5.
The dispersion relation for Love waves in a layer on a half-space is modified by introducing the wave number and its square instead of the phase velocity. The implicit function theorem is then used to derive the analytical formulae for the group velocity and for the phase- and group-velocity partial derivatives with respect to the parameters of the medium. The formulae are compared with those obtained by Novotný (1971) where the traditional formulation of the dispersion relation was used.  相似文献   

6.
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ‘‘jumping’’ appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P–SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.  相似文献   

7.
利用有限单元法及解析法建立和求解了土中Love波特征方程以及位移计算公式.计算结果表明,这一计算方法比纯解析法优越,可以用来分析均质和非均质上中Love波弥散性.本文利用这一方法详细讨论了Love波在上软下硬地基及软夹层地基中的传播特性和弥散特性.上软下硬地基Love波具有弥散性,土层的剪切波及厚度对Love波弥散曲线影响较大,而质量密度的相对变化对Love彼弥散曲线影响较小.软夹层地基中低频时Love波以第一模态波为主,现场所测为第一模态波波速;高频时存在多个高模态波,土中传播的波为这几个高模态波的叠加波,现场所测波速随两传感器的位置不同而有波动.  相似文献   

8.
Summary The frequency equation is derived for the propagation of Love waves in a two layered crust overlying an inhomogeneous half-space. While exact solutions of the differential equation involved are obtained in some particular cases, both an asymptotic series and the WKBJ approximations are discussed for the solution in the general case. The asymptotic series solution and the WKBJ solution are compared with each other and with the asymptotic expansion of the exact solution. There is a good agreement between various results. It is shown that some of the existing results can be derived as particular cases of the general results obtained in this investigation.  相似文献   

9.
Dispersion analysis is an important part of in-seam seismic data processing, and the calculation accuracy of the dispersion curve directly influences pickup errors of channel wave travel time. To extract an accurate channel wave dispersion curve from in-seam seismic two-component signals, we proposed a time–frequency analysis method based on single-trace signal processing; in addition, we formulated a dispersion calculation equation, based on S-transform, with a freely adjusted filter window width. To unify the azimuth of seismic wave propagation received by a two-component geophone, the original in-seam seismic data undergoes coordinate rotation. The rotation angle can be calculated based on P-wave characteristics, with high energy in the wave propagation direction and weak energy in the vertical direction. With this angle acquisition, a two-component signal can be converted to horizontal and vertical directions. Because Love channel waves have a particle vibration track perpendicular to the wave propagation direction, the signal in the horizontal and vertical directions is mainly Love channel waves. More accurate dispersion characters of Love channel waves can be extracted after the coordinate rotation of two-component signals.  相似文献   

10.
This study considers the propagation of Rayleigh waves in a generalized thermoelastic half-space with stress-free plane boundary. The boundary has the option of being either isothermal or thermally insulated. In either case, the dispersion equation is obtained in the form of a complex irrational expression due to the presence of radicals. This dispersion equation is rationalized into a polynomial equation, which is solvable, numerically, for exact complex roots. The roots of the dispersion equation are obtained after removing the extraneous zeros of this polynomial equation. Then, these roots are filtered out for the inhomogeneous propagation of waves decaying with depth. Numerical examples are solved to analyze the effects of thermal properties of elastic materials on the dispersion of existing surface waves. For these thermoelastic Rayleigh waves, the behavior of elliptical particle motion is studied inside and at the surface of the medium. Insulation of boundary does play a significant role in changing the speed, amplitude, and polarization of Rayleigh waves in thermoelastic media.  相似文献   

11.
目前完全弹性介质中面波频散特征的研究已较为完善,多道面波分析技术(MASW)在近地表勘探领域也取得了较好的效果,但黏弹介质中面波的频散特征研究依然较少.本文基于解析函数零点求解技术,给出了完全弹性、常Q黏弹和Kelvin-Voigt黏弹层状介质中勒夫波频散特征方程的统一求解方法.对于每个待计算频率,首先根据传递矩阵理论得到勒夫波复频散函数及其偏导的解析递推式,然后在复相速度平面上利用矩形围道积分和牛顿恒等式将勒夫波频散特征复数方程的求根问题转化为等价的连带多项式求解问题,最后通过求解该连带多项式的零点得到多模式勒夫波频散曲线与衰减系数曲线.总结了地层速度随深度递增和夹低速层条件下勒夫波频散特征根在复相速度平面上的运动规律和差异.证明了频散曲线交叉现象在复相速度平面上表现为:随频率增加,某个模式特征根的移动轨迹跨越了另一个模式特征根所在的圆,并给出了这个圆的解析表达式.研究还表明,常Q黏弹地层中的基阶模式勒夫波衰减程度随频率近似线性增加,而Kelvin-Voigt黏弹地层中的基阶模式勒夫波衰减程度随频率近似指数增加,且所有模式总体衰减程度强于常Q黏弹地层中的情况.  相似文献   

