首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
An AMS radiocarbon-dated pollen record from a peat deposit on Mitkof Island, southeastern Alaska provides a vegetation history spanning ∼12,900 cal yr BP to the present. Late Wisconsin glaciers covered the entire island; deglaciation occurred > 15,400 cal yr BP. The earliest known vegetation to develop on the island (∼12,900 cal yr BP) was pine woodland (Pinus contorta) with alder (Alnus), sedges (Cyperaceae) and ferns (Polypodiaceae type). By ∼12,240 cal yr BP, Sitka spruce (Picea sitchensis) began to colonize the island while pine woodland declined. By ∼11,200 cal yr BP, mountain hemlock (Tsuga mertensiana) began to spread across the island. Sitka spruce-mountain hemlock forests dominated the lowland landscapes of the island until ∼10,180 cal yr BP, when western hemlock (Tsuga heterophylla) began to colonize, and soon became the dominant tree species. Rising percentages of pine, sedge, and sphagnum after ∼7100 cal yr BP may reflect an expansion of peat bog habitats as regional climate began to shift to cooler, wetter conditions. A decline in alders at that time suggests that coastal forests had spread into the island's uplands, replacing large areas of alder thickets. Cedars (Chamaecyparis nootkatensis, Thuja plicata) appeared on Mitkof Island during the late Holocene.  相似文献   

2.
Vegetation dynamics during the earliest part of the Holocene (11,250-10,250 cal yr BP) have been reconstructed from a lacustrine sequence on Sandoy, the Faroe Islands, using detailed plant macrofossil and pollen evidence. The plant macrofossils suggest the initial vegetation was sparse herb and shrub tundra, with Salix herbacea and open-ground species, followed by the development of a denser and more species-rich arctic heathland after 11,150 cal yr BP. Despite high pollen values for Betula nana, macrofossils are rare. The bulk of the macrofossils recorded are S. herbacea and Empetrum leaves with numerous herb taxa and an abundance of Racomitrium moss. Conditions start to change around 10,800 cal yr BP, with increased catchment erosion and sediment delivery to the lake from ca. 10,600 cal yr BP, and a transition to alternating Cyperaceae and Poaceae communities between ca. 10,450 and 10,250 cal yr BP. This vegetation change, which has been recorded throughout the Faroes, has previously been interpreted as a retrogressive shift from woody shrubs to a herbaceous community. The detailed plant macrofossil data show the shift is the replacement of an Empetrum arctic heathland by grassland and moist sedge communities. These taxa dominate the modern landscape.  相似文献   

3.
4.
We used a new sedimentary record to reconstruct the Holocene vegetation and fire history of Gorgo Basso, a coastal lake in south-western Sicily (Italy). Pollen and charcoal data suggest a fire-prone open grassland near the site until ca 10,000 cal yr BP (8050 cal BC), when Pistacia shrubland expanded and fire activity declined, probably in response to increased moisture availability. Evergreen Olea europaea woods expanded ca 8400 to decline abruptly at 8200 cal yr BP, when climatic conditions became drier at other sites in the Mediterranean region. Around 7000 cal yr BP evergreen broadleaved forests (Quercus ilex, Quercus suber and O. europaea) expanded at the cost of open communities. The expansion of evergreen broadleaved forests was associated with a decline of fire and of local Neolithic (Ficus carica–Cerealia based) agriculture that had initiated ca 500 years earlier. Vegetational, fire and land-use changes ca 7000 cal yr BP were probably caused by increased precipitation that resulted from (insolation-forced) weakening of the monsoon and Hadley circulation ca 8000–6000 cal yr BP. Low fire activity and dense coastal evergreen forests persisted until renewed human activity (probably Greek, respectively Roman colonists) disrupted the forest ca 2700 cal yr BP (750 BC) and 2100 cal yr BP (150 BC) to gain open land for agriculture. The intense use of fire for this purpose induced the expansion of open maquis, garrigue, and grassland-prairie environments (with an increasing abundance of the native palm Chamaerops humilis). Prehistoric land-use phases after the Bronze Age seem synchronous with those at other sites in southern and central Europe, possibly as a result of climatic forcing. Considering the response of vegetation to Holocene climatic variability as well as human impact we conclude that under (semi-)natural conditions evergreen broadleaved Q. ilexO. europaea (s.l.) forests would still dominate near Gorgo Basso. However, forecasted climate change and aridification may lead to a situation similar to that before 7000 cal yr BP and thus trigger a rapid collapse of the few relict evergreen broadleaved woodlands in coastal Sicily and elsewhere in the southern Mediterranean region.  相似文献   

