首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Few assessments of species vulnerability to climate change used to inform conservation management consider the intrinsic traits that shape species’ capacity to respond to climate change. This omission is problematic as it may result in management actions that are not optimised for the long-term persistence of species as climates shift. We present a tool for explicitly linking data on plant species’ life history traits and range characteristics to appropriate management actions that maximise their capacity to respond to climate change. We deliberately target data on easily measured and widely available traits (e.g. dispersal syndrome, height, longevity) and range characteristics (e.g. range size, climatic/soil niche breadth), to allow for rapid comparison across many species. We test this framework on 1237 plants, categorising species on the basis of their potential climate change risk as related to four factors affecting their response capacity: reproduction, movement capability, abiotic niche specialisation and spatial coverage. Based on these four factors, species were allocated risk scores, and these were used to test the hypothesis that the current protection status under national legislation and related management actions capture species response capacity to climate change. Our results indicate that 20% of the plant species analysed (242 species) are likely to have a low capacity to respond to climate change based on the traits assessed, and are therefore at high risk. Of the 242 high risk species, only 10% (24 species) are currently listed for protection under conservation legislation. Importantly, many management plans for these listed species fail to address the capacity of species to respond to climate change with appropriate actions: 70% of approved management plans do not include crucial actions which may improve species’ ability to adapt to climate change. We illustrate how the use of easily attainable traits associated with ecological and evolutionary responses to changing environmental conditions can inform conservation actions for plant species globally.  相似文献   

2.
3.
Summary A methodology to estimate the space-time distribution of daily mean temperature under climate change is developed and applied to a central Nebraska case study. The approach is based on the analysis of the Markov properties of atmospheric circulation pattern (CP) types, and a stochastic linkage between daily (here 500hPa) CP types and daily mean temperatures. Historical data and general circulation model (GCM) output of daily CP corresponding to 1 × CO2 and 2 × CO2 scenarios are considered. The relationship between spatially averaged geopotential height of the 500 hPa surface — within each CP type — and daily mean temperature is described by a nonparametric regression technique. Time series of daily mean temperatures corresponding to each of these cases are simulated and their statistical properties are compared. Under the climate of central Nebraska, the space-time response of daily mean temperature to global climate change is variable. In general, a warmer climate appears to cause about 5°C increase in the winter months, a smaller increase in other months with no change in July and August. The sensitivity of the results to the GCM utilized should be considered.On leave from the Department of Meteorology, Eötvós Loránd University, Budapest, Hungary.With 14 Figures  相似文献   

4.
This paper investigates changes in shoreline evolution caused by changes in wave climate. In particular, a number of nearshore wave climate scenarios corresponding to a ??present?? (1961?C1990) and a future time-slice (2071?C2100) are used to drive a beach evolution model to determine monthly and seasonal statistics. To limit the number of variables, an idealised shoreline segment is adopted. The nearshore wave climate scenarios are generated from wind climate scenarios through point wave hindcast and inshore transformation. The original wind forcing comes from regional climate change model experiments of different resolutions and/or driving global climate models, representing different greenhouse-gas emission scenarios. It corresponds to a location offshore the south central coast of England. Hypothesis tests are applied to map the degree of evidence of future change in wave and shoreline statistics relative to the present. Differential statistics resulting from different global climate models and future emission scenarios are also investigated. Further, simple, fast, and straightforward methods that are capable of accommodating a great number of climate change scenarios with limited data reduction requirements are proposed to tackle the problem under consideration. The results of this study show that there are statistically significant changes in nearshore wave climate conditions and beach alignment between current and future climate scenarios. Changes are most notable during late summer for the medium-high future emission scenario and late winter for the medium-low. Despite frequent disagreement between global climate change models on the statistical significance of a change, all experiments agreed in future seasonal trends. Finally, a point of importance for coastal management, material shoreline changes are generally linked to significant changes in future wave direction rather than wave height.  相似文献   