12.
Summary Dispersion relations for Love and Rayleigh waves in a layer on a half-space are modified by introducing quadratic slownesses instead of velocities. The advantages of this approach are demonstrated on analytical formulae for computing the group velocity.  相似文献   

13.
Summary The effect of thickening of the crustal layer in mountainous region on the dispersion curve of Love waves has been studied. Perturbation method has been applied to obtain the modified frequency equation for Love waves through the surface of separation between a semi-infinite material and a layer the thickness of which abruptly increases throughout a certain length of the path. The effect is to decrease the phase velocity of the waves particularly in the low period range. It has been pointed out that by proper study, the amount of thickening may be obtained.  相似文献   

14.
Summary Propagation of Love waves over the spherical surface of a layered earth model has been discussed with special emphasis on the dispersion produced in the layer. The velocity of the waves with large wave-length increases appreciably as compared to the case of plane layer. The analysis has been extended to deduce an expression for the dispersion equation of the waves when the upper layer is of varying thickness. The modifications imparted to the dispersion equation depends on the amplitude only and not the shape of the corrugations provided we neglect small quantities of the second order. The effect is a substantial decrease in the phase velocity and becomes more pronounced if the amplitude of the corrugations increases.  相似文献   

15.
多层弹性半空间中的地震波(一)   总被引:6,自引:0,他引:6       下载免费PDF全文
为了了解地震震源和地球介质的性质,很有必要对地震波的辐射、传播和衰减问题作仔细的分析。作为一种近似,可以暂且忽略地球的曲率,把传播地震波的地球介质视为多层半空间。为简便起见,地震波的衰减问题另作考虑。这样,便需要研究多层、均匀、各向同性和完全弹性半空间中地震震源辐射的地震波传播问题。 用哈斯克尔(Haskell)矩阵法解多层介质中弹性波的传播问题是很方便的。如果  相似文献   

16.
As theory dictates, for a series of horizontal layers, a pure, plane, horizontally polarized shear (SH) wave refracts and reflects only SH waves and does not undergo wave-type conversion as do incident P or Sv waves. This is one reason the shallow SH-wave refraction method is popular. SH-wave refraction method usually works well defining near-surface shear-wave velocities. Only first arrival information is used in the SH-wave refraction method. Most SH-wave data contain a strong component of Love-wave energy. Love waves are surface waves that are formed from the constructive interference of multiple reflections of SH waves in the shallow subsurface. Unlike Rayleigh waves, the dispersive nature of Love waves is independent of P-wave velocity. Love-wave phase velocities of a layered earth model are a function of frequency and three groups of earth properties: SH-wave velocity, density, and thickness of layers. In theory, a fewer parameters make the inversion of Love waves more stable and reduce the degree of nonuniqueness. Approximating SH-wave velocity using Love-wave inversion for near-surface applications may become more appealing than Rayleigh-wave inversion because it possesses the following three advantages. (1) Numerical modeling results suggest the independence of P-wave velocity makes Love-wave dispersion curves simpler than Rayleigh waves. A complication of “Mode kissing” is an undesired and frequently occurring phenomenon in Rayleigh-wave analysis that causes mode misidentification. This phenomenon is less common in dispersion images of Love-wave energy. (2) Real-world examples demonstrated that dispersion images of Love-wave energy have a higher signal-to-noise ratio and more focus than those generated from Rayleigh waves. This advantage is related to the long geophone spreads commonly used for SH-wave refraction surveys, images of Love-wave energy from longer offsets are much cleaner and sharper than for closer offsets, which makes picking phase velocities of Love waves easier and more accurate. (3) Real-world examples demonstrated that inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. This is due to Love-wave’s independence of P-wave velocity, which results in fewer unknowns in the MALW method compared to inversion methods of Rayleigh waves. This characteristic not only makes Love-wave dispersion curves simpler but also reduces the degree of nonuniqueness leading to more stable inversion of Love-wave dispersion curves.  相似文献   