5.
Pollen, spore, macrofossil and stable isotope (C and N) analyses from a 266-cm sediment core collected from a swamp on the Eastern Arc Mountains, Tanzania, are used to reconstruct vegetation and environmental history. An estimated time scale based on five 14C ages records approximately 38,000 yr. This palaeorecord is the first from this biodiversity hotspot and importantly extends through the last glacial maximum (LGM). The altitudinal transition from montane to upper montane forest shifted from 1700-1800 m (38,000 14C yr BP) to 1800-1900 m (35,000-29,000 14C yr BP). From 29,000 to 10,000 14C yr BP, it shifted from 1850-1950 m across the LGM to 1750-1800 m (during 10,000-3500 14C yr BP), and to present-day elevations at 2000 m during the last 3500 14C yr BP. The relative ecosystem stability across the LGM may be explained by the Indian Ocean's influence in maintaining continuous moist forest cover during a period of East African regional climate aridity. During the late Holocene, presence of abundant coprophilous fungi and algal blooms demonstrates increasing human impact. Neurospora spores indicate frequent fires, coinciding with clear signals of decline in Podocarpus and Psychotria trees that possibly represent selective logging.  相似文献   

6.
Here, we present two high-resolution records of macroscopic charcoal from high-elevation lake sites in the Sierra Nevada, California, and evaluate the synchroneity of fire response for east- and west-side subalpine forests during the past 9200 yr. Charcoal influx was low between 11,200 and 8000 cal yr BP when vegetation consisted of sparse Pinus-dominated forest and montane chaparral shrubs. High charcoal influx after ∼ 8000 cal yr BP marks the arrival of Tsuga mertensiana and Abies magnifica, and a higher-than-present treeline that persisted into the mid-Holocene. Coeval decreases in fire episode frequency coincide with neoglacial advances and lower treeline in the Sierra Nevada after 3800 cal yr BP. Independent fire response occurs between 9200 and 5000 cal yr BP, and significant synchrony at 100- to 1000-yr timescales emerges between 5000 cal yr BP and the present, especially during the last 2500 yr. Indistinguishable fire-return interval distributions and synchronous fires show that climatic control of fire became increasingly important during the late Holocene. Fires after 1200 cal yr BP are often synchronous and corroborate with inferred droughts. Holocene fire activity in the high Sierra Nevada is driven by changes in climate linked to insolation and appears to be sensitive to the dynamics of the El Niño-Southern Oscillation.  相似文献   

7.
The Cochabamba Basin (Bolivia) is on the ancient road network connecting Andean and lowland areas. Little is known about the longevity of this trade route or how people responded to past environmental changes. The eastern end of the Cochabamba valley system constricts at the Vacas Lake District, constraining the road network and providing an ideal location in which to examine past human-environmental interactions. Multi-proxy analysis of sediment from Lake Challacaba has allowed a c. 4000 year environmental history to be reconstructed. Fluctuations in drought tolerant pollen taxa and calcium carbonate indicate two periods of reduced moisture availability (c. 4000-3370 and c. 2190-1020 cal yr BP) compared to adjacent wetter episodes (c. 3370-2190 and c. 1020 cal yr BP-present). The moisture fluctuations broadly correlate to El Niño/Southern Oscillation variations reported elsewhere. High charcoal abundance from c. 4000 to 2000 yr ago indicates continuous use of the ancient road network. A decline in charcoal and an increase in dung fungus (Sporormiella) c. 1340-1210 cal yr BP, suggests that cultural changes were a major factor in shaping the modern landscape. Despite undisputable impacts of human populations on the Polylepis woodlands today, we see no evidence of woodland clearance in the Challacaba record.  相似文献   

