首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Basurah  Hassan M. 《Solar physics》2004,225(1):209-212
This paper describes four aurora displays in south Arabia (Yemen), around latitude 16N, during the 9th, 13th, 14th, and 15th centuries. The first event is considered to be the earliest Arabian recorded event of aurora. The second and third events confirmed the case of strong solar activity during the end of the 12th century and mid 15th century, respectively. The fourth event was around solar maximum activity in 1449 ad. So, these records could be considered as proxies for intense geomagnetic solar storms, during early solar activities.  相似文献   

2.
It has been shown previously that the number of very-large-fluence solar proton events inferred for the period since 1561 were more frequent at times of low solar activity (e.g., following the recovery from the Maunder minimum), than in the present epoch of high solar activity. An inverse dependence is demonstrated between the probability of observation of the very large-fluence solar proton events and the strength of the interplanetary magnetic field derived from empirical predictions. Using the observed dependence, it is predicted and demonstrated that large-fluence solar proton events have been observed at Earth more frequently near the recurrent minima of the solar activity cycle in the past than during the present epoch. We show that these results are explicable in terms of the linear dependence of the Alfvén velocity upon the strength of the interplanetary magnetic field, leading to higher shock compression ratios in the past. These results indicate that this aspect of “solar weather” will be significantly influenced by the prevailing strength of the interplanetary magnetic field, and that recurrence of solar conditions similar to those of the solar activity minimum of solar cycles 12–14 (1878.9–1913.6) would be accompanied by a factor of ∼4 increase in the occurrence of large-fluence solar proton events.  相似文献   

3.
In a previous study (Cane and Richardson, J. Geophys. Res. 108(A4), SSH6-1, 2003), we investigated the occurrence of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002, corresponding to the increasing and maximum phases of solar cycle 23, and provided a “comprehensive” catalog of these events. In this paper, we present a revised and updated catalog of the ≈300 near-Earth ICMEs in 1996 – 2009, encompassing the complete cycle 23, and summarize their basic properties and geomagnetic effects. In particular, solar wind composition and charge state observations are now considered when identifying the ICMEs. In general, these additional data confirm the earlier identifications based predominantly on other solar wind plasma and magnetic field parameters. However, the boundaries of ICME-like plasma based on charge state/composition data may deviate significantly from those based on conventional plasma/magnetic field parameters. Furthermore, the much studied “magnetic clouds”, with flux-rope-like magnetic field configurations, may form just a substructure of the total ICME interval.  相似文献   

4.
This paper is a qualitative study of 42 events of solar filament/prominence sudden disappearances (“disparitions brusques”; henceforth DBs) around two solar minima, 1985 – 1986 and 1994. The studied events were classified as 17 thermal and 25 dynamic disappearances. Associated events, i.e. coronal mass ejections (CMEs), type II bursts, evolution of nearby coronal holes, as well as solar wind speed, and geomagnetic disturbances are discussed. We have found that about 50% of the thermal DBs with adjacent (within 15° from the DB) coronal holes were associated with CMEs within a selected time window. All the studied thermal disappearances with adjacent coronal holes or accompanied by dynamic disappearances were associated with weak and medium geomagnetic storms. Also, nearly 64% of dynamic DBs were associated with CMEs. Ten (40%) dynamic disappearances were associated with intense geomagnetic storms, even when no CMEs was reported, six (24%) dynamic disappearances corresponded to extreme storms, and five (20%) corresponded to medium geomagnetic storms. The extreme geomagnetic storms appeared to be related to combined events, involving dynamic disappearances with adjacent coronal holes or including thermal disappearances. Furthermore, the geomagnetic activity (Dst index) increased if the source was close to the central meridian (±30°). The highest interplanetary magnetic field (B), longest duration, lowest southward direction B z component, and lowest Dst were highly correlated for all studied events. The Sun – Earth transit time computed from the starting time of the sudden disappearance and the time its effect was measured at Earth was about 4.3 days and was mainly well correlated with the solar wind speed measured in situ (daily value).  相似文献   

