首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a comprehensive study, we compared depositional conditions, organic matter (OM) composition, and organic carbon turnover in sediments from two different depositional systems along the Chilean continental margin: at ∼23° S off Antofagasta and at ∼36° S off Concepción. Both sites lie within the Chilean coastal upwelling system and have an extended oxygen minimum zone in the water column. However, the northern site (23° S) borders the Atacama Desert, while the southern site (36° S) has a humid hinterland. Eight surface sediment cores (up to 30 cm long) from water depths of 126-1350 m were investigated for excess 210Pb (210Pbxs) activity, total organic and total inorganic carbon concentrations (TOC and TIC, respectively), C/N-ratios, organic carbon isotopic compositions (δ13C), chlorin concentrations, Chlorin Indices (CI), and sulfate reduction rates (SRR). Sediment accumulation rates obtained from 210Pb-analysis were similar in both regions (0.04-0.15 cm yr−1 at 23° S, 0.10-0.19 cm yr−1 at 36° S), although total 210Pbxs fluxes indicated that the vertical particle flux was higher at 36° S than at 23° S. We propose that sediment focusing in isolated deposition centers led to high sediment accumulation rates at 23° S. Furthermore, there were no indications for sediment mixing at 23° S, while bioturbation was intense at 36° S. δ13C-values (−24.5‰ to −20.1‰ vs. VPDB) and C/N-ratios (molar, 8.6-12.8) were characteristic of a predominantly marine origin of the sedimentary OM in both investigated areas. The extent of OM alteration in the water column was partly reflected in the surface sediments as chlorin concentrations decreased and C/N-ratios and CI increased with increasing water depth of the sampling site. SRR were lower at 23° S (areal SRR 0.12-0.60 mmol m−2 d−1) than at 36° S (areal SRR 0.82-1.18 mmol m−2 d−1), which was partly due to the greater water depth of most of the sediments investigated in the northern region and consistent with a lower quality of the sedimentary OM at 23° S. Reaction rate constants for TOC degradation that were obtained from measured SRR (kSRR; 0.0004-0.0022 yr−1) showed a good correspondence to kTOC that were derived from the depth profiles of TOC (0.0003-0.0014 yr−1). Both, kSRR and kTOC, reflect differences in OM composition. At 36° S they were related to the degradation state of bulk OM (represented by C/N-ratios), whereas near 23° S they were related to the freshness of a small fraction of labile OM (represented by CI). Our study shows that although rates of organic carbon accumulation were similar in both investigated sites, the extent and kinetics of organic carbon degradation were closely linked to differing depositional conditions.  相似文献   

2.
We present a quantification of total and partial (divided by time slices) sedimentary volumes in the Neogene basins of the Betic-Rif orogen. These basins include the Alboran Sea, the intramontane basins, the Guadalquivir and Rharb foreland basins and the Atlantic Margin of the Gibraltar Arc. The total volume of Neogene sediments deposited in these basins is ~ 209,000 km3 and is equally distributed between the internal (Alboran Basin and intramontane basins) and the external basins (foreland basins and Atlantic Margin). The largest volumes are recorded by the Alboran Basin (89,600 km3) and the Atlantic Margin (81,600 km3). The Guadalquivir and Rharb basins amount 14,000 km3 and 14,550 km3, respectively whereas the intramontane basins record 9235 km3. Calculated mean sediment accumulation rates for the early-middle Miocene show an outstanding asymmetry between the Alboran basin (0.24 mm/yr) and the foreland basins (0.06-0.07 mm/yr) and the Atlantic Margin (0.03 mm/yr). During the late Miocene, sedimentation rates range between 0.17 and 0.18 mm/yr recorded in the Alboran Basin and 0.04 mm/yr in the intramontane basins. In the Pliocene-Quaternary, the highest sedimentation rates are recorded in the Atlantic Margin reaching 0.22 mm/yr. Sedimentary contribution shows similar values for the inner and outer basins with a generalized increase from late Miocene to present (from 3500 to 6500 km3/My). Interestingly, the Alboran Basin records the maximum sedimentary contribution during the late Miocene (5500 km3/My), whereas the Atlantic Margin does during the Pliocene-Quaternary (6600 km3/My). The spatial and time variability of the sediment supply from the Betic-Rif orogen to basins is closely related to the morphotectonic evolution of the region. The high sedimentation rates obtained in the Alboran Basin during the early-middle Miocene are related to active extensional tectonics, which produced narrow and deep basins in its western domain. The highest sedimentary contribution in this basin, as well as in the foreland and intramontane basins, is recorded during the late Miocene due to the uplift of wide areas of the Betics and Rif chains. The analysis of the sedimentary supply also evidences strong relationships with the post-Tortonian crustal thickening and coeval topographic amplification that occurred in the central Betics and Rif with the concomitant evolution of the drainage network showing the fluvial capture of some internal basins by rivers draining to the Atlantic Ocean (the ancestral Guadalquivir).  相似文献   

3.
Vegetation assemblages and associated disturbance regimes are spatially heterogeneous in mountain ecosystems throughout the world due to the complex terrain and strong environmental gradients. Given this complexity, numerous sites describing postglacial vegetation and fire histories are needed to adequately understand forest development and ecosystem responses to varying climate and disturbance regimes. To gain insight into long-term historical climate–fire–vegetation interactions in southeastern British Columbia, Canada, sedimentological and paleoecological analyses were performed on a sediment core recovered from a small subalpine lake. The pollen assemblages, stomata, and macroremains indicate that from 9500 to 7500 cal yr BP, Pinus-dominated forests occurred within the catchment and Alnus was also present. Climate was an important control of fire and fire frequency was highest at this time, peaking at 8 fires 1000 yr− 1, yet charcoal accumulation rates were low, indicative of low terrestrial biomass abundance. From 7500 to 4600 cal yr BP, Pinus decreased as Picea, Abies and Larix increased and fire frequencies decreased to 3–6 fires 1000 yr− 1. Since 7500 cal yr BP the fire regime varied at a millennial scale, driven by forest biomass abundance and fuel accumulation changes. Local scale (bottom-up) controls of fire increased in relative importance since at least 6000 cal yr BP.  相似文献   

4.
The mid-Holocene (ca. 8000-4000 cal yr BP) was a time of marked aridity throughout much of Minnesota, and the changes due to mid-Holocene aridity are seen as an analog for future responses to global warming. In this study, we compare the transition into (ca. 9000-7000 yr ago) and out of (ca. 5000-2500 yr ago) the mid-Holocene (MH) period at Kimble Pond and Sharkey Lake, located along the prairie forest ecotone in south-central Minnesota, using high resolution (∼ 5-36 yr) sampling of pollen, charcoal, sediment magnetic and loss-on-ignition properties. Changes in vegetation were asymmetrical with increasing aridity being marked by a pronounced shift from woodland/forest-dominated landscape to a more open mix of grassland and woodland/savanna. In contrast, at the end of the MH, grassland remained an important component of the landscape despite increasing effective moisture, and high charcoal influxes (median 2.7-4.0 vs. 0.6-1.7 mm2 cm− 2 yr− 1 at start of MH) suggest the role of fire in limiting woodland expansion. Asymmetric vegetation responses, variation among and within proxies, and the near-absence of fire today suggest caution in using changes associated with mid-Holocene aridity at the prairie forest boundary as an analog for future responses to global warming.  相似文献   

5.
This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr−1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m−2 d−1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m−2 d−1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m−2 d−1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m−2 d−1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m−2 d−1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100-200 nmol cm−3 d−1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m−2 d−1 or 96 mW m−2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide oxidation and anaerobic oxidation of methane (AOM) produce 95% and 2% of this energy flux, respectively. The low power output by AOM is due to strong bioenergetic constraints imposed on the reaction rate by the composition of the chemical environment. These constraints provide a high potential for dissolved methane efflux from the sediment (12.0 mmol m−2 d−1) and indicates a much lower efficiency of (dissolved) methane sequestration by AOM at seeps than considered previously. Nonetheless, AOM is able to consume a third of the ascending methane flux (5.9 mmol m−2 d−1 of CH4) with a high efficiency of energy expenditure (35 mmol CH4 kJ−1). It is further proposed that bioenergetic limitation of AOM provides an explanation for the non-zero sulfate concentrations below the AOM zone observed here and in other active and passive margin sediments.  相似文献   

