首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介观尺度孔隙流体流动是地震频段岩石表现出较强速度频散与衰减的主要作用.利用周期性层状孔隙介质模型,基于准静态孔弹性理论给出了模型中孔隙压力、孔隙流体相对运动速度以及固体骨架位移等物理量的数学解析表达式,同时利用Biot理论将其扩展至全频段条件下,克服了传统White模型中介质分界面处流体压力不连续的假设. 在此基础上对准静态与全频段下模型介质中孔隙压力、孔隙流体相对运动速度变化形式及其对弹性波传播特征的影响进行了讨论,为更有效理解介观尺度下流体流动耗散和频散机制提供物理依据.研究结果表明,低频条件下快纵波孔压在介质层内近于定值,慢纵波通过流体扩散改变总孔隙压力, 随频率的增加慢波所形成的流体扩散作用逐渐减弱致使介质中总孔压逐渐接近于快纵波孔压,在较高频率下孔压与应力的二次耦合作用使总孔压超过快纵波孔压.介质中孔隙流体相对运动速度与慢纵波形成的流体相对运动速度变化形式一致;随频率的增加孔隙流体逐渐从排水的弛豫状态过渡到非弛豫状态,其纵波速度-含水饱和度变化形式也从符合孔隙流体均匀分布模式过渡到斑块分布模式,同时介质在不同含水饱和度下的衰减峰值与慢纵波所形成的孔隙流体相对流动速度具有明显的相关性.  相似文献   

2.
The strong coupling of applied stress and pore fluid pressure, known as poroelasticity, is relevant to a number of applied problems arising in hydrogeology and reservoir engineering. The standard theory of poroelastic behavior in a homogeneous, isotropic, elastic porous medium saturated by a viscous, compressible fluid is due to Biot, who derived a pair of coupled partial differential equations that accurately predict the existence of two independent dilatational (compressional) wave motions, corresponding to in-phase and out-of-phase displacements of the solid and fluid phases, respectively. The Biot equations can be decoupled exactly after Fourier transformation to the frequency domain, but the resulting pair of Helmholtz equations cannot be converted to partial differential equations in the time domain and, therefore, closed-form analytical solutions of these equations in space and time variables cannot be obtained. In this paper we show that the decoupled Helmholtz equations can in fact be transformed to two independent partial differential equations in the time domain if the wave excitation frequency is very small as compared to a critical frequency equal to the kinematic viscosity of the pore fluid divided by the permeability of the porous medium. The partial differential equations found are a propagating wave equation and a dissipative wave equation, for which closed-form solutions are known under a variety of initial and boundary conditions. Numerical calculations indicate that the magnitude of the critical frequency for representative sedimentary materials containing either water or a nonaqueous phase liquid is in the kHz–MHz range, which is generally above the seismic band of frequencies. Therefore, the two partial differential equations obtained should be accurate for modeling elastic wave phenomena in fluid-saturated porous media under typical low-frequency conditions applicable to hydrogeological problems.  相似文献   

3.
We generalize the classical theory of acoustoelasticity to the porous case (one fluid and a solid frame) and finite deformations. A unified treatment of non‐linear acoustoelasticity of finite strains in fluid‐saturated porous rocks is developed on the basis of Biot’s theory. A strain‐energy function, formed with eleven terms, combined with Biot’s kinetic and dissipation energies, yields Lagrange’s equations and consequently the wave equation of the medium. The velocities and dissipation factors of the P‐ and S‐waves are obtained as a function of the 2nd‐ and 3rd‐order elastic constants for hydrostatic and uniaxial loading. The theory yields the limit to the classical theory if the fluid is replaced with a solid with the same properties of the frame. We consider sandstone and obtain results for open‐pore jacketed and closed‐pore jacketed ‘gedanken’ experiments. Finally, we compare the theoretical results with experimental data.  相似文献   

4.
Numerical simulations of dilatational waves in an elastic porous medium containing two immiscible viscous compressible fluids indicate that three types of wave occur, but the modes of dilatory motion corresponding to the three waves remain uncharacterized as functions of relative saturation. In the present paper, we address this problem by deriving normal coordinates for the three dilatational waves based on the general poroelasticity equations of Lo et al. 2005 [13]. The normal coordinates provide a theoretical foundation with which to characterize the motional modes in terms of six connecting coefficients that depend in a well defined way on inertial drag, viscous drag, and elasticity properties. Using numerical calculations of the connecting coefficients in the seismic frequency range for an unconsolidated sand containing water and air as a representative example relevant to hydrologic applications, we confirm that the dilatational wave whose speed is greatest corresponds to the motional mode in which the solid framework and the two pore fluids always move in phase, regardless of water saturation, in agreement with the classic Biot theory of the fast compressional wave in a water-saturated porous medium. For the wave which propagates second fastest, we show, apparently for the first time, that the solid framework moves in phase with water, but out of phase with air [Mode (III)], if the water saturation is below about 0.8, whereas the solid framework moves out of phase with both pore fluids [Mode (IV)] above this water saturation. The transition from Mode (III) to Mode (IV) corresponds to that between the capillarity-dominated region of the water retention curve and the region reflecting air-entry conditions near full water saturation. The second of the two modes corresponds exactly to the slow compressional wave in classic Biot theory, whereas the first mode is possible only in a two-fluid system undergoing capillary pressure fluctuations. For the wave which has the smallest speed, the dilatational mode is dominated by the motions of the two pore fluids, which are always out of phase, a result that is consistent with the proposition that this wave is caused by capillary pressure fluctuations.  相似文献   

5.
含混合裂隙、孔隙介质的纵波衰减规律研究   总被引:4,自引:4,他引:0       下载免费PDF全文
地下多孔介质中的孔隙类型复杂多样,既有硬孔又有扁平的软孔.针对复杂孔隙介质,假设多孔介质中同时含有球型硬孔和两种不同产状的裂隙(硬币型、尖灭型裂隙),当孔隙介质承载载荷时,考虑两种不同类型的裂隙对于孔隙流体压力的影响,建立起Biot理论框架下饱和流体情况含混合裂隙、孔隙介质的弹性波动方程,并进一步求取了饱和流体情况下仅由裂隙引起流体流动时的含混合裂隙、孔隙介质的体积模量和剪切模量,随后,在此基础上讨论了含混合裂隙、孔隙介质在封闭条件下地震波衰减和频散的高低频极限表达式.最后计算了给定模型的地震波衰减和频散,发现地震波衰减曲线呈现"多峰"现象,速度曲线为"多频段"频散.针对该模型分析讨论了渗透率参数、裂隙纵横比参数以及流体黏滞性参数对于地震波衰减和频散的影响,表明三个参数均为频率控制参数.  相似文献   

6.
A model of wave propagation in fluid-saturated porous media is developed where the principal fluid/solid interaction mode affecting the propagation of the acoustic wave results from the conjunction of the Biot and the Squirt flow mechanism. The difference between the original Biot/Squirt (BISQ) flow theory and the new theory, which we call the reformulated BISQ, is that the average fluid pressure term appearing in the dynamic equation for a two component solid/fluid continuum is independent of squirt flow length. P-velocity and attenuation relate to measurable rock physical parameters: the Biot's poroelastic constants, porosity, permeability, pore fluid compressibility and viscosity. Modelling shows that velocity and attenuation dispersion obtained using the reformulated BISQ theory are of the same order of magnitude as those obtained using the original BISQ theory. Investigation on permeability effect on velocity and attenuation dispersion indicate that the transition zone in velocity and attenuation peak, occurring both at the relaxation frequency, shifts toward high frequency when permeability decreases. This behaviour agrees with Biot's theory prediction.  相似文献   

