首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study provides estimates of greenhouse gas emissions from the major anthropogenic sources for 142 countries. The data compilation is comprehensive in approach, including emissions from CO, CH4, and N2O, and ten halocarbons, in addition to CO2. The sources include emissions from fossil fuel production and use, cement production, halocarbons, landfills, land use changes, biomass burning, rice and livestock production and fertilizer consumption. The approach used to derive these estimates corresponds closely with the simple methodologies proposed by the Greenhouse Gas Emissions Task Force of the Intergovernmental Panel on Climate Change. The inventory includes a new estimate of greenhouse gas emissions from fossil fuel combustion based principally on data from the International Energy Agency. The research methodologies for estimating emissions from all sources is briefly described and compared with other recent studies in the literature.  相似文献   

2.
CO2排放清单是推动城市低碳发展的重要基础工作.文中采用自下而上和自上而下相结合的方法测算了2017年北京市CO2排放清单.自下而上方面,基于近13000座锅炉数据核算了CO2排放量.自上而下方面,利用改编后的北京市分行业分品种能源消费表对自下而上核算的分行业能源消费数据进行校验,从宏观上控制核算数据的系统误差.研究发...  相似文献   

3.
The purpose of this paper is to describe global urban greenhouse gas emissions by region and sector, examine the distribution of emissions through the urban-to-rural gradient, and identify covariates of emission levels for our baseline year, 2000. We use multiple existing spatial databases to identify urban extent, greenhouse gas emissions (CO2, N2O, CH4 and SF6) and covariates of emissions in a “top-down” analysis. The results indicate that urban activities are significant sