首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of fluctuations of the interplanetary plasma and the ionosphere upon the scintillation spectra of radio sources at decametre waves is considered with due regard for the finite antenna aperture, fluctuation anisotropy, and the direction of their drift in space. It has been shown that scintillation due to interplanetary plasma (IPP), can be reliably separated from the ionospheric scintillation background at decametre wavelengths.For elongations between 90° to 150°, the IPP scintillation power spectrum observed in the 12.6–25 MHz waveband is of a power law form with the index 3.1±0.6, which is in close agreement with the values known for smaller elongations. The solar wind velocity projection orthogonal to the line of sight is estimated for elongations about 110° and has been found to be 300±80 km s–1. As in the case of smaller elongations, the velocity dispersion is significant.At night, wideband spectra of ionospheric scintillations are observed in the decametre band, with the breaking point at approximately 0.01 Hz in the 12 m band, and narrow-band spectra whose cut-off frequency is below 0.01 Hz. The power spectrum of ionospheric scintillations is of a power-law form with the index 3.4±0.5. In some cases steeper spectra are observed.  相似文献   

2.
Joarder  P. S.  Nakariakov  V. M.  Roberts  B. 《Solar physics》1997,176(2):285-297
Magnetosonic modes of magnetic structures of the solar atmosphere in the presence of inhomogeneous steady flows are considered. It is shown that, when the speed of the steady flow exceeds the phase speed of one of the modes, the mode has negative energy, and can be subject to an over-stability due to the negative energy wave instabilities. It is shown that registered steady flows in the solar atmosphere, with speeds below the threshold of the Kelvin–Helmholtz instability, can provide the existence of the magnetosonic negative energy wave phenomena. In particular, in isolated photospheric magnetic flux tubes, there are kink surface modes with negative energy, produced by the external granulation downflows. Dissipative instability of these modes due to finite thermal conductivity and explosive instability due to nonlinear coupling of these modes with Alfvén waves are discussed. For coronal loops, it is found that only very high-speed flows (>300 km s-1) can produce negative energy slow body modes. In solar wind flow structures, both slow and fast body modes have negative energy and are unstable.  相似文献   

3.
Analysis of facular contrast I/I qs from Extreme Limb Photometer (ELP) data of the summer of 1983 yield a mean contrast of 0.91 ± 0.19% and 1.57 ± 0.16% for apertures 1 and 2 located at = 0.198 and at = 0.111, respectively. The ratio of the mean contrast in the outer aperture (closer to the limb) to that of the inner one is 1.71 ± 0.40, indicating an increase in the mean facular contrast toward the limb. This result is in agreement with observations made in 1975, 1979, and 1982. The errors are dominated by the random presence of solar active regions. The combined results from all seasons follow an approximately –1 curve. Facular excess solar oblateness signals for 1983 are 33.8 ± 6.6 arc ms and 16.5 ± 2.1 arc ms for ELP apertures 1 and 2, respectively, in reasonable agreement with the 1983 excess solar oblateness results of Dicke, Kuhn, and Libbrecht (1985).  相似文献   

4.
A complete software package has been built for the calibration in m s –1 of the velocity residuals due to solar oscillations in the raw IRIS (International Research on the Interior of the Sun) data. It takes into account all known astronomical components contributing to the line-of-sight velocity between the instrument and the solar surface, and also the apparent velocity due to the non-uniform integration of the solar rotation as seen through an inhomogeneous Earth atmosphere. The IRIS data itself is used for the estimation of the nonlinear instrumental response to the velocity, and the residual can be directly obtained in velocity units, without low frequency filtering. On a day of typical photometric sky quality, the power spectrum obtained appears to be solar noise limited.  相似文献   

5.
A series of telescopes having approximately a 30° half opening angle and responding to neutrons in the energy range 50 MeV to 350 MeV has been flown to the top of the atmosphere on balloons released from an equatorial launching site at Kampala, Uganda, between 1967 and 1969. The aim of the experiment was to attempt to detect solar neutrons during periods of enhanced solar activity. No neutrons of solar origin were detected, but an upper limit of the order of 30 neutrons m–2 s–1 at the Earth has been placed on the continuous solar neutron flux in the above energy range, and a limit of four photons m–2 s–1 has also been placed on the corresponding -ray flux above 80 MeV. Limits have likewise been placed on the total emission from various flares. For a 1B flare the values were 23 × 104 neutrons m–2 and 6 × 104 photons m–2.  相似文献   