6.
Estimates of glacial sediment delivery to the oceans have been derived from fluxes of meltwater runoff and iceberg calving, and their sediment loads. The combined total (2900 Tg yr−1) of the suspended sediment load in meltwaters (1400 Tg yr−1) and the sediment delivered by icebergs (1500 Tg yr−1) are within the range of earlier estimates. High-resolution microscopic observations show that suspended sediments from glacial meltwaters, supraglacial, and proglacial sediments, and sediments in basal ice, from Arctic, Alpine, and Antarctic locations all contain iron (oxyhydr)oxide nanoparticles, which are poorly crystalline, typically ∼5 nm in diameter, and which occur as single grains or aggregates that may be isolated or attached to sediment grains. Nanoparticles with these characteristics are potentially bioavailable. A global model comparing the sources and sinks of iron present as (oxyhydr)oxides indicates that sediment delivered by icebergs is a significant source of iron to the open oceans, beyond the continental shelf. Iceberg delivery of sediment containing iron as (oxyhydr)oxides during the Last Glacial Maximum may have been sufficient to fertilise the increase in oceanic productivity required to drawdown atmospheric CO2 to the levels observed in ice cores.  相似文献   

7.
The Alaknanda and Bhagirathi Rivers originate in the mountainous regions of the Himalayas (Garhwal) and result in high sediment yields causing flood hazards downstream of the Ganga River and high sediment flux to the Bay of Bengal. The rivers are perennial, since runoff in these rivers is controlled by both precipitation and glacial melt. In the present study, three locations in the upper reaches of the Ganga River were monitored for 1 yr (daily observations of, more than >1000 samples) for suspended sediment concentrations. In addition, more than one hundred samples were collected from various locations of the Alaknanda and Bhagirathi Rivers at different periods to observe spatial and temporal variations in river suspensions. Further, multi-annual data (up to 40 yrs) of water flow and sediment concentrations were used for inferring the variations in water flow and sediment loads on longer time scales. In most previous studies of Himalayan Rivers, there has been a general lack of long term water flow and sediment load data. In the present study, we carried out high frequency sampling, considered long term discharge data and based on these information, discussed the temporal and spatial variations in water discharge and sediment loads in the rivers in the Himalayan region. The results show that, >75% of annual sediment loads are transported during the monsoon season (June through September). The annual physical weathering rates in the Alaknanda and Bhagirathi River basins at Devprayag are estimated to be 863 tons km−2 yr−1 (3.25 mm yr−1) and 907 tons km−2 yr−1 (3.42 mm yr−1) respectively, which are far in excess of the global average of 156 tons km−2 yr−1 (0.58 mm yr−1).  相似文献   