8.
A Bison antiquus cranium and partial skeleton from Ayer Pond wetland on Orcas Island, San Juan Islands, Washington, date to 11,760 ± 70 14C yr BP. They lay in lacustrine sediments below peat, unconformably above emergent Everson Glaciomarine Drift (> 12,000 14C yr BP). Several bison finds in similar contexts on Orcas and Vancouver Islands dating between 11,750 and 10,800 14C yr BP indicate an early postglacial land mammal dispersal corridor with reduced water barriers between mainland and islands. New bison dates and published shell dates allow estimation of early postglacial relative sea-level trends for the San Juans, with a drop below modern datum ∼ 12,000 14C yr BP, and assist in evaluation of marine reservoir corrections. Emergence by ∼ 60 m is suggested by data from nearby areas. A tundra-like or meadow community and succeeding open pine parkland before 11,000 14C yr BP supported bison but horn-core reduction suggests suboptimal forage or restricted habitat. Expanding mixed-conifer forests after 11,000 14C yr BP contributed to bison extirpation. Dispersing ungulates such as bison must have influenced island vegetation establishment and early succession. Possible evidence for butchering by early coastal people adds significance to the Ayer Pond discovery, given its pre-Clovis age.  相似文献   

9.
《Quaternary Science Reviews》2007,26(11-12):1650-1669
We reconstruct the vegetational history of the southern side of the Alps at 18,000–10,000 cal yr BP using previous and new AMS-dated stratigraphic records of pollen, stomata, and macrofossils. To address potential effects of climatic change on vegetation, we compare our results with independent paleoclimatic series (e.g. isotope and chironomid records from the Alps and the Alpine forelands). The period before 16,000 cal yr BP is documented only at the lowland sites. The previous studies used for comparison with our new Palughetto record, however, shows that Alpine deglaciation must have started before 18,000–17,500 cal yr BP south of the Alps and that deglaciated sites were colonized by open woods and shrublands (Juniperus, tree Betula, Larix, Pinus cembra) at ca 17,500 cal yr BP. The vegetational history of a new site (Palughetto, 1040 m a.s.l.) is consistent with that of previous investigations in the study region. Our results show three conspicuous vegetational shifts delimited by statistically significant pollen zones, at ca 14,800–14,400, 13,300–12,800 and 11,600–11,200 cal yr BP. At sites situated above 1000 m a.s.l. (e.g. Palughetto, Pian di Gembro) forests expanded in alpine environments at ca 14,500 cal yr BP (onset of Bølling period, GI-1 in the Greenland ice record). At the same time, rather closed treeline communities of the lowlands were replaced by dense stands of Pinus sylvestris and Betula. These early forests and shrublands consisted of Larix, P. cembra, Juniperus, P. sylvestris, Pinus mugo, and Betula, and had become established at ca 16,000 cal yr BP, probably in response to a temperature increase. If combined with other records from the Southern Alps, our data suggest that treeline ascended by ca 800–1000 m in a few centuries at most, probably as a consequence of climatic warming at the beginning of the Bølling period. At 13,100–12,800 cal yr BP the onset of a long-lasting decline of P. sylvestris was accompanied by the expansion of Quercus and other thermophilous tree taxa below ca 600 m a.s.l. This vegetational change was probably induced by a shift to warmer climatic conditions before the onset of the Younger Dryas, as indicated by independent paleoclimatic records. Only a few centuries later, at ca 12,700–12,500 cal yr BP, an expansion of herbaceous taxa occurred in the lowlands as well as at higher altitudes, documenting an opening of forested habitats. This change coincided with the beginning of the Younger Dryas cooling (GS-1), which according to the paleoclimatic series (e.g. oxygen isotope series), started at 12,700–12,600 cal yr BP and lasted for about 1000 years. Environments south of the Alps responded markedly to climatic warming at the onset of the Holocene (11,600–11,500 cal yr BP). Thermophilous trees that had declined during the Younger Dryas re-expanded very rapidly in the lowlands and reached the high altitude sites below ca 1500 m a.s.l. within a few centuries at most. Our study implies that the synchronous vegetational changes observed over wide areas were probably a consequence of abrupt climatic shifts at the end of the Last Glacial Maximum (LGM) and during the Lateglacial. We emphasize that important vegetational changes such as the expansion of forests occurred millennia before the onset of similar processes in northwestern and central Europe.  相似文献   

