首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Atmospheres and spectra of strongly magnetized neutron stars   总被引:1,自引:0,他引:1  
We construct atmosphere models for strongly magnetized neutron stars with surface fields     and effective temperatures     . The atmospheres directly determine the characteristics of thermal emission from isolated neutron stars, including radio pulsars, soft gamma-ray repeaters, and anomalous X-ray pulsars. In our models, the atmosphere is composed of pure hydrogen or helium and is assumed to be fully ionized. The radiative opacities include free–free absorption and scattering by both electrons and ions computed for the two photon polarization modes in the magnetized electron–ion plasma. Since the radiation emerges from deep layers in the atmosphere with     , plasma effects can significantly modify the photon opacities by changing the properties of the polarization modes. In the case where the magnetic field and the surface normal are parallel, we solve the full, angle-dependent, coupled radiative transfer equations for both polarization modes. We also construct atmosphere models for general field orientations based on the diffusion approximation of the transport equations and compare the results with models based on full radiative transport. In general, the emergent thermal radiation exhibits significant deviation from blackbody, with harder spectra at high energies. The spectra also show a broad feature     around the ion cyclotron resonance     , where Z and A are the atomic charge and atomic mass of the ion, respectively; this feature is particularly pronounced when     . Detection of the resonance feature would provide a direct measurement of the surface magnetic fields on magnetars.  相似文献   

2.
3.
4.
5.
6.
Emission spectra from magnetars in the soft X-ray band likely contain a thermal component emerging directly from the neutron star (NS) surface. However, the lack of observed absorption-like features in quiescent spectra makes it difficult to directly constrain physical properties of the atmosphere. We argue that future X-ray polarization measurements represent a promising technique for directly constraining the magnetar magnetic field strength and geometry. We construct models of the observed polarization signal from a finite surface hotspot, using the latest NS atmosphere models for magnetic fields   B = 4 × 1013–5 × 1014 G  . Our calculations are strongly dependent on the NS magnetic field strength and geometry, and are more weakly dependent on the NS equation of state and atmosphere composition. We discuss how the complementary dependencies of phase-resolved spectroscopy and polarimetry might resolve degeneracies that currently hamper the determination of magnetar physical parameters using thermal models.  相似文献   

7.
Recent observations of the compact source embedded within the supernova remnant RCW 103 rekindle interest in the origin of this object's emission. We contrast several models in which neutron-star cooling powers RCW 103. Specifically, either the presence of an accreted envelope or a sufficiently intense magnetic field can account for the X-ray emission from this object.  相似文献   

8.
9.
Recent observations of thermally emitting isolated neutron stars revealed spectral features that could be interpreted as radiative transitions of He in a magnetized neutron star atmosphere. We present Hartree–Fock calculations of the polarization-dependent photoionization cross-sections of the He atom in strong magnetic fields ranging from 1012 to 1014 G. Convenient fitting formulae for the cross-sections are given along with the related oscillator strengths for various bound–bound transitions. The effects of finite nucleus mass on the radiative absorption cross-sections are examined using perturbation theory.  相似文献   

10.
Recent ROSAT measurements show that the X-ray emission from isolated neutron stars is modulated at the stellar rotation period. To interpret these measurements, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We present nearly analytic models of the thermal structure of the envelopes of ultramagnetized neutron stars. Specifically, we examine the limit in which only the ground Landau level is filled. We use the models to estimate the amplitude of modulation expected from non-uniformities in the surface temperatures of strongly magnetized neutron stars. In addition, we estimate cooling rates for stars with fields B  ∼ 1015 − 1016 G, which are relevant to models that invoke 'magnetars' to account for soft γ-ray emission from some repeating sources.  相似文献   

11.
Recently launched X-ray telescopes have discovered several candidate isolated neutron stars. The thermal radiation from these objects may potentially constrain our understanding of nuclear physics in a realm inaccessible to terrestrial experiments. To translate the observed fluxes from neutron stars into constraints, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We describe models of the thermal structure of the envelopes of neutron stars with magnetic fields up to 1014 G. Unlike earlier work, we infer the properties of envelope models in two dimensions and precisely account for the quantization of the electron phase-space. Both dipole and uniformly magnetized envelopes are considered.  相似文献   

12.
13.
14.
Neutron stars contain persistent, ordered magnetic fields that are the strongest known in the Universe. However, their magnetic fluxes are similar to those in magnetic A and B stars and white dwarfs, suggesting that flux conservation during gravitational collapse may play an important role in establishing the field, although it might also be modified substantially by early convection, differential rotation, and magnetic instabilities. The equilibrium field configuration, established within hours (at most) of the formation of the star, is likely to be roughly axisymmetric, involving both poloidal and toroidal components. The stable stratification of the neutron star matter (due to its radial composition gradient) probably plays a crucial role in holding this magnetic structure inside the star. The field can evolve on long time scales by processes that overcome the stable stratification, such as weak interactions changing the relative abundances and ambipolar diffusion of charged particles with respect to neutrons. These processes become more effective for stronger magnetic fields, thus naturally explaining the magnetic energy dissipation expected in magnetars, at the same time as the longer-lived, weaker fields in classical and millisecond pulsars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We investigate equilibrium sequences of magnetized rotating stars with four kinds of realistic equations of state (EOSs) of SLy, FPS, Shen and LS, employing the Tomimura–Eriguchi scheme to construct the equilibrium configurations. We study the basic physical properties of the sequences in the framework of Newtonian gravity. In addition, we take a new step by taking into account a general relativistic effect to the magnetized rotating configurations. With these computations, we find that the properties of the Newtonian magnetized stars, e.g. structure of magnetic field, highly depends on the EOSs. The toroidal magnetic fields concentrate rather near the surface for Shen and LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected by the toroidal configurations. Paying attention to the stiffness of the EOSs, we analyse this tendency in detail. In the general relativistic stars, we find that the difference due to the EOSs becomes small because all the employed EOSs become sufficiently stiff for the large maximum density, typically greater than  1015 g cm−3  . The maximum baryon mass of the magnetized stars with axis ratio   q ∼ 0.7  increases about up to 20 per cent for that of spherical stars. We furthermore compute equilibrium sequences at finite temperature, which should serve as an initial condition for the hydrodynamic study of newly born magnetars. Our results suggest that we may obtain information about the EOSs from the observation of the masses of magnetars.  相似文献   

16.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

17.
18.
We derive general equations for axisymmetric Newtonian magnetohydrodynamics and use these as the basis of a code for calculating equilibrium configurations of rotating magnetized neutron stars in a stationary state. We investigate the field configurations that result from our formalism, which include purely poloidal, purely toroidal and mixed fields. For the mixed-field formalism, the toroidal component appears to be bounded at less than 7 per cent. We calculate distortions induced both by magnetic fields and by rotation. From our non-linear work, we are able to look at the realm of validity of perturbative work: we find for our results that perturbative-regime formulae for magnetic distortions agree to within 10 per cent of the non-linear results if the ellipticity is less than 0.15 or the average field strength is less than 1017 G. We also consider how magnetized equilibrium structures vary for different polytropic indices.  相似文献   

19.
20.
We describe the possible electromagnetic signals expected from the magnetospheric interactions of a neutron star binary prior to merger. We find that both radio and X-ray signals of detectable strength are possible. We discuss possible links with the phenomenon of gamma-ray bursts (GRBs) and describe the prospects for direct detection of these signals in searches for radio and X-ray transients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号