7.
A 2-D boundary problem formulation in terms of pore pressure in Biot poroelasticity model is discussed, with application to a vertical contact model mechanically excited by a lunar-solar tidal deformation wave, representing a fault zone structure. A problem parametrization in terms of permeability and Biot’s modulus contrasts is proposed and its numerical solution is obtained for a series of models differing in the values of the above parameters. The behavior of pore pressure and its gradient is analyzed. From those, the electric field of the electrokinetic nature is calculated. The possibilities of estimation of the elastic properties and permeability of geological formations from the observations of the horizontal and vertical electric field measured inside the medium and at the earth’s surface near the block boundary are discussed.  相似文献   

8.
In this paper, a two-dimensional integrated numerical model is developed to examine the influences of cross-anisotropic soil behaviour on the wave-induced residual liquefaction in the vicinity of a pipeline buried in a porous seabed. In the wave model, the RANS (Reynolds Averaged Navier–Stokes) equation is used to govern the wave motion. In the seabed model, the residual soil response in the vicinity of an embedded pipeline is considered with the 2-D elasto-plastic solution, where the phase-resolved shear stress is used as a source for the build-up of residual pore pressure. Classical Biot׳s consolidation equation is used for linking the solid-pore fluid interaction. The validation of the proposed integrated numerical model is conducted by the comparisons with the previous experimental data. Numerical examples show that the pore pressures can accumulate to a large value, thus resulting in a larger area of liquefaction potential in the given anisotropic soil compared to that with isotropic solution. The influences of anisotropic parameters on the wave-induced residual soil response in the vicinity of pipeline are significant. A high rate of pore pressure accumulation and dissipation is observed and the liquefaction potential develops faster as the anisotropic parameters increase. Finally, a simplified approximation based on a detailed parametric investigations is proposed for the evaluation of maximum liquefaction depth (zL) in engineering application.  相似文献   

9.
In sedimentary rocks attenuation/dispersion is dominated by fluid-rock interactions. Wave-induced fluid flow in the pores causes energy loss through several mechanisms, and as a result attenuation is strongly frequency dependent. However, the fluid motion process governing the frequency dependent attenuation and velocity remains unclear. We propose a new approach to obtain the analytical expressions of pore pressure, relative fluxes distribution and frame displacement within the double-layer porous media based on quasi-static poroelastic theory. The dispersion equation for a P-wave propagating in a porous medium permeated by aligned fractures is given by considering fractures as thin and highly compliant layers. The influence of mesoscopic fluid flow on phase velocity dispersion and attenuation is discussed under the condition of varying fracture weakness. In this model conversion of the compression wave energy into Biot slow wave diffusion at the facture surface can result in apparent attenuation and dispersion within the usual seismic frequency band. The magnitude of velocity dispersion and attenuation of P-wave increases with increasing fracture weakness, and the relaxation peak and maximum attenuation shift towards lower frequency. Because of its periodic structure, the fractured porous media can be considered as a phononic crystal with several pass and stop bands in the high frequency band. Therefore, the velocity and attenuation of the P-wave show an oscillatory behavior with increasing frequency when resonance occurs. The evolutions of the pore pressure and the relative fluxes as a function of frequency are presented, giving more physical insight into the behavior of P-wave velocity dispersion and the attenuation of fractured porous medium due to the wave-induced mesoscopic flow. We show that the specific behavior of attenuation as function of frequency is mainly controlled by the energy dissipated per wave cycle in the background layer.  相似文献   

10.
由于地震作用时间较短,且碎石桩渗透能力和土体渗透能力相比并不是无限大,因此本文考虑碎石桩排水能力研究了碎石桩桩体材料由地震引起的孔压的长消规律。根据比奥固结理论综合考虑碎石桩的排水能力和相应的初始条件及边界条件,推导出了能够真实反映碎石桩排水减压作用在地震期超孔隙水压力产生、扩散、消散过程中的贡献作用的一般解析解公式。同时讨论了碎石桩渗透能力的不同对抗震液化的影响作用。  相似文献   

