首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We measure X-ray emission from the outskirts of the cluster of galaxies PKS 0745−191 with Suzaku , determining radial profiles of density, temperature, entropy, gas fraction and mass. These measurements extend beyond the virial radius for the first time, providing new information about cluster assembly and the diffuse intracluster medium out to  ∼1.5  r 200( r 200≃ 1.7 Mpc ≃ 15 arcmin  ). The temperature is found to decrease by roughly 70 per cent from 0.3 to  1 r 200  . We also see a flattening of the entropy profile near the virial radius and consider the implications this has for the assumption of hydrostatic equilibrium when deriving mass estimates. We place these observations in the context of simulations and analytical models to develop a better understanding of non-gravitational physics in the outskirts of the cluster.  相似文献   

3.
Chandra ACIS observations of PKS 0521−365 find that the X-ray emission of this BL Lac object consists of emission from an unresolved core, a diffuse halo and a 2-arcsec jet feature coincident with the inner radio/optical jet. A comparison with a new ATCA 8.6-GHz map also finds X-ray emission from the bright hotspot south-east of the nucleus. The jet spectrum, from radio to X-ray, is probably synchrotron emission from an electron population with a broken power-law energy distribution, and resembles the spectra seen from the jets of low-power (FR I) radio galaxies. The hotspot X-ray flux is consistent with the expectations of synchrotron self-Compton emission from a plasma close to equipartition, as seen in studies of high-power (FR II) radio galaxies. While the angular structure of the halo is similar to that found by an analysis of the ROSAT High Resolution Imager image, its brightness is seen to be lower with Chandra , and the halo is best interpreted as thermal emission from an atmosphere of similar luminosity to the haloes around FR I radio galaxies. The X-ray properties of PKS 0521−365 are consistent with it being a foreshortened, beamed, radio galaxy.  相似文献   

4.
5.
We present the analysis of 30 ks of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in the inner 30-kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ∼12 keV in the outer regions of the cluster to ∼4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parametrized by a Navarro, Frenk & White model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of
   
. The projected mass within a radius of ∼150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about
   
. Cooling-flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (∼     with an integrated mass deposition rate of     within a radius of 30 kpc. We discuss the implications of our results in the light of recent Reflection Grating Spectrograph (RGS) observations of Abell 1835 with XMM-Newton .  相似文献   

6.
7.
We examine the properties of the X-ray gas in the central regions of the distant ( z =0.46) , X-ray luminous cluster of galaxies surrounding the powerful radio source 3C 295, using observations made with the Chandra Observatory . Between radii of 50 and 500 kpc, the cluster gas is approximately isothermal with an emission-weighted temperature, kT ∼5 keV . Within the central 50-kpc radius this value drops to kT ∼3.7 keV . The spectral and imaging Chandra data indicate the presence of a cooling flow within the central 50-kpc radius of the cluster, with a mass deposition rate of approximately 280 M yr−1. We estimate an age for the cooling flow of 1–2 Gyr , which is approximately 1000 times older than the central radio source. We find no evidence in the X-ray spectra or images for significant heating of the X-ray gas by the radio source. We report the detection of an edge-like absorption feature in the spectrum for the central 50-kpc region, which may be caused by oxygen-enriched dust grains. The implied mass in metals seen in absorption could have been accumulated by the cooling flow over its lifetime. Combining the results on the X-ray gas density profile with radio measurements of the Faraday rotation measure in 3C 295, we estimate the magnetic field strength in the region of the cluster core to be B ∼12 μG .  相似文献   

8.
9.
10.
We consider the Rayleigh–Taylor instability in the early evolution of the rarefied radio bubbles (cavities) observed in many cooling-flow clusters of galaxies. The top of a bubble becomes prone to the Rayleigh–Taylor instability as the bubble rises through the intracluster medium (ICM). We show that while the jet is powering the inflation, the deceleration of the bubble–ICM interface is able to reverse the Rayleigh–Taylor instability criterion. In addition, the inflation introduces a drag effect which increases substantially the instability growth time. The combined action of these two effects considerably delays the onset of the instability. Later on, when the magnitude of the deceleration drops or the jet fades, the Rayleigh–Taylor and the Kelvin–Helmholtz instabilities set in and eventually disrupt the bubble. We conclude that the initial deceleration and drag, albeit unable to prevent the disruption of a bubble, may significantly lengthen its lifetime, removing the need to invoke stabilizing magnetic fields.  相似文献   

11.
12.
We present radio observations of the radio galaxy PKS 2152–699 obtained with the Australia Telescope Compact Array. The much higher resolution and signal-to-noise ratio of the new radio maps reveal the presence of a bright radio component about 10 arcsec north-east of the nucleus. This lies close to the highly ionized cloud previously studied in the optical and here shown in a broad-band red snapshot image with the HST PC 2. It suggests that PKS 2152–699 may be a jet/cloud interaction similar to 3C 277.3. This could cause the change in the position angle (of ∼ 20°) of the radio emission from the inner to the outer regions. On the large scale, the source has Fanaroff & Riley type II morphology although the presence of the two hotspots in the centres of the lobes is unusual. The northern lobe shows a particularly relaxed structure while the southern one has an edge-brightened, arc-like structure.  相似文献   