5.
Watari  Shinichi  Kunitake  Manabu  Watanabe  Takashi 《Solar physics》2001,204(1-2):425-438
One of the large Sun–Earth connection events in solar cycle 23 occurred between 14 and 16 July 2000. Anomalies occurring on several satellites were reported in association with this event. Statistical study of extreme events is important not only for a view of space weather but for seeking ways to predict such kinds of large events. The Bastille Day event was characterized by a large flux (24 000 p.f.u. at its maximum) of solar energetic protons and a fast average transit speed of approximately 1500 km s−1 of the interplanetary disturbance. A geomagnetic Kp index of more than 9 was observed after an interval of approximately eleven years since 1989. We found that return periods of extreme space weather (e.g., large flares, solar energetic proton events, and large geomagnetic storms) satisfied the Weibull distribution.  相似文献   

6.
A large variation in 14C around AD 775 has been considered to be caused by one or more solar super‐flares within one year. We critically review all known aurora reports from Europe as well as the Near, Middle, and Far East from AD 731 to 825 and find 39 likely true aurorae plus four more potential aurorae and 24 other reports about halos, meteors, thunderstorms etc., which were previously misinterpreted as aurorae or misdated; we assign probabilities for all events according to five aurora criteria. We find very likely true aurorae in AD 743, 745, 762, 765, 772, 773, 793, 796, 807, and 817. There were two aurorae in the early 770s observed near Amida (now Diyarbakır in Turkey near the Turkish‐Syrian border), which were not only red, but also green‐yellow – being at a relatively low geomagnetic latitude, they indicate a relatively strong solar storm. However, it cannot be argued that those aurorae (geomagnetic latitude 43 to 50°, considering five different reconstructions of the geomagnetic pole) could be connected to one or more solar super‐flares causing the 14C increase around AD 775: There are several reports about low‐ to mid‐latitude aurorae at 32 to 44° geomagnetic latitude in China and Iraq; some of them were likely observed (quasi‐)simultaneously in two of three areas (Europe, Byzantium/Arabia, East Asia), one lasted several nights, and some indicate a particularly strong geomagnetic storm (red colour and dynamics), namely in AD 745, 762, 793, 807, and 817 – always without 14C peaks. We use 39 likely true aurorae as well as historic reports about sunspots together with the radiocarbon content from tree rings to reconstruct the solar activity: From AD ∼733 to ∼823, we see at least nine Schwabe cycles; instead of one of those cycles, there could be two short, weak cycles – reflecting the rapid increase to a high 14C level since AD 775, which lies at the end of a strong cycle. In order to show the end of the dearth of naked‐eye sunspots, we discuss two more Schwabe cycles until AD ∼844. The 14C record (from both Intcal and Miyake et al. 2013a) is anti‐correlated to auroral and sunspot activity, as expected from solar wind modulation of cosmic rays which produce the radiocarbon. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
An experimental simulation of planetary magnetospheres is being developed to investigate the formation of collisionless shocks and their effects. Two experimental situations are considered. In both, the solar wind is simulated by laser ablation plasmas. In one case, the “solar wind” flows across the magnetic field of a high-current discharge. In the other, a transverse magnetic field is embedded in the plasma flow, which interacts with a conductive obstacle. The ablation plasma is created using the “Tomcat” laser, currently emitting 5 J in a 6 ns pulse at 1 μm wavelength and irradiance above 1013 W/cm2. The “Zebra” z-pinch generator, with load current up to 1 MA and voltage up to 3.5 MV produces the magnetic fields. Hydrodynamic modeling is used to estimate the plasma parameters achievable at the front of the plasma flow and to optimize the experiment design. Particle-in-cell simulations reveal details of the interaction of the “solar wind” with an external magnetic field, including flow collimation and heating effects at the stopping point. Hybrid simulations show the formation of a bow shock at the interaction of a magnetized plasma flow with a conductor. The plasma density and the embedded field have characteristic spatial modulations in the shock region, with abrupt jumps and fine structure on the skin depth scale.  相似文献   