8.
In this study we evaluate the dynamics of the biophile element phosphorus (P) in the catchment and proglacial areas of the Rhône and Oberaar glaciers (central Switzerland). We analysed erosion and dissolution rates of P-containing minerals in the subglacial environment by sampling water and suspended sediment in glacier outlets during three ablation and two accumulation seasons. We also quantified biogeochemical weathering rates of detrital P in proglacial sedimentary deposits using two chronosequences of samples of fresh, suspended, material obtained from the Oberaar and Rhône water outlets, Little-Ice-Age (LIA) moraines and Younger Dryas (YD) tills in each catchment. Subglacial P weathering is mainly a physical process and detrital P represents more than 99% of the precipitation-corrected total P denudation flux (234 and 540 kg km−2 yr−1 for the Rhône and Oberaar catchments, respectively). The calculated detrital P flux rates are three to almost five times higher than the world average flux. The precipitation-corrected soluble reactive P (SRP) flux corresponds to 1.88-1.99 kg km−2 yr−1 (Rhône) and 2.12-2.44 kg km−2 yr−1 (Oberaar), respectively. These fluxes are comparable to those of tropical rivers draining transport-limited, tectonically inactive weathering areas.In order to evaluate the efficiency of detrital P weathering in the Rhône and Oberaar proglacial areas, we systematically graded apatite grains extracted from the chronosequence in each catchment relative to weathering-induced changes in their surface morphologies (grades 1-4). Fresh apatite grains are heavily indented and dissolution rounded (grade 1). LIA grains from two 0-10 cm deep moraine samples show extensive dissolution etching, similar to surface grains from the YD profile (mean grades 2.7, 3.5 and 3.5, respectively). In these proglacial deposits, the weathering front deepens progressively as a function of time due to biocorrosion in the evolving acidic pedosphere, with mechanical indentations on grains acting as sites of preferential dissolution. We also measured iron-bound, organic and detrital P concentrations in the chronosequence and show that organic and iron-bound P has almost completely replaced detrital P in the top layers of the YD profiles. Detrital P weathering rates are calculated as 310 and 280 kg km−2 yr−1 for LIA moraines and 10 kg km−2 yr−1 for YD tills. During the first 300 years of glacial sediment exposure P dissolution rates are shown to be approximately 70 times higher than the mean global dissolved P flux from ice-free continents. After 11.6 kyr the flux is 2.5 times the global mean. These data strengthen the argument for substantial changes in the global dissolved P flux on glacial-interglacial timescales. A crude extrapolation from the data described here suggests that the global dissolved P flux may increase by 40-45% during the first few hundred years of a deglaciation phase.  相似文献   

9.
Submarine mud volcanism is an important pathway for transfer of deep-sourced fluids enriched in hydrocarbons and other elements into the ocean. Numerous mud volcanoes (MVs) have been discovered along oceanic plate margins, and integrated elemental fluxes are potentially significant for oceanic chemical budgets. Here, we present the first detailed study of the spatial variation in fluid and chemical fluxes at the Carlos Ribeiro MV in the Gulf of Cadiz. To this end, we combine analyses of the chemical composition of pore fluids with a 1-D transport-reaction model to quantify fluid fluxes, and fluxes of boron, lithium and methane, across the sediment-seawater interface. The pore fluids are significantly depleted in chloride, but enriched in lithium, boron and hydrocarbons, relative to seawater. Pore water profiles of sulphate, hydrogen sulphide and total alkalinity indicate that anaerobic oxidation of methane occurs at 34-180 cm depth below seafloor. Clay mineral dehydration, and in particular the transformation of smectite to illite, produces pore fluids that are depleted in chloride and potassium. Profiles of boron, lithium and potassium are closely related, which suggests that lithium and boron are released from the sediments during this transformation. Pore fluids are expelled into the water column by advection; fluid flow velocities are 4 cm yr−1 at the apex of the MV but they rapidly decrease to 0.4 cm yr−1 at the periphery. The associated fluxes of boron, lithium and methane vary between 7-301, 0.5-6 and 0-806 mmol m−2 yr−1, respectively. We demonstrate that fluxes of Li and B due to mud volcanism may be important on a global scale, however, release of methane into the overlying water column is suppressed by microbial methanotrophy.  相似文献   

10.
Cosmogenic nuclide concentrations measured on abandoned fan surfaces along the Mojave section of the San Andreas Fault suggest that sediment is generated, transported, and removed from the fans on the order of 30-40 kyr. We measured in situ produced cosmogenic 10Be, and in some cases 26Al, in boulders (n = 15), surface sediment (n = 15), and one depth profile (n = 9). Nuclide concentrations in surface sediments and boulders underestimate fan ages, suggesting that 10Be accumulation is largely controlled by the geomorphic processes that operate on the surfaces of the fans and not by their ages.Field observations, grain-size distribution, and cosmogenic nuclide data suggest that over time, boulders weather into grus and the bar sediments diffuse into the adjacent swales. As fans grow older the relief between bars and swales decreases, the sediment transport rate from bars to swales decreases, and the surface processes that erode the fan become uniform over the entire fan surface. The nuclide data therefore suggest that, over time, the difference in 10Be concentration between bars and swales increases to a maximum until the topographic relief between bars and swales is minimized, resulting in a common surface lowering rate and common 10Be concentrations across the fan. During this phase, the entire fan is lowered homogeneously at a rate of 10-15 mm kyr−1.  相似文献   