11.
本文综合考虑了在波传播过程中孔隙介质的三种重要力学机制——"Biot流动机制一squirt流动机制-固体骨架黏弹性机制",借鉴等效介质思想,将含水饱和度引入波动力学控制方程,并考虑了不同波频率下孔隙流体分布模式对其等效体积模量的影响,给出了能处理含粘滞性非饱和流体孔隙介质中波传播问题的黏弹性Biot/squirt(BISQ)模型。推导了时间-空间域的波动力学方程组,由一组平面谐波解假设,给出频率-波数域黏弹性BISQ模型的相速度和衰减系数表达式。基于数值算例分析了含水饱和度、渗透率与频率对纵波速度和衰减的影响,并结合致密砂岩和碳酸盐岩的实测数据,对非饱和情况下的储层纵波速度进行了外推,碳酸盐岩储层中纵波速度对含气饱和度的敏感性明显低于砂岩储层。  相似文献   

12.
由于介观尺度的孔隙流体流动,弹性波传播过孔隙岩层时在地震频段表现出较强的频散和衰减。Johnson理论给出了在任意孔隙形状的条件下,部分气水饱和孔隙介质的理论相速度和品质因子的解析解。本文在Johnson模型的基础上,通过对Q值曲线的低频和高频近似,推导了Q值曲线的近似公式,以及基于孔隙介质基本地球物理参数和孔隙斑块几何形态参数T和比表面积S/V的最大衰减Qmin近似公式。通过与理论值的对比,对Qmin近似公式存在的线性误差进行改正,进一步提高了精度。复杂的斑块形态对最大衰减Qmin和过渡频率ftr的都产生一定影响,且对ftr影响更大。因为数值模拟直接求解介观尺度的Biot孔隙介质方程需要极大的计算量,我们使用Zener模型建立了等效粘弹模型,有效地模拟了地震频带内的衰减和频散现象。  相似文献   

13.
给出基于Biot多孔介质理论分析饱和土体在动载荷作用下瞬态响应的有限元公式,数值计算部分采用本文有限元法分别计算一维饱和土柱在两种不同类型动载荷作用下的瞬态响应,并将数值计算结果与文献中的解析解进行比较,二者结果十分吻合,从而验证本文方法的可行性。  相似文献   

14.
王小岗 《地球物理学报》2009,52(8):2084-2092
基于孔隙介质的Biot理论,首先利用Laplace变换,给出圆柱坐标系下横观各向同性饱和弹性多孔介质在变换域上的波动方程;将波动方程解耦后,根据方位角的Fourier展开和径向Hankel变换,求解了Biot波动方程,得到以土骨架位移、孔隙水压力和土介质总应力分量的积分形式的一般解;借助一般解,建立了有限厚度饱和土层和饱和半空间的精确动力刚度矩阵,并由土层的层间界面连续条件建立三维非轴对称层状饱和地基的总刚度方程;在此基础上,系统研究了横观各向同性饱和半空间体在内部集中荷载激励下的动力响应,并给出了问题的瞬态解答.该研究为运用边界元法求解饱和地基动力响应奠定了理论基础.  相似文献   

15.
孔隙尺度的喷射流流动是引起地震波速度频散和衰减的重要机制之一.目前,大多数喷射流模型仅考虑硬孔隙与微裂隙之间的局部流动,而忽略了具有不同孔隙纵横比微裂隙间的喷射流作用.为了研究各种类型孔隙间的流体流动效应,本文对经典喷射流模型进行了扩展,通过结合等效介质理论和孔隙结构模型,根据从干燥岩石超声速度-压力曲线中提取的微裂隙...  相似文献   