5.
6.
This paper examines the development and use of scenarios as an approach to guide action in multi-level, multi-actor adaptation contexts such as food security under climate change. Three challenges are highlighted: (1) ensuring the appropriate scope for action; (2) moving beyond intervention-based decision guidance; and (3) developing long-term shared capacity for strategic planning. To overcome these challenges we have applied explorative scenarios and normative back-casting with stakeholders from different sectors at the regional level in East Africa. We then applied lessons about appropriate scope, enabling adaptation pathways, and developing strategic planning capacity to scenarios processes in multiple global regions. Scenarios were created to have a broad enough scope to be relevant to diverse actors, and then adapted by different actor groups to ensure their salience in specific decision contexts. The initial strategy for using the scenarios by bringing a range of actors together to explore new collaborative proposals had limitations as well as strengths versus the application of scenarios for specific actor groups and existing decision pathways. Scenarios development and use transitioned from an intervention-based process to an embedded process characterized by continuous engagement. Feasibility and long-term sustainability could be ensured by having decision makers own the process and focusing on developing strategic planning capacity within their home organizations.  相似文献   

7.
Invasive species and climate change: an agronomic perspective   总被引:2,自引:0,他引:2  
In the current review we wish to draw attention to an additional aspect of invasive species and climate change, that of agricultural productivity and food security. We recognize that at present, such a review remains, in part, speculative, and more illustrative than definitive. However, recent events on the global stage, particularly in regard to the number of food riots that occurred during 2008, even at a time of record harvests, have prompted additional interest in those factors, including invasive species, which could, through climatic uncertainty, alter food production. To that end, as agricultural scientists, we wish to begin an initial evaluation of key questions related to food production and climate change including: how vulnerable is agriculture to invasive species?; are current pest management strategies sufficient to control invasive outbreaks in the future?; what are the knowledge gaps?; can we provide initial recommendations for scientists, land managers and policy makers in regard to available resources? Our overall goals are to begin a synthesis of potential impacts on productivity, to identify seminal research areas that can be addressed in future research, and to provide the scientific basis to allow agronomists and land managers to formulate mitigation and adaptation options regarding invasive species and climate change as a means to maintain food security.  相似文献   

8.
A version of the National Centre for Atmospheric Research (NCAR) coupled climate model is integrated under current climate conditions and in a series of experiments with climate forcings ranging from modest to very strong. The purpose of the experiments is to investigate the nature and behaviour of the climate feedback/sensitivity of the model, its evolution with time and climate state, the robustness of model parameterizations as forcing levels increase, and the possibility of a “runaway” warming under strong forcing. The model is integrated for 50 years, or to failure, after increasing the solar constant by 2.5, 10, 15, 25, 35, and 45% of its control value. The model successfully completes 50 years of integration for the 2.5, 10, 15, and 25% solar constant increases but fails for increases of 35% and 45%. The effective global climate sensitivity evolves with time and analysis indicates that a new equilibrium will be obtained for the 2.5, 10, and 15% cases but that runaway warming is underway for the 25% increase in solar constant. Feedback processes are analysed both locally and globally in terms of longwave and shortwave, clear-sky/surface, and cloud forcing components. Feedbacks in the system must be negative overall and of sufficient strength to balance the positive forcing if the system is to attain a new equilibrium. Longwave negative feedback processes strengthen in a reasonably linear fashion as temperature increases but shortwave feedback processes do not. In particular, solar cloud feedback becomes less negative and, for the 25% forcing case, eventually becomes positive, resulting in temperatures that “run away”. The conditions under which a runaway climate warming might occur have previously been investigated using simpler models. For sufficiently strong forcing, the greenhouse effect of increasing water vapour in a warmer atmosphere is expected to overwhelm the negative feedback of the longwave cooling to space as temperature increases. This is not, however, the reason for the climate instability experienced in the GCM. Instead, the model experiences a “cloud feedback” warming whereby the decrease in cloudiness that occurs when temperature increases beyond a critical value results in an increased absorption of solar radiation by the system, leading to the runaway warming.  相似文献   

9.
Lique  Camille  Johnson  Helen L.  Plancherel  Yves  Flanders  Robert 《Climate Dynamics》2015,45(5-6):1235-1252
Climate Dynamics - The impact of climate warming on the ocean near Greenland is investigated with a high resolution coupled global climate model. The ocean around Greenland exhibits a strong...  相似文献   