17.
The generalized Rayleigh type surface waves are studied in a multilayered medium consisting of anisotropic poroelastic solid layered stack beneath a fluid layer and overlying a heterogeneous elastic solid half-space. The heterogeneity, considered, is of vertical type. The interface between solid layer and half-space is treated as an imperfect interface and suitable boundary conditions are applied thereat. The technique of transfer matrix is used to obtain the dispersion equation in compact and convenient form. Numerical results are obtained for particular models. The effects of anisotropy and heterogeneity on the surface waves speed are discussed.  相似文献   

18.
A Gibson half-space model (a non-layered Earth model) has the shear modulus varying linearly with depth in an inhomogeneous elastic half-space. In a half-space of sedimentary granular soil under a geostatic state of initial stress, the density and the Poisson’s ratio do not vary considerably with depth. In such an Earth body, the dynamic shear modulus is the parameter that mainly affects the dispersion of propagating waves. We have estimated shear-wave velocities in the compressible Gibson half-space by inverting Rayleigh-wave phase velocities. An analytical dispersion law of Rayleigh-type waves in a compressible Gibson half-space is given in an algebraic form, which makes our inversion process extremely simple and fast. The convergence of the weighted damping solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Calculation efficiency is achieved by reconstructing a weighted damping solution using singular value decomposition techniques. The main advantage of this algorithm is that only three parameters define the compressible Gibson half-space model. Theoretically, to determine the model by the inversion, only three Rayleigh-wave phase velocities at different frequencies are required. This is useful in practice where Rayleigh-wave energy is only developed in a limited frequency range or at certain frequencies as data acquired at manmade structures such as dams and levees. Two real examples are presented and verified by borehole S-wave velocity measurements. The results of these real examples are also compared with the results of the layered-Earth model.  相似文献   

19.
The present paper is concerned with the propagation of shear waves in a homogeneous viscoelastic isotropic layer lying over a semi-infinite heterogeneous viscoelastic isotropic half-space due to point source. The inhomogeneity parameters associated to rigidity, internal friction and density are assumed to be functions of depth. The dispersion equation of shear waves has been obtained using Green’s function technique. The dimensionless angular frequency has been plotted against dimensionless wave number for different values of inhomogeneity parameters. The effects of inhomogeneity have been shown in the dispersion curves. graphical user interface (GUI) software in MATLAB has been developed to show the effect of various inhomogeneity parameters on angular frequency. The topic can be of interest for geophysical applications in propagation of shear waves on the Earth’s crust.  相似文献   

20.
The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series from the 12-month span between January and December 2013 were cross-correlated to yield empirical Green's functions for Rayleigh and Love waves. Phasevelocity dispersion curves for the Rayleigh waves and the Love waves were measured by applying the frequencytime analysis method. Dispersion measurements of the Rayleigh wave and the Love wave were then utilized to construct 2D phase-velocity maps for the Rayleigh wave at8–35 s periods and the Love wave at 9–32 s periods,respectively. Both Rayleigh and Love phase-velocity maps show significant lateral variations that are correlated well with known geological features and tectonics units in the study region. Next, phase dispersion curves of the Rayleigh wave and the Love wave extracted from each cell of the 2D Rayleigh wave and Love wave phase-velocity maps,respectively, were inverted simultaneously to determine the3 D shear wave velocity structures. The horizontal shear wave velocity images clearly and intuitively exhibit that the earthquake swarms in the Haicheng region and theTangshan region are mainly clustered in the transition zone between the low-and high-velocity zones in the upper crust, coinciding with fault zones, and their distribution is very closely associated with these faults. The vertical shear wave velocity image reveals that the lower crust downward to the uppermost mantle is featured by distinctly high velocities, with even a high-velocity thinner layer existing at the bottom of the lower crust near Moho in central and northern the Bohai sea along the Tanlu fault, and these phenomena could be caused by the intrusion of mantle material, indicating the Tanlu fault could be just as the uprising channel of deep materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号