16.
A plasticity based constitutive model for anisotropic behaviour of soils is implemented in a finite element procedure based on the generalized Biot theory for the dynamic non-linear response of porous materials. The model represents a version in the hierarchical approach of constitutive modelling and allows for inelastic response during loading, unloading and reloading. The procedure has been verified previously with respect to closed-form solutions for wave propagation in porous media. In this paper, it is used to predict the behaviour of a realistic structure-saturated porous soil system subjected to earthquake loading. Both linear and non-linear analyses have been performed. It has been found that the predicted responses from the two analyses are significantly different; for example, in comparison with the linear analysis the non-linear response shows increased magnitudes and zones of concentration of pore water pressures, increased magnitudes of horizontal displacements, decreased magnitudes of vertical displacements and increased magnitudes of shear stresses.  相似文献   

17.
Velocities of compressional and shear waves in limestones   总被引:2,自引:1,他引:2  
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional‐ and shear‐wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse‐echo method. The measurements were made both in vacuum‐dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin‐impregnated polished thin sections, X‐ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional‐ and shear‐wave velocities (Vp and Vs, respectively) decrease with increasing porosity and that Vp decreases approximately twice as fast as Vs. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore‐structure‐dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot–Gassmann velocity values are greater than the measured velocity values due to the rock–fluid interaction. This is not accounted for in the Biot–Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time‐average relationships overestimated the measured velocities even more than the Biot model.  相似文献   

18.
多极子声波测井在低孔低渗气层中的数值研究   总被引:3,自引:1,他引:2       下载免费PDF全文
现有的天然气勘探中的测井技术,在评价低孔低渗气层时遇到诸多难题,本文引入了一种新的气藏评价方法,即利用多极源激发的模式波的幅度来识别气藏,并对此方法进行了数值验证.以Biot多孔介质理论为基础建立了低孔低渗含气储层计算模型,数值计算了多极子声源在充液井孔中激发的频散曲线、衰减曲线以及全波列波形.结果表明,挠曲波和螺旋波的衰减系数与相速度相比,对孔隙中的流体性质更敏感,且随着多极源级数的增加和工作主频的提高,挠曲波和螺旋波的衰减系数的变化程度明显增强;在偶极子和四极子激发的全波列波形中,可清晰的观测到对地层孔隙流体不敏感的地层横波,在这种情况下,可以通过对比波列中地层横波和频散的弯曲波(或螺旋波)幅度来识别气层.  相似文献   

19.
基于非饱和多孔隙介质BISQ模型的储层参数反演   总被引:22,自引:10,他引:12       下载免费PDF全文
Biot流动和喷射流动是含流体多孔隙介质中流体流动的两种重要力学机制.文中基于同时包含这两种力学机制的非饱和多孔隙BISQ模型,利用小生境遗传算法实现了储层参数(孔隙度、渗透率、含流体饱和度等)的反演.结果表明,本文方法在储层参数的反演过程中目标函数收敛快、且具有较强的抗“噪声”干扰性能,当观测噪声ε≤5%时,储层参数的反演精度很高.最后,通过实测数据的反演应用验证了该方法处理储层参数反演问题的有效性和非饱和BISQ模型的准确性.  相似文献   

20.
Based on the uU formulation of Biot equation and the assumption of zero permeability coefficient, a viscous-spring transmitting boundary which is frequency independent is derived to simulate the cylindrical elastic wave propagation in unbounded saturated porous media. By this viscous-spring boundary the effective stress and pore fluid pressure on the truncated boundary of the numerical model are replaced by a set of spring, dashpot and mass elements, and its simplified form is also given. A uU formulation FEA program is compiled and the proposed transmitting boundaries are incorporated therein. Numerical examples show that the proposed viscous-spring boundary and its simplified form can provide accurate results for cylindrical elastic wave propagation problems with low or intermediate values of permeability or frequency content. For general two dimensional wave propagation problems, spuriously reflected waves can be greatly suppressed and acceptable accuracy can still be achieved by placing the simplified boundary at relatively large distance from the wave source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号