8.
During solar cycle 23, 82 interplanetary magnetic clouds (MCs) were identified by the Magnetic Field Investigation (MFI) team using Wind (1995 – 2003) solar wind plasma and magnetic field data from solar minimum through the maximum of cycle 23. The average occurrence rate is 9.5 MCs per year for the overall period. It is found that some of the anomalies in the frequency of occurrence were during the early part of solar cycle 23: (i) only four MCs were observed in 1999, and (ii) an unusually large number of MCs (17 events) were observed in 1997, just after solar minimum. We also discuss the relationship between MCs, coronal mass ejections (CMEs), and geomagnetic storms. During the period 1996 – 2003, almost 8000 CMEs were observed by SOHO-LASCO. The occurrence frequency of MCs appears to be related neither to the occurrence of CMEs as observed by SOHO LASCO nor to the sunspot number. When we included “magnetic cloud-like structures” (MCLs, defined by Lepping, Wu, and Berdichevsky, 2005), we found that the occurrence of the joint set (MCs + MCLs) is correlated with both sunspot number and the occurrence rate of CMEs. The average duration of the MCL structures is ~40% shorter than that of the MCs. The MCs are typically more geoeffective than the MCLs, because the average southward field component is generally stronger and longer lasting in MCs than in MCLs. In addition, most severe storms caused by MCs/MCLs with Dst min≤ −100 nT occurred in the active solar period.  相似文献   

9.
10.
The solar flares, the speeds of shocks propagated in the solar-terrestrial space and driven by coronal mass ejections (CMEs), the heliographic longitudes and Carrington longitudes of source regions, and the geomagnetic storms, which are accompanied by the super solar proton events with a peak ?ux equal to or exceeding 10 000 pfu, have been studied by using the data of ground-based and space observations. The results show that the heliographic longitudes of source regions of super solar proton events distributed in the range from E30? to W75°. The Carrington longitudes of source regions of super solar proton events distributed in the two longitudinal belts, 130°∼220° and 260°∼320°, respectively. All super solar proton events were accompanied by major solar flares and fast CMEs. The averaged speeds of shocks propagated from the sun to the Earth were greater than 1 200 km/s. Eight super solar proton events were followed by major geomagnetic storms (Dst≤−100 nT), except that one super solar proton event was followed by a geomagnetic storm with the geomagnetic activity index Dst=−96 nT, a little smaller than that of major geomagnetic storms.  相似文献   

11.
“TOY” Dynamo to Describe the Long-Term Solar Activity Cycles   总被引:1,自引:0,他引:1  
D. Volobuev 《Solar physics》2006,238(2):421-430
Secular variations of solar activity (Gleissberg and Suess cycles) have approximately 80 – 130 and 200 year periods. They are manifested in both observed and proxy data. Here, we show that the basic dynamic features of the Schwabe cycle (asymmetry of its growth and decay phases) and secular cycles (multi-frequency structure and irregular Grand-extremes), as well as a connection between them, can be described by parameter tuning of the electromechanical “toy” dynamo system which has been widely used to model the inversions of the geomagnetic field. An amplitude-frequency diagram for the model magnetic flux has the same shape as the directly observed and reconstructed sunspot area indices. An erratum to this article is available at .  相似文献   

12.
Geoeffective Analysis of CMEs Under Current Sheet Magnetic Coordinates   总被引:1,自引:0,他引:1  
Using 100 CME–ICME events during 1997.01–2002.11, based on the eruptive source locations of CMEs and solar magnetic field observations at the photosphere, a current sheet magnetic coordinate (CMC) system is established in order to statistically study the characteristics of the CME–ICME events and the corresponding geomagnetic storm intensity. The transit times of CMEs from the Sun to the Earth are also investigated, by taking into account of the angle between the CME eruption normal (defined as the vector from the Sun center to the CME eruption source) and the Sun-Earth line. Our preliminary conclusions are: 1. The distribution of the CME sources in our CMC system is obviously different from that in the ordinary heliographic coordinate system. The sources of CMEs are mainly centralized near the heliospheric current sheet (HCS), and the number of events decreases with the increment of the angular distance from the CME source to the HCS on the solar surface; 2. A large portion of the total events belong to the same–side events (referring to the CME source located on the same side of the HCS as the Earth), while only a small portion belong to the opposite–side events (the CME source located on the opposite side of the HCS as the Earth). 3. The intense geomagnetic storms are usually induced by the same–side events, while the opposite side events are commonly associated with relatively weak geomagnetic storms; 4. The angle between the CME normal and the Sun–Earth line is used to estimate the transit time of the CME in order to reflect the influence of propagation characteristic of the CME along the Sun–Earth direction. With our new prediction method in context of the CMC coordinate, the averaged absolute error for these 100 events is 10.33 hours and the resulting relative error is not larger than 30% for 91% of all the events.  相似文献   