11.
Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF.190 t yr−1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr−1) and the Schussen (50 t TDBr yr−1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr−1. In comparison, only 40 t TDBr yr−1 was deposited to the lake’s catchment by precipitation, and thus ∼80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (∼12 t yr−1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from the catchment, which is supported by Ti, Zr and Br/Corg data. In the lake bromine was irreversibly lost to the sediments, with best flux estimates based on mass-balance and sediment trap data of +50-90 μg Br m−2 d−1. Overall, it appears that bromine is not simply a cyclic salt in the case of Lake Constance, with a clear geological component and dynamic lacustrine biogeochemistry.  相似文献   

12.
Lake Constance is one of Europe’s largest oligotrophic lakes and provides a water source for more than 4.5 million people in Germany and Switzerland. We present here a 12 month study on iodine concentrations, speciation and fluxes to and from the lake to gain a quantitative understanding of the limnic iodine cycle. Monthly water samples were obtained from all major tributaries (14) and the outflow to construct a mass-balance model. Sediment traps were also deployed in the lake for two years at two different stations. Total soluble iodine (TSI) in aqueous samples were analysed by ICP-MS and speciation (iodide, iodate and soluble organically bound iodine, SOI) by ion chromatography-ICP-MS. Iodine concentrations in the Alpine tributaries (1-2 μg l−1) decreased over the summer months due to increasing proportions of snow and glacial melt water from the Alps, while iodine levels in the lowland rivers (∼2-10 μg l−1) increased over the summer. Deposition of TSI to the catchment (16,340 kg I yr−1) was similar to the TSI out-flux by rivers (16,000 kg I yr−1). By also including the particulate riverine iodine flux out of the catchment (∼12,350 kg I yr−1) it is shown that the catchment is a net source of iodine, with the highest particulate fluxes coming from the Alpine rivers. The total TSI flux to the lake was 16,770 kg I yr−1, the largest proportion coming from the Alpenrhein (43%), followed by the Schussen (8%) and Bregenzer Ach (7.7%). Overall the mass-balance for TSI in the lake was negative, with more iodine flowing out of the lake than in (−2050 kg I yr−1; 12% of TSI in-flux). To maintain mass-balance, 8.8 μg I m−2 d−1 from the Obersee and 23 μg I m−2 d−1 from the Untersee must be released from the sediments into the water column. Thus, in comparison with the total iodine flux to the sediments measured by the sediment traps (4762-8075 kg I yr−1), up to 39% of the deposited iodine may be mobilised back into the lake. SOI was the dominant iodine fraction entering the lake, with a total flux of 10,290 kg I yr−1 (64% of TSI input), followed by iodate (3120 kg I yr−1) and iodide (2760 kg I yr−1). Net formation of SOI from iodide and iodate was also noted within the lake, with an estimated production of 6560 kg I yr−1, suggesting a strong role for biology in iodine cycling. In conclusion, organically bound iodine was the dominant iodine species in aqueous and solid phases in Lake Constance, despite low DOC concentrations (<2 mg l−1), and thus is expected to play an important role in iodine cycling in most freshwater environments.  相似文献   