10.
Dutheil  Cyril  Menkes  C.  Lengaigne  M.  Vialard  J.  Peltier  A.  Bador  M.  Petit  X. 《Climate Dynamics》2021,56(1-2):87-108
Climate Dynamics - Global climate models projections indicate no clear future rainfall changes over the Southwestern Pacific islands in response to anthropogenic forcing. Yet, these models have low...  相似文献   

11.
As scores of climate change adaptation measures are implemented around the world, there have been growing calls among academics and practitioners to also address the processes that underpin human vulnerability to climate change. However, there is mounting evidence that adaptation and vulnerability are linked, such that ostensibly adaptive responses can have negative consequences and augment people’s vulnerability. We analyzed several climate change responses at various scales and developed a typology of five discrete but related modes by which the vulnerability of already vulnerable populations is being [re]produced. Crucially, this work suggests that for at least one of these modes, the vulnerability of other groups is perversely inverted, such that relatively secure populations perceive themselves to be at risk. The cases we present illustrate that people’s vulnerability is being used against them, or put another way, is being weaponized―exacerbating their precarity by excluding them from much needed and due assistance, while directing resources instead to bolstering the well-being of those already well-positioned to respond to climate threats. Our typology provides a theoretical intervention by illustrating how climate vulnerability and security are co-produced, as well as a practical tool to help decision makers to adopt more just and equitable climate policies.  相似文献   

12.
湖南气候对全球气候变化的响应   总被引:4,自引:0,他引:4       下载免费PDF全文
利用湖南省96个台站1960—2010年逐日气象观测资料,在进行均一性检验和订正的基础上对湖南省气候变化事实进行检测分析。结果表明:湖南气候与全球气候变化一致,呈现以变暖为主要特征的变化,且变暖存在季节、地域上的差异,冬、春、秋气温变暖趋势显著,增暖幅度最大的区域在湘北地区;对气候变暖响应敏感的要素主要是与平均气温、冬季气温相关密切的要素,如季平均气温、年平均最低气温、活动积温等;湖南气温在突变时间上具有较好的时间逻辑关系;湖南降水量无显著趋势变化,但极端降水增加,地域性差异明显,湖南东部地区降水量呈现明显增加趋势,日降水量大于等于100 mm的日数呈显著增加趋势;湖南日照时数、风速、相对湿度均呈现显著减少的变化趋势。  相似文献   

13.
14.
This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone damages under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 478 estimates of the temperature-damage relationship from nineteen studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5 °C increase in global surface air temperature would cause hurricane damages to increase by 63 %. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are +28 % and +23 %, respectively. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.  相似文献   

15.
The general problem addressed by this study is that of designing a decision support system for planned adaptation to climate change that uses the principles of modern portfolio theory to minimise risk and maximise return of adaptive actions in an environment of deep uncertainty over future climate scenarios. Here we show how modern portfolio theory can use the results of a climate change impact model to select an optimal set of seed sources to be used in regenerating forests of white spruce in an environment of multiple, equally plausible future climates. This study shows that components of solutions are not selected to perform equally well across all plausible futures; but rather, that components are selected to specialise in particular climate scenarios. The innovation of this research rests in demonstrating that the powerful and widely used principles of quantifying and planning for risk and return in the uncertain environment of asset markets can be applied successfully to serve the objectives of planned adaptation to climate change.  相似文献   

16.
Framing the way to relate climate extremes to climate change   总被引:3,自引:1,他引:2  
The atmospheric and ocean environment has changed from human activities in ways that affect storms and extreme climate events. The main way climate change is perceived is through changes in extremes because those are outside the bounds of previous weather. The average anthropogenic climate change effect is not negligible, but nor is it large, although a small shift in the mean can lead to very large percentage changes in extremes. Anthropogenic global warming inherently has decadal time scales and can be readily masked by natural variability on short time scales. To the extent that interactions are linear, even places that feature below normal temperatures are still warmer than they otherwise would be. It is when natural variability and climate change develop in the same direction that records get broken. For instance, the rapid transition from El Ni?o prior to May 2010 to La Ni?a by July 2010 along with global warming contributed to the record high sea surface temperatures in the tropical Indian and Atlantic Oceans and in close proximity to places where record flooding subsequently occurred. A commentary is provided on recent climate extremes. The answer to the oft-asked question of whether an event is caused by climate change is that it is the wrong question. All weather events are affected by climate change because the environment in which they occur is warmer and moister than it used to be.  相似文献   