13.
Based on our analysis of the data fromthe global network of neutronmonitors for several events, we have found the times of the first increases in count rate at individual stations that precede the main solar cosmic-ray enhancement. The onset time of proton acceleration at the Sun has been determined from the appearance of a broad gamma-ray line with its maximum near 70 MeV that is generated during the decay of neutral pions, which, in turn, are produced when protons with energies above 300 MeV interact with the solar atmosphere. The time of the first recording of energetic protons at the Earth is delayed relative to the time at which these protons appeared at the Sun by 60–300 s, i.e., by a value comparable to the difference between the direct photon and particle propagation times. At least two conclusions follow from the existence of such “precursors”. First, the protons begin to escape from the solar atmosphere into interplanetary space immediately after their acceleration. Second, some of the protons traverse a path shorter than the nominal length of interplanetary magnetic field lines.  相似文献   

14.
This paper presents some features of the ionospheric response observed in equatorial and mid-latitudes region to two strong geomagnetic storms, occurring during Oct. 19–23, 2001 and May 13–17, 2005 and to understand the phenomena of pre-storm that lead to very intense geomagnetic storms. The result point to the fact that pre-storm phenomena that leads to intense ionospheric storm are; large southward turning of interplanetary magnetic field Bz, high electric field, increase in flow speed stream, increase in proton number density, high pressure ram and high plasma beta. The magnitude of Bz turning into southward direction from northward highly depends upon the severity of the storm and the variation in F2 layer parameter at the time of geomagnetic storm are strongly dependent upon the storm intensity. A detailed analysis of the responses of the ionosphere shows that during the storm periods, foF2 values depleted simultaneously both in the equatorial and mid latitude. Observation also shows that low to moderate variations in ionospheric F2 at the pre-storm period may signal the upcoming of large ionospheric disturbances at the main phase. The ionospheric F2response for low and mid latitude does not show any significant differences during the storm main phase and the pre-storm period. The ionospheric response during the pre-storm period is thought very puzzling. The period is observed to be depleted throughout with low-moderate effect across all the stations in the low and mid latitude.  相似文献   

15.
While at present we are able to deduce from ground records only qualitative properties of the solar wind, in the future quantitative deductions may be possible, in a statistical sense, from an examination of polar cap magnetograms together with records of geomagnetic activity. The qualitative inferences that are possible now indicate several important features of the behavior of the solar wind over the last 100 years. First, there appear to be significant long term changes in either the solar wind velocity, the magnetic field strength, the variability of the field or some combination of all three. Second, a heliographic latitude dependence of these parameters exists, whose amplitude depends on sunspot number. Third, with the exception of the most recent solar cycle, there is little north-south asymmetry in these solar parameters. Finally, there is a double sunspot cycle modulation of geomagnetic activity, the most likely cause of which is a modulation of the interplanetary magnetic polarity with latitude, and which in turn implies the presence of a solar polar magnetic dipole. The amplitude of this modulation has undergone significant changes since 1868, being large then and at the present, but effectively disappearing from 1908 to 1948.  相似文献   

16.
A joint analysis is carried out of data obtained with the help of the solar X-ray SphinX spectrophotometer and the electron and proton satellite telescope STEP-F in May 2009 in the course of the scientific space experiment CORONAS-PHOTON. In order to determine the energies and particle types, in the analysis of spectrophotometer records data are used on the intensities of electrons, protons, and secondary γ-radiation, obtained by the STEP-F telescope, which was located in close proximity to the SphinX spectrophotometer. The identical reaction of both instruments is noted at the intersection of regions of the Brazilian magnetic anomaly and the Earth’s radiation belts. It is shown that large area photodiodes, serving as sensors of the X-ray spectrometer, reliably record electron fluxes of low and intermediate energies, as well as fluxes of the secondary gamma radiation from construction materials of detector modules, the TESIS instrument complex, and the spacecraft itself. The dynamics of electron fluxes, recorded by the SphinX spectrophotometer in the vicinity of a weak geomagnetic storm, supplements the information about the processes of radial diffusion of electrons, which was studied using the STEP-F telescope.  相似文献   