13.
We present a simple method for adaptively binning the pixels in an image. The algorithm groups pixels into bins of size such that the fractional error on the photon count in a bin is less than or equal to a threshold value, and the size of the bin is as small as possible. The process is particularly useful for generating surface brightness and colour maps, with clearly defined error maps, from images with a large dynamic range of counts, for example X-ray images of galaxy clusters. We demonstrate the method in application to data from Chandra ACIS-S and ACIS-I observations of the Perseus cluster of galaxies. We use the algorithm to create intensity maps, and colour images that show the relative X-ray intensities in different bands. The colour maps can later be converted, through spectral models, into maps of physical parameters, such as temperature, column density, etc. The adaptive binning algorithm is applicable to a wide range of data, from observations or numerical simulations, and is not limited to two-dimensional data.  相似文献   

14.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

15.
We present an analysis of four off-axis ROSAT Position Sensitive Proportional Counter (PSPC) observations of the Perseus cluster of galaxies (Abell 426). We detect the surface brightness profile to a radius of 80 arcmin (∼2.4 h−150 Mpc) from the X-ray peak. The profile is measured in various sectors and in three different energy bands. First, a colour analysis highlights a slight variation of N H over the region, and cool components in the core and in the eastern sector. We apply the β-model to the profiles from different sectors and present a solution to the, so-called, β-problem. The residuals from an azimuthally-averaged profile highlight extended emission both in the east and in the west, with estimated luminosities of about 8 and 1 ×1043 erg s−1, respectively. We fit several models to the surface brightness profile, including the one obtained from the Navarro, Frenk &38; White potential. We obtain the best fit with the gas distribution described by a power law in the inner, cooling region and a β-model for the extended emission. Through the best-fitting results and the constraints from the deprojection of the surface brightness profiles, we define the radius where the overdensity inside the cluster is 200 times the critical value, r 200, at 2.7 h−150 Mpc. Within 2.3  h−150 Mpc (0.85 r 200), the total mass in the Perseus cluster is 1.2 × 1015 M and its gas fraction is about 30 per cent.  相似文献   

16.
We report the discovery of a 40 arcsec long X-ray filament in the core of the cluster of galaxies Abell 1795. The feature coincides with an H α +N  ii filament found by Cowie et al. in the early 1980s and resolved into at least two U -band filaments by McNamara et al. in the mid-1990s. The (emission-weighted) temperature of the X-ray emitting gas along the filament is 2.5–3 keV, as revealed by X-ray colour ratios. The deprojected temperature will be less. A detailed temperature map of the core of the cluster presented. The cD galaxy at the head of the filament is probably moving through or oscillating in the cluster core. The radiative cooling time of the X-ray emitting gas in the filament is about     which is similar to the age of the filament obtained from its length and velocity. This suggests that the filament is produced by cooling of the gas from the intracluster medium. The filament, much of which is well separated from the body of the cD galaxy and its radio source, is potentially of great importance in helping to understand the energy and ionization source of the optical nebulosity common in cooling flows.  相似文献   

17.
The high-redshift radio-loud quasar PKS 2126−158 is found to have a large number of red galaxies in close apparent proximity. We use the Gemini Multi-Object Spectrograph (GMOS) on Gemini South to obtain optical spectra for a large fraction of these sources. We show that there is a group of galaxies at   z ∼ 0.66  , coincident with a metal-line absorption system seen in the quasar's optical spectrum. The multiplexing capabilities of GMOS also allow us to measure redshifts of many foreground galaxies in the field surrounding the quasar.
The galaxy group has five confirmed members, and a further four fainter galaxies are possibly associated. All confirmed members exhibit early-type galaxy spectra, a rare situation for a Mg  ii absorbing system. We discuss the relationship of this group to the absorbing gas, and the possibility of gravitational lensing of the quasar due to the intervening galaxies.  相似文献   

18.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

19.
Results of ASCA and ROSAT observations of the Seyfert 1 galaxy RX J0437.4−4711 are presented. The X-ray continuum spectrum can be described by the sum of a power law with photon index 2.15 ± 0.04 and a soft emission component characterized by a blackbody with temperature 29 ± 2 eV. The total luminosity of the soft component is larger than that of the power-law component if the power law is cut off around a few hundred keV. A weak absorption edge with τ = 0.26 ± 0.13 at the rest-frame energy of E  = 0.83 ± 0.05 keV and an Fe Kα line with EW = 430 ± 220 eV at an energy E  = 6.47 ± 0.15 keV are also detected. The X-ray flux showed a 47 per cent increase between two ASCA observations 4 months apart, but no spectral variability was seen. We argue that reprocessing of the hard X-ray emission cannot produce all the soft X-ray emission, since the total luminosity of the soft component is larger than that of the integrated power-law component. Similarities with some stellar black hole candidates are briefly discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号