13.
Groundwaters were collected around the Spence porphyry copper deposit, Atacama Desert, northern Chile, to study water-porphyry copper ore bodies interaction and test hypotheses regarding transport of metals through thick overburden leading to the formation of soil geochemical anomalies. The deposit contains 400 Mt of 1% Cu and is completely buried by piedmont gravels of Miocene age. Groundwaters were recovered from the eastern up hydraulic gradient (upflow) margin of the Spence deposit, from within the deposit, and for two kilometers down flow from the deposit. Water table depths decrease from 90 m at the upflow margin to 30 m 1.5 km down flow. Groundwaters at the Spence deposit are compositionally variable with those upflow of the deposit characterized by relatively low salinities (900-7000 mg/L) and Na+-SO42−-type compositions. These waters have compositions and stable isotope values similar to regional groundwaters recovered elsewhere in the Atacama Desert of Northern Chile. In contrast, groundwaters recovered within and down flow of the deposit range in salinity from 10,000 to 55,000 mg/L (one groundwater at 145,000 mg/L) and are dominantly Na+-Cl-type waters. Dissolved sulfate values are, however, elevated compared to upflow waters, and δ34SCDT decreases into the deposit (from >4‰ to 2‰), consistent with increasing influence of sulfur derived from oxidation of sulfide minerals within the deposit. The increase in salinity and conservative tracers (Cl, Br, Li+, and Na+) and the relationship between oxygen and hydrogen isotopes suggests that in addition to water-rock reactions within the deposit, most of the compositional variation can be explained by groundwater mixing (with perhaps a minor role for evaporation). A groundwater-mixing scenario implies a deeper, more saline groundwater source mixing with the less saline regional groundwater-flow system. Flow of deeper, more saline groundwater along pre-existing structures has important implications for geochemical exploration and metal-transport models.  相似文献   

14.
The paleolimnology of two lakes which were isolated as a result of the crustal uplift during the late Holocene along the Soya Coast, Lützow-Holm Bay, East Antarctica were studied. The focus was on temporal variations in the biogeochemical composition of sediment cores recovered from Lake Skallen at Skallen and Lake Oyako at Skarvsnes. Both sets of lake sediments record environmental changes associated with a transition from marine to lacustrine settings, as indicated by analyses of C and N contents, nitrogen isotopic compositions (δ15N), and major element concentrations. Changes in the dominant primary producers during the marine–lacustrine transition (marine diatom to cyanobacteria) at L. Skallen was clearly revealed by biogenic opal-A, diatom assemblages, and molecular signature from denaturing gradient gel electrophoresis (DGGE) with 16S ribosomal RNA (rRNA) gene analysis. Radiocarbon dating of acid-insoluble organic C suggested that the environmental transition from marine to fresh water occurred at 2940 ± 100 cal yr BP at L. Skallen and 1060 ± 90 cal yr BP at L. Oyako. Based on these data, a mean crustal uplift rate of 3.2 mm yr−1 is inferred for the history of marine–lacustrine transition via brackish conditions. The geological setting causing glacio-isostatic uplift was the primary factor in controlling the transition event in sedimentary and biological facies.  相似文献   

15.
Numerous studies of weathering fluxes have been carried out on major world rivers during the last decade, to estimate CO2 consumption rates, landscape evolution and global erosion rates. For obvious logistical reasons, most of these studies were based on large scale investigations carried out on short timescales. By comparison, much less effort has been devoted to long term monitoring, as a means to verify the temporal variability of the average characteristics, their trends, and the representativeness of short-term investigations. Here we report the results of a three-year survey (November 2000 to December 2003) of the major and trace element composition of dissolved and suspended matter in the lower Rhone River (France), the largest river of the Mediterranean area. Subsurface water samples were collected in Arles, about 48 km upstream of the estuary, twice a month routinely, and at higher frequency during flood events.During each flood event, the suspended particulate matter (SPM) show the usual trend of clockwise hysteresis with higher SPM concentrations on the rising limb of the flood than at the same discharge on the falling limb. We show that the annual average SPM flux of the Rhone River to the Mediterranean Sea (7.3 ± 0.6 × 106 tons yr−1) was largely controlled by the flood events (83% of the solid discharge occurred in less than 12% of the time), and that the precision on the total output flux depends strongly on the precise monitoring of SPM variations during the floods.The chemical composition of water and SPM are characterized by the predominance of Ca2+ due to the abundance of carbonate rocks in the Rhone watershed. Chemical budgets have been calculated to derive the contributions of atmospheric deposition, carbonate, silicate and evaporite weathering, and anthropogenic inputs. The chemical weathering rate of carbonates is estimated to be 89 ± 5 t km−2 yr−1 compared to 14.4 ± 3 t km−2 yr−1 from silicates. By contrast, the physical erosion rate of silicates is about 51 t km−2 yr−1 against 19 t km−2 yr−1 for carbonates.The steady-state model of Gaillardet et al. (1995) has been applied to the chemical composition of dissolved and solid products. The results show that the Rhone River currently exports much less material than produced at steady-state by weathering in its watershed. The sediment flux inferred from the steady-state calculation (21-56 × 106 t yr−1) is on the same order as that estimated in literature for the 19th and the beginning of the 20th centuries. This imbalance may suggest that the Rhone is under a transient erosion regime following climate change (i.e. significant decrease of the flooding frequency since the beginning of the 19th century). On the other hand, the imbalance may also be due to the trapping of alluvion by the numerous dams on the river and its tributaries.Our data corroborate with previous studies that suggest a strong coupling between chemical and physical erosion fluxes, during the hydrological seasonal cycle of the Rhone River. The correlation between physical and chemical transport rates is, however, clearly different from that reported for global annual averages in large world rivers.  相似文献   