17.
Responses of the polar ionosphere to the Bastille Day solar event   总被引:1,自引:0,他引:1  
Liu  Rui-yuan  Hu  Hong-qiao  Liu  Yong-hua  Xu  Zhong-hua  Sato  N.  Fraser  B.J. 《Solar physics》2001,204(1-2):305-313
Simultaneous observations at Zhongshan Station, Antarctica, are presented for the interval of 13–17 July 2000 to show responses of the polar ionosphere to the Bastille Day (14 July 2000) solar event. The polar ionosphere was highly disturbed, as shown by frequently large deviations of the geomagnetic H-component, large riometer absorption events and strong ULF waves. Associated with the huge solar proton event produced by the X5/3B flare, a polar cap absorption (PCA) was observed. It began at ∼ 10:40 UT on 14 July and ended at ∼ 19:40 UT on 17 July. Superposed on it, there was a large absorption event with a peak of 26 dB, starting at ∼ 03:00 UT and ending at ∼ 11:10 UT on 15 July. This kind of absorption was probably produced by an intense `cloud of energetic electrons' during an auroral substorm. The ULF waves were very intense during the main phase and the recovery phase of the severe magnetic storm on 15 and 16 July. The ionospheric absorption was so strong that the digisonde signal was blacked out most of the time. The ionosphere returned to normal in the afternoon on 17 July.  相似文献   

18.
Ionization in the polar atmosphere causes the formation of nitrate compounds, which are frozen out and incorporated into the layers of the polar ice sheets. From a 122-m ice core collected in 1992 on the central Greenland ice sheet, it has been possible to examine a solar signal in a ultra-high resolution record of nitrate concentrations. The sequence extends over a period of 415 years at a temporal resolution of no less than one analysis per month (total number of samples 7776 resulting from 1.5 cm sampling along the entire core). This type of measurement reveals major nitrate anomalies which are thought to result from the injection of individual solar proton events into the winter polar stratosphere. For this reason, the large nitrate anomalies provide the possibility to delineate a signal of solar activity well beyond the known geophysical records.  相似文献   

19.
Via the three physical quantities (i.e., the maximal horizontal gradient of longitudinal magnetic field |ΔhBz|m, the length of neutral line with a large gradient L, and the number of isolated singular points η), which are used to represent the characteristics of the complexity and non-potentiality of the photospheric magnetic fields in solar active regions, a model of the shortterm forecast of proton events is built. The effectivity of the short-term forecast of proton events by means of the characteristic physical quantities of magnetic fields is verified. In the nowadays commonly used models of short-term forecast of solar proton events, until present the characteristic physical quantituieas of magnetic fields are not formally taken to be the factors of forecast. Because the solar proton events are low probability events, the physical mechanism of their occurrence is still not well understood. In the models of their prediction, the problems of high rates of false alarm or low rates of right alarm often exist. In this paper the traditional factors used in the existing models of forecast of proton events and the characteristic physical quantities of magnetic fields are combined together. By using the method of neural network, a more effective method of the short-term prediction of proton events is established. With the 1871 sample data in 1997-2001, we have set up Model A with the traditional forecast factors as the input layer, and also Model B with the traditional forecast factors plus the characteristic physical quantities of magnetic fields as the input layer. Via the set of 973 sample data of the years 2002 and 2003, we have carried out a simulative forecast, and found that under the condition that these two models possess the same rate of accuracy in the forecast of proton events, the rate of false alarm of Model B becomes evidently lower. This has further verified the effectiveness of the characteristic physical quantities of magnetic fields in shortterm prediction. Furthermore, this may improve the actual ability of forecast of solar proton events.  相似文献   

20.
It is generally appreciated that the September 1859 solar–terrestrial disturbance, the first recognized space weather event, was exceptionally large. How large and how exceptional? To answer these questions, we compiled rank order lists of the various measures of solar-induced disturbance for events from 1859 to the present. The parameters considered included: magnetic crochet amplitude, solar energetic proton fluence (McCracken et al., 2001a), Sun–Earth disturbance transit time, geomagnetic storm intensity, and low-latitude auroral extent. While the 1859 event has close rivals or superiors in each of the above categories of space weather activity, it is the only documented event of the last ~150 years that appears at or near the top of all of the lists. Taken together, the top-ranking events in each of the disturbance categories comprise a set of benchmarks for extreme space weather activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号