6.
The effects of the amount of sodium ions, their solar angles correlation, temperature and velocities, have been explained as consequences of the almost full penetration of the second mode of micrometeorite fluxes (M>10–8 g) across the Io atmosphere to its surface, whereas volcanism may satisfy only the amount of sodium.Conclusions about the formation of fine grains on the Io surface, unflooded by lava, are presented. Due to its large specific surface (m2 g–1) the interaction of this topsoil and the Io atmosphere is no less important than the lava-atmosphere interaction.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.From September 1979.  相似文献   

7.
The November 22, 1977 solar flare was observed at energies up to 4.9 MeV by French-built gamma ray detectors aboard the Soviet Prognoz-6 satellite. The data show evidence for 2.23 and 4.43 MeV line emission, with the 2.23 MeV emission occurring about 3 min after the flare onset in hard X-rays. The line intensities, 0.11 cm–2s–1 and 0.06 cm–2s–1 for the 2.23 and 4.43 lines, respectively, are roughly comparable to intensities observed in other events. Particle detectors aboard the Prognoz-6 satellite, however, recorded a proton flux much lower than that observed for the 4 August 1972 event. It is shown that this may be taken as evidence for a thick target interpretation of the proton interactions in the solar atmosphere.  相似文献   

8.
From the comparison of 59 iron lines at the center of the solar disk with laboratory wavelenghts, the mean vertical velocity of solar granulation and its depth dependence is determined. These values are used to calculate limb-effect curves. The differences to observed curves are interpreted as mean horizontal motions. These motions yield again a depth dependence showing Doppler shifts toward the observer in deep layers and away from the observer in high layers for regions away from the disk center. Values from - 400 m s–1 through + 500 m s–1 are obtained.  相似文献   

9.
During operations on the Spacelab-2 Shuttle mission, the NRL High Resolution Telescope and Spectrograph (HRTS) recorded spectra of a variety of solar features in the 1200–1700 Å wavelength region which contains spectral lines and continua well suited for investigating the temperature minimum, the chromosphere and transition zone. These data show that, at the highest spatial resolution, the transition zone spectra are broken up from a continuous intensity distribution along the slit into discrete emission elements. The average dimensions of these discrete transition zone structures is 2400 km along the slit, but an analysis of their emission measures and densities shows that the dimensions of the actual emitting volume is conciderably less. If these structures are modelled as an ensemble of subresolution filaments, we find that these filaments have typical radii of from 3 to 30 km and that the cross-sectional fill factor is in the range from 10–5 to 10–2. The transport of mass and energy through these transition zone structures is reduced by this same factor of 10–5 to 10–2 which has significant consequences for our understanding of the dynamics of the solar atmosphere. Because the HRTS transition zone line profiles are not broadened by resolved large-spatial-scale solar velocity fields, the line widths of the Civ lines have been analyzed. The average line width is 0.195 Å (FWHM) and requires an average nonthermal velocity of 16 km s–1 (most-probable) or 19 km s–1 (root-mean-square) which is lower than previously observed values.  相似文献   

10.
There exists a growing need to improve the accuracy of measurement of the absolute solar flux within the wavelength range 120–400 nm. Although full-disk solar fluxes and variations thereof in the 120–400 nm region are required to model the solar atmosphere, current increased interest in the measurements arises from their importance in modeling the terrestrial atmosphere. We describe the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) experiment under development at the Naval Research Laboratory (NRL) for flight aboard the Space Shuttle and the Upper Atmospheric Research Satellite (UARS). SUSIM will monitor the solar flux in the 120–400 nm region with high precision, using an in-flight calibration system to reduce absolute error to < 10%, and error relative to the 400 nm continuum to < 1%.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