17.
Attack of decay fungi on wood-based material depends primarily on the natural durability of wood, the local climatic conditions, and the likely climatic change. This study investigates the vulnerability of wood and structural timber in ground contact to decay fungi under high and medium emissions scenarios specified by the Intergovernmental Panel on Climate Change, and a future scenario in which the global emissions have been limited to 550?ppm through a range of successful intervention schemes. Nine general circulation models are applied to project the local climates of Brisbane, Sydney, and Melbourne in Australia. It was found that, under the three emissions scenarios, the median decay rate of wood by 2080, relative to that in 2010, could increase up to 10?% in Brisbane and Sydney, but could decrease by 12?% in Melbourne. For timber of less durable wood species 50?years after installation, the residual strength under climate change could be almost 25?% less than that without climate change. The coefficients of variation (COVs) of decay rate of wood are in the vicinity of 1.0 regardless of wood species. For residual strength of timber pole after 50?years of installation, the COVs range from 0.2 to 1.1, depending on the natural durability of timber and the site location. The high COVs due to the variability of natural durability of wood and of climate change, in combination with the likely changes in median residual strength of structural elements, will cause significant structural reliability issues of wood construction and need to be addressed in engineering design codes.  相似文献   

18.
19.
Global river discharge and water temperature under climate change   总被引:1,自引:0,他引:1  
Climate change will affect hydrologic and thermal regimes of rivers, having a direct impact on freshwater ecosystems and human water use. Here we assess the impact of climate change on global river flows and river water temperatures, and identify regions that might become more critical for freshwater ecosystems and water use sectors. We used a global physically based hydrological-water temperature modelling framework forced with an ensemble of bias-corrected general circulation model (GCM) output for both the SRES A2 and B1 emissions scenario. This resulted in global projections of daily river discharge and water temperature under future climate. Our results show an increase in the seasonality of river discharge (both increase in high flow and decrease in low flow) for about one-third of the global land surface area for 2071–2100 relative to 1971–2000. Global mean and high (95th percentile) river water temperatures are projected to increase on average by 0.8–1.6 (1.0–2.2) °C for the SRES B1–A2 scenario for 2071–2100 relative to 1971–2000. The largest water temperature increases are projected for the United States, Europe, eastern China, and parts of southern Africa and Australia. In these regions, the sensitivities are exacerbated by projected decreases in low flows (resulting in a reduced thermal capacity). For strongly seasonal rivers with highest water temperatures during the low flow period, up to 26% of the increases in high (95th percentile) water temperature can be attributed indirectly to low flow changes, and the largest fraction is attributable directly to increased atmospheric energy input. A combination of large increases in river temperature and decreases in low flows are projected for the southeastern United States, Europe, eastern China, southern Africa and southern Australia. These regions could potentially be affected by increased deterioration of water quality and freshwater habitats, and reduced water available for human uses such as thermoelectric power and drinking water production.  相似文献   

20.
基于自然的解决方案(NbS)是近10年提出的人类社会应对一系列环境和社会挑战的成本有效的方式,但直到近期才在国际社会引起重视。针对气候变化,NbS指通过对生态系统的保护、恢复和可持续管理减缓气候变化,同时利用生态系统及其服务功能帮助人类和野生生物适应气候变化带来的影响和挑战。这些生态系统包括森林、农田、草地、湿地(海岸带)生态系统,人工的或天然的。NbS能够为实现《巴黎协定》目标贡献30%左右的减排潜力,同时带来巨大的环境和社会经济的协同效益。但是,在过去的气候变化政策和行动中,包括国家自主贡献(INDC),NbS尚未得到充分的重视,流入NbS相关的气候资金明显不足。为充分发挥NbS的潜力,建议开展中国NbS减排潜力及其协同效应研究,识别成本有效的中国NbS优先领域,梳理国际国内NbS成功案例,制定推动NbS主流化相关激励政策,推动多领域NbS协同治理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号