16.
Silicate weathering of soil-mantled slopes in an active Alpine landscape   总被引:1,自引:0,他引:1  
Despite being located on high, steep, actively uplifting, and formerly glaciated slopes of the Swiss Central Alps, soils in the upper Rhone Valley are depleted by up to 50% in cations relative to their parent bedrock. This depletion was determined by a mass loss balance based on Zr as a refractory element. Both Holocene weathering rates and physical erosion rates of these slopes are unexpectedly low, as measured by cosmogenic 10Be-derived denudation rates. Chemical depletion fractions, CDF, range from 0.12 to 0.48, while the average soil chemical weathering rate is 33 ± 15 t km−2 yr−1. Both the cosmogenic nuclide-derived denudation rates and model calculations suggest that these soils have reached a weathering steady-state since deglaciation 15 ky ago. The weathering signal varies with elevation and hillslope morphology. In addition, the chemical weathering rates decrease with elevation indicating that temperature may be a dominant controlling factor on weathering in these high Alpine basins. Model calculations suggest that chemical weathering rates are limited by reaction kinetics and not the supply rate of fresh material. We compare hillslope and catchment-wide weathering fluxes with modern stream cation flux, and show that high relief, bare-rock slopes exhibit much lower chemical weathering rates despite higher physical erosion rates. The low weathering fluxes from rocky, rapidly eroding slopes allow for the broader implication that mountain building, while elevating overall denudation rates, may not cause increased chemical weathering rates on hillslopes. In order for this sediment to be weathered, intermediate storage, for instance in floodplains, is required.  相似文献   

17.
Coupled records of Sr/Ca and oxygen isotope ratios (δ18O) of coral skeletons have been used to produce quantitative estimates of paleo-sea surface temperature (SST) and δ18O of surface seawater that can in some cases be converted to sea surface salinity (SSS). Two fossil corals from Kikai Island in the subtropical northwestern Pacific, a location affected by East Asian summer and winter monsoons, were analyzed to investigate differences between mid-Holocene and present-day SST and SSS. At 6180 cal yr BP, SSTs were roughly the same as today, both in summer and winter; δ18Oseawater and SSS values were higher both in summer (+ 0.5‰, +1.1 psu) and in winter (+ 0.2‰, + 0.6 psu) than modern values. At 7010 cal yr BP, SSTs were slightly cooler both in summer and winter (−0.8 and −0.6 °C), whereas δ18Oseawater and SSS had higher values in summer (+ 0.3‰, + 0.6 psu) and in winter (+ 0.8‰, + 1.9 psu) than present-day values. These results are consistent with other marine records for the mid-Holocene of the low and midlatitudes in the northwestern Pacific. Such regional conditions indicate that the East Asian summer and winter monsoons were more intense in the mid-Holocene, which was likely a function of the mid-Holocene insolation regime.  相似文献   