10.
《Quaternary Science Reviews》2005,24(1-2):105-121
Pollen analysis of radiocarbon-dated lake sediment from northern Vancouver Island, southwest British Columbia reveals regional changes in forest vegetation over the last 12,200 14C yr (14,900 cal yr). Between at least 12,200 and 11,700 14C yr BP (14,900–13,930 cal yr BP), open woodlands were dominated by Pinus contorta, Alnus crispa, and various ferns. As P. contorta decreased in abundance, Alnus rubra and more shade-tolerant conifers (i.e., Picea and Tsuga mertensiana) increased. Increases in T. mertensiana, P. contorta, and A. crispa pollen accumulation rates (PARs) between 10,600 and 10,400 14C yr BP (11,660–11,480 cal yr BP) reflect a cool and moist climate during the Younger Dryas chronozone. Orbitally induced warming around 10,000 14C yr BP (11,090 cal yr BP) allowed the northward extension of Pseudotsuga menziesii, although Picea, Tsuga heterophylla, and A. rubra dominated early Holocene forests. By 7500 14C yr BP (8215 cal yr BP), shade-tolerant T. heterophylla was the dominant forest tree. Cupressaceae (Thuja plicata and Chamaecyparis nootkatensis) was present by 7500 14C yr BP but reached its maximum after 3500 14C yr BP (3600 cal yr BP), when a cooler and wetter regional climate facilitated the development of temperate rainforest. The highest rates of vegetation change are associated with Lateglacial climate change and species with rapid growth rates and short life spans.  相似文献   

11.
The palaeoenvironmental history has been studied based on palynology of a sedimentary profile from the Alpes de São Francisco bog (29°29′35′′S, 50°37′18′′W), São Francisco de Paula municipality, Rio Grande do Sul eastern Plateau, extreme Southern Brazil. The results indicate a regional cold and dry climate between 25,000 and 12,500 yr BP, interpreted from the grassland vegetation, forest taxa were present in refuges and the shallow local lake began to fill in. Climatic conditions became more aride after 16,000 yr BP, when grassland became rare. From 12,500 yr BP onwards, the climate began to change and at 11,000–9700 yr BP a warm and moist climate permitted the slight migration of pioneer arboreal taxa from refuges and locally a marsh formation. Between 9700 and 6500 yr BP a warm and dry climate resulted in reduction of grassland, confined the forest in refuges, dried out the marsh. The gradual increase of humidity between 6500 and 4000 yr BP allowed migration of forests from refuges and a bog developed. Between 4000 and 2000 yr BP Araucaria forest spread, indicating moister climate. The local bog expanded. From 2000 yr BP onwards, humid but warmer climate seems to result in a lower reproductive capacity of Araucaria forest taxa limiting its expansion. The bog reached the present-day in a decline condition. The results are compared to previous records from Southern Brazil highlands and some places from Argentina in order to better elucidate the climatic and vegetational history of these important South America areas during the late Quaternary.  相似文献   

12.
A high temporal resolution pollen diagram from a lake in the mid-Arctic region of the Boothia Peninsula, Nunavut, Canada, documents the history of the regional vegetation and climate for the past 7200 yr. Major tundra pollen taxa in the core include Cyperaceae and Salix, with Cyperaceae comprising over 50% of the pollen in the early and late Holocene. Tree pollen, transported from far to the south, comprised a large percentage of the pollen sum, with Pinus accounting for 30% of the pollen in some levels of the core. Pollen percentages and concentrations of taxa typical of the mid-Arctic were highest in the mid-Holocene, corresponding to warm conditions. Decreasing pollen concentrations indicate cooling temperatures, with more rapid decreases occurring around 4200, 3800-3400, and 2500 cal yr BP. Pollen percentages of Salix, Cyperaceae, and Artemisia increased in the past 35 yr in response to global warming. Reconstructions of July temperature using the modern analog technique showed that the mid-Holocene (5800-2800 cal yr BP) was approximately 1 °C higher than during the past 1000 yr.  相似文献   

13.
A 90,000-yr record of environmental change before 18,000 cal yr B.P. has been constructed using pollen analyses from a sediment core obtained from Salar de Uyuni (3653 m above sea level) on the Bolivian Altiplano. The sequence consists of alternating mud and salt, which reflect shifts between wet and dry periods. Low abundances of aquatic species between 108,000 and 50,000 yr ago (such as Myriophyllum and Isoëtes) and marked fluctuations in Pediastrum suggest generally dry conditions dominated by saltpans. Between 50,000 yr ago and 36,000 cal yr B.P., lacustrine sediments become increasingly dominant. The transition to the formation of paleolake “Minchin” begins with marked rises in Isoëtes and Myriophyllum, suggesting a lake of moderate depth. Similarly, between 36,000 and 26,000 cal yr B.P., the transition to paleolake Tauca is also initiated by rises in Isoëtes and Myriophyllum; the sustained presence of Isoëtes indicates the development of flooded littoral communities associated with a lake maintained at a higher water level. Polylepis tarapacana-dominated communities were probably an important component of the Altiplano terrestrial vegetation during much of the Last Glacial Maximum (LGM) and previous wet phases.  相似文献   