11.
Ruzmaikin  A. 《Solar physics》1998,181(1):1-12
We report observations of the large-scale spatial dependence of the Sun's luminosity variations over the period 1993–1995. The measurements were made using a new scanning disk solar photometer at Big Bear Solar Observatory, specially designed to measure large-scale brightness variations at the 10–4 level. Since the level of solar activity was very low for the entire observation period, the data show little solar cycle variation. However, the residual brightness signal I/I (after subtracting the mean, first, and second harmonics) does show a strong dependence on heliocentric angle, peaking near the limb. This is as one would expect if the residual brightness signal (including the excess brightness coming from the active latitudes) were primarily facular in origin. Additional data over the next few years, covering the period from solar minimum to maximum, should unambiguously reveal the large-scale spatial structure of the solar cycle luminosity variations.  相似文献   

12.
The solar and galactic cosmic rays interact directly with lunar surface materials, and the dominant nature of interactions is essentially the complete absorption of corpuscles. These corpuscles damage the lattice structure, and induce a complex set of reactions in the materials producing various species. The cosmic ray damage of the lattice would not produce an amorphous layer, similar to that produced by the solar wind, because the solar wind erosion rate is faster than the cosmic ray-induced amorphous layer formation rate. The species formation rate considered in this paper are those produced by protons, the dominant component of cosmic rays. Protons produce H, H2, OH, H2O, and hydrogenated species of carbon, nitrogen, sulfur, etc. These species, while migrating in the material, encounter oncoming cosmic ray corpuscles, and undergo a complex set of reactions. Although a variety of species are produced by protons, the dominant contributor to the atmosphere is H2. The H2 flux (molecules cm–2 sec–1) is about 1.5 × 105 as compared to the H flux of 8.4 × 101 and the H2O flux of 4.6 × 10–2. These fluxes are about 10–3 smaller than the fluxes of the same species produced by the solar wind protons. Thus the contributions of the cosmic ray-induced species to the atmosphere is very small compared to the solar wind-induced species. Although simulated experiments showed high concentractions of OH and H2O in the terrestrial materials of lunar type, these species concentrations in the lunar materials under the lunar environment is much smaller than those observed in the simulated experiments.  相似文献   

13.
A model is presented which shows that large numbers of energetic electrons (0.3-> 10 MeV) and protons (1–30 MeV) can be stored in the solar corona at altitudes around 3 × 105 km for periods in excess of 5 days. Specific reference is made to the time period July 6–16 1968 as an excellent example of energetic solar particle storage. Time histories of interplanetary charged particle intensities observed by the IMP-4 and Pioneer 8 satellites are used to substantiate this contention. Detailed reference is also made to solar X-ray, optical and radio data obtained during the period in question, in addition to interplanetary magnetometer data. This model provides a unique solution to many hitherto unexplained solar particle events, and can also account for the lack of prompt particle emission from certain large solar flares recorded in the past.  相似文献   

14.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

15.
We derive the poleward migration trajectory diagram of the filament bands for the years 1915–1982 from the H-alpha synoptic charts. We find that the global solar activity commences soon after the polar field reversal in the form of two components in each hemisphere. The first component we identify with the polar faculae that appear at latitudes 40–70° and migrate polewards. The second and the more powerful component representing the sunspots shows up at 40° latitudes 5–6 years later and drifts equatorward giving rise to the butterfly diagram. Thus the global solar activity is described by the faculae and the sunspots that occur at different latitude belts and displaced in time by 5–6 years. This gives rise to the prolonged duration for the global solar activity lasting for 16–18 years as against the 11 years which has come about based only on the spots. The two components match with the pattern of the coronal emission in 5303 Å line. Finally, we show that the two components of activity also match with the pattern of excess shear associated with the torsional oscillations on the Sun and this provides a link between the torsional oscillations and the magnetic activity.  相似文献   

16.
I examine the controversial problem of H radiative cooling in the solar chromosphere. I find, in agreement with Praderie and Thomas, that H is a substantial source of radiative heating in the outer atmosphere, especially when departures from LTE are important. The role of H as a chromospheric heating agent must be considered carefully before net radiative cooling rates can be assessed from empirical chromospheric models, or calculations of nonradiative heating, for example by acoustic waves, can be pursued meaningfully.  相似文献   