18.
Data from 291 small lakes and mires in eastern North America provide information on the natural variability of rates of sediment accumulation in these environments over the last 18,000 yr. Accumulation rates were calculated by linear interpolation between radiocarbon and biostratigraphic dates from sediment cores taken for pollen analysis. Within the data set, the rates were lognormally distributed with a mean accumulation rate of 91 cm/103 yr, and a range from less than 1 to over 3500 cm/103 yr. The accumulation rate data were divided into five subsets that were temporally or spatially distinct and therefore represent different geomorphic and climatic conditions at the time of deposition. Sediments deposited in basins north of 50°N, south of 40°N, and before 10,000 yr B.P. accumulated at much slower rates than sediments accumulating in midlatitude basins (between 40° and 50°N) between 10,000 and 330 yr B.P. Sediment accumulation over the last 330 yr has, on average, been at rates four to five times faster than any time previously. Inorganic sediments that could be radiocarbon-dated have accumulated at significantly lower rates than organic sediments, reflecting differences in depositional processes. For midlatitude basins during the Holocene, the most likely rate of continuous sediment accumulation within our data set is 65 cm/103 yr. Rates below 10 cm/103 yr are likely to be associated with nonconstant processes of sediment accumulation.  相似文献   

19.
Bathymetric and sub-bottom acoustic data were collected in Laguna San Rafael, Chile, to determine sediment yields during the Little Ice Age advance and subsequent retreat of San Rafael Glacier. The sediment volumes and subaqueous landforms imaged are used to interpret the proglacial dynamics and estimate erosion rates from a temperate tidewater glacier over a complete advance-retreat cycle. Sediment yields from San Rafael Glacier averaged 2.7 × 107 m3/a since the end of the Little Ice Age, circa AD 1898, corresponding to average basin-wide erosion rates of 23 ± 9 mm/a; the highest erosion rates, 68 ± 23 mm/a, occurred at the start of the retreat phase, and have since been steadily decreasing. Erosion rates were much lower during glacial advance, averaging at most 7 mm/a, than during retreat. Such large glacial sediment yields over two centuries of advance and retreat suggest that the contribution of sediments stored subglacially cannot account for much of the sediment being delivered to the terminus today. The detailed sub-bottom information of a proglacial lagoon yields important clues as to the timing of erosion, deposition and transfer of glacigenic sediments from orogens to the continental shelves, and the influence of glacier dynamics on this process.  相似文献   

20.
Concentrations of major ions, Sr and 87Sr/86Sr have been measured in the Gomti, the Son and the Yamuna, tributaries of the Ganga draining its peninsular and plain sub-basins to determine their contribution to the water chemistry of the Ganga and silicate and carbonate erosion of the Ganga basin. The results show high concentrations of Na and Sr in the Gomti, the Yamuna and the Ganga (at Varanasi) with much of the Na in excess of Cl. The use of this ‘excess Na’ (Na∗ = Nariv − Clriv) a common index of silicate weathering yield values of ∼18 tons km−2 yr−1 for silicate erosion rate (SER) in the Gomti and the Yamuna basins. There are however, indications that part of this Na∗ can be from saline/alkaline soils abundant in their basins, raising questions about its use as a proxy to determine SER of the Ganga plain. Independent estimation of SER based on dissolved Si as a proxy give an average value of ∼5 tons km−2 yr−1 for the peninsular and the plain drainages, several times lower than that derived using Na∗. The major source of uncertainty in this estimate is the potential removal of Si from rivers by biological and chemical processes. The Si based SER and CER (carbonate erosion rate) are also much lower than that in the Himalayan sub-basin of the Ganga. The lower relief, runoff and physical erosion in the peninsular and the plain basins relative to the Himalayan sub-basin and calcite precipitation in them all could be contributing to their lower erosion rates.Budget calculations show that the Yamuna, the Son and Gomti together account for ∼75% Na, 41% Mg and ∼53% Sr and 87Sr of their supply to the Ganga from its major tributaries, with the Yamuna dominating the contribution. The results highlight the important role of the plain and peninsular sub-basins in determining the solute and Sr isotope budgets of the Ganga. The study also shows that the anthropogenic contribution accounts for ?10% of the major ion fluxes of the Ganga at Rajmahal during high river stages (October). The impact of both saline/alkaline soils and anthropogenic sources on the major ion abundances of the Ganga is minimum during its peak flow and therefore the SER and CO2 consumption rates of the river is best determined during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号