14.
High-resolution pollen and magnetic susceptibility (MS) analyses have been carried out on a sediment core taken from a high-elevation alpine bog area located in Sierra Nevada, southern Spain. The earliest part of the record, from 8200 to about 7000 cal yr BP, is characterized by the highest abundance of arboreal pollen and Pediastrum, indicating the warmest and wettest conditions in the area at that time. The pollen record shows a progressive aridification since 7000 cal yr BP that occurred in two steps, first shown by a decrease in Pinus, replaced by Poaceae from 7000 to 4600 cal yr BP and then by Cyperaceae, Artemisia and Amaranthaceae from 4600 to 1200 cal yr BP. Pediastrum also decreased progressively and totally disappeared at ca. 3000 yr ago. The progressive aridification is punctuated by periodically enhanced drought at ca. 6500, 5200 and 4000 cal yr BP that coincide in timing and duration with well-known dry events in the Mediterranean and other areas. Since 1200 cal yr BP, several changes are observed in the vegetation that probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the bog, Pinus reforestation and Olea cultivation at lower elevations.  相似文献   

15.
Pollen and macrofossil analyses of a core spanning 26,000 yr from Davis Lake reveal late Pleistocene and Holocene vegetational patterns in the Puget Lowland. The core ranges lithologically from a basal inorganic clay to a detritus gyttja to an upper fibrous peat and includes eight tephra units. The late Pleistocene pollen sequence records two intervals of tundra-parkland vegetation. The earlier of these has high percentages of Picea, Gramineae, and Artemisia pollen and represents the vegetation during the Evans Creek Stade (Fraser Glaciation) (ca. 25,000–17,000 yr B.P.). The later parkland interval is dominated by Picea, Tsuga mertensiana, and Gramineae. It corresponds to the maximum ice advance in the Puget Lowland during the Vashon Stade (Fraser Glaciation) (ca. 14,000 yr B.P.). An increase in Pinus ontorta pollen between the two tundra-parkland intervals suggests a temporary rise in treeline during an unnamed interstade. After 13,500 yr B.P., a mixed woodland of subalpine and lowland conifers grew at Davis Lake during a period of rapid climatic amelioration. In the early Holocene, the prolonged expansion of Pseudotsuga and Alnus woodland suggests dry, temperate conditions similar to those of present rainshadow sites in the Puget Lowland. More-mesic forests of Tsuga eterophylla, Thuja plicata, and Pseudotsuga, similar to present lowland vegetation, appeared in the late Holocene (ca. 5500 yr B.P.).  相似文献   

16.
The radiocarbon ages of mollusc shells from the Bogenfels Pan on the hyper arid southern coast of Namibia provide constraints on the Holocene evolution of sea level and, in particular, the mid-Holocene highstand. The Bogenfels Pan was flooded to depths of 3 m above mean sea level (amsl) to form a large subtidal lagoon from 7300 to 6500 calibrated radiocarbon years before present (cal yr BP). The mollusc assemblage of the wave sheltered lagoon includes Nassarius plicatellus, Lutraria lutraria, and the bivalves Solen capensis and Gastrana matadoa, both of which no longer live along the wave-dominated southern Namibian coast. The radiocarbon ages of mollusc shell from a gravely beach deposit exposed in a diamond exploration trench indicate that sea level fell to near or 1 m below its present-day position between 6500 and 4900 cal yr BP. The rapid emergence of the pan between 6500 and 4900 cal yr BP exceeds that predicted by glacio-isostatic models and may indicate a 3-m eustatic lowering of sea level. The beach deposits at Bogenfels indicate that sea level rose to 1 m amsl between 4800 and 4600 cal yr BP and then fell briefly between 4600 and 4200 cal yr BP before returning to 1 m amsl. Since 4200 cal yr BP sea level has remained within one meter of the present-day level and the beach at Bogenfels has prograded seaward from the delayed arrival of sand by longshore drift from the Orange River. A 6200 cal yr BP coastal midden and a 600 cal yr BP midden 1.7 km from the coast indicate sporadic human utilization of the area. The results of this study are consistent with previous studies and help to refine the Holocene sea-level record for southern Africa.  相似文献   