17.
We reduce and analyze, in a uniform way, all of the data obtained by the Solar Disk Sextant (SDS) experiment, concerning high-precision measurements of the solar radius and oblateness, in the bandwidth 590 {–} 670 nm, made onboard stratospheric balloons during a series of flights carried out in 1992, 1994, 1995, and 1996. The measured radius value appears anti-correlated with the level of solar activity, ranging from about 959.5 to 959.7 arcsec. Its variation from year to year is outside the error range, which is mostly due to a systematic diurnal behavior, particularly evident in the 1996 flight. The oblateness shows an analogous temporal behavior, ranging from about (4.3 to 10.3) × 10−6. We regret that Prof. Caccin died on June 19, 2004.  相似文献   

18.
3He is an intermediate product in the proton-proton chain, and standard models of the Sun predict a large bulge of enhanced 3He abundance near M r /M 0 = 0.6 in the contemporary Sun. The relatively low abundance of 3He at the solar surface, which is derived from solar wind observations, poses severe constraints to non-standard solar models.Direct measurements of the 3He abundance in the solar atmosphere are extremely difficult, whereas indirect measurements, e.g., in the solar wind, have been performed with considerable precision. The interpretation of solar wind observations with respect to solar surface abundances has been greatly improved in recent years. Abundance measurements have been performed under a large variety of solar wind conditions and refined models have been developed for the transport processes in the chromosphere and the transition region and for the processes occurring in the solar corona. From these measurements we estimate the present isotopic number ratio 3He/4He to be (4.1 ± 1.0) × 10–4 at the solar surface, corresponding to the weight abundance X 3 = (9.0 ± 2.4) × 10–5. The zero-age Main-Sequence abundance of 3He (after burning of D) might have been slightly lower (by about 10 to 20%) than the present-day value.Non-standard solar models involving mild turbulent diffusion (Lebreton and Maeder, 1987) could account for a slow secular increase of the 3He/4He ratio in the solar atmosphere. On the other hand it is difficult to reconcile models with severe mass loss as proposed by Guzik, Willson, and Brunish (1987) with this constraint. The slowing down of the solar rotation during the early Main-Sequence evolution was accompanied by stronger differential rotation probably implying a more effective mixing of the inner parts. Again, the surface abundance of 3He imposes severe limits on the evolution of the distribution of momentum within the early Sun.  相似文献   

19.
The upper limit on the solar neutron flux from 1–20 MeV has been measured, by a neutron detector on the OGO-6 satellite, to be less than 5 × 10–2 n cm–2 s–1 at the 95% confidence level for several flares including two flares of importance 3B and a solar proton event of importance 3B. The measurements are consistent with the models proposed by Lingenfelter (1969) and by Lingenfelter and Ramaty (1967) for solar neutron production during solar flares. The implied upper limit on the flux of 2.2 MeV solar gamma rays is about the same as the 2.2 MeV flux observed by Chupp et al. (1973).  相似文献   

20.
Hari Om Vats 《Solar physics》1992,138(2):379-386
Characteristics of flare-associated high-speed solar plasma streams are investigated using measurements from space probes and Earth-orbiting spacecraft for the period 1964–1982. The maximum observed velocity (V m) of these streams range from 400 to 850 km s–1} with peak probability for 600 km s–1}. These remain for the period of 1–10 days with the peak occurrence 3 days. The difference between the pre-stream velocity (V 0) and the maximum velocity (V m) of any high-speed stream serves as the measure of its intensity. For about 60% of the flare associated streams, (V m-V 0) is well in excess of 200 km s–1} and in some cases becomes as large as 450 km s–1}. The yearly percentage occurrence, total duration and the product of mean (V m - V 0) with total duration of the high-speed streams during the year correlates well with solar activity, e.g., maximum during high solar activity period and minimum during low solar activity. The study suggests that presence of sunspots plays a significant role in the generation of flare associated high-speed solar streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号