17.
An ∼8000-cal-yr stratigraphic record of vegetation change from the Sierra de Apaneca, El Salvador, documents a mid-Holocene warm phase, followed by late Holocene cooling. Pollen evidence reveals that during the mid-Holocene (∼8000-5500 cal yr B.P.) lowland tropical plant taxa were growing at elevations ∼200-250 m higher than at present, suggesting conditions about 1.0°C warmer than those prevailing today. Cloud forest genera (Liquidambar, Juglans, Alnus, Ulmus) were also more abundant in the mid-Holocene, indicating greater cloud cover during the dry season. A gradual cooling and drying trend began by ∼5500 cal yr B.P., culminating in the modern forest composition by ∼3500 cal yr B.P. A rise in pollen from weedy plant taxa associated with agriculture occurred ∼5000 cal yr B.P., and pollen from Zea first appeared in the record at ∼4440 cal yr B.P. Human impacts on local vegetation remained high throughout the late Holocene, but decreased abruptly following the Tierra Blanca Joven (TBJ) eruption of Volcán Ilopango at ∼1520 cal yr B.P. The past 1500 years are marked by higher lake levels and periodic depositions of exogenous inorganic sediments, perhaps indicating increased climatic variability.  相似文献   

18.
Pollen evidence from sediment cores at Hurleg and Toson lakes in the Qaidam Basin was obtained to examine vegetation and climatic change in the northeastern Qinghai-Tibetan Plateau. The chronologies were controlled by 210Pb and 137Cs analysis and AMS 14C dating. Pollen assemblages from both lakes are dominated by Chenopodiaceae (∼ 40%), Artemisia (∼ 30-35%) and Poaceae (∼ 20-25%), with continued occurrence but low abundance of Nitraria, Ephedra, and Cyperaceae. Artemisia/Chenopodiaceae (A/C) pollen ratios from two lakes show coherent large oscillations at centennial timescale during the last 1000 yr. A/C ratios were high around AD 1170, 1270, 1450, 1700 and 1920, suggesting that the vegetation was more “steppe-like” under a relatively moist climate than that during the intervening periods. Wet-dry climate shifts at the two lakes (2800 m asl) are in opposite phases to precipitation changes derived from tree-ring records in the surrounding mountains (> 3700 m asl) and to pollen and snow accumulation records from Dunde ice core (5300 m asl), showing that a dry climate in the basin corresponds with a wet interval in the mountains, especially around AD 1600. This contrasting pattern implies that topography might have played an important role in mediating moisture changes at regional scale in this topographically complex region.  相似文献   

19.
Radiocarbon dates from known age, pre-bomb eastern oyster (Crassostrea virginica) shells provide local marine reservoir corrections (?R) for Chesapeake Bay and the Middle Atlantic coastal area of eastern North America. These data suggest subregional variability in ?R, ranging from 148 ± 46 14C yr on the Potomac River to ? 109 ± 38 14C yr at Swan Point, Maryland. The ?R weighted mean for the Chesapeake's Western Shore (129 ± 22 14C yr) is substantially higher than the Eastern Shore (? 88 ± 23 14C yr), with outer Atlantic Coast samples falling between these values (106 ± 46 and 2 ± 46 14C yr). These differences may result from a combination of factors, including 14C-depleted freshwater that enters the bay from some if its drainages, 14C-depleted seawater that enters the bay at its mouth, and/or biological carbon recycling. We advocate using different subregional ?R corrections when calibrating 14C dates on aquatic specimens from the Chesapeake Bay and coastal Middle Atlantic region of North America.  相似文献   

20.
New records of Jefferson's ground sloth (Megalonyx jeffersonii) and elk-moose (Cervalces scotti) from Lang Farm provide the first precise temporal correlation of these taxa with the specific environments inhabited by them near the time of their extinction. Six AMS 14C measurements establish an age of 11,405 ± 50 14C yr B.P. for Lang Farm Cervalces and an age of 11,430 ± 60 or 11,485 ± 40 14C yr B.P. for the Megalonyx. These measurements represent the youngest 14C dates for these two genera based on direct dating. Comparison of the dates with pollen data from northern Illinois indicates that these species inhabited a nonanalog environment that was transitional from mid-latitude tundra to mixed conifer and deciduous woodland. Although spruce (Picea sp.) was dominant, it was less abundant than prior to 12,500 14C yr B.P. The presence of black ash (Fraxinus nigra) and fir (Abies sp.) indicates a wet climate and heavy winter precipitation. This may have been the preferred habitat for Cervalces because of its narrow geographic range. However, this habitat type was only one of many occupied by Megalonyx as indicated by its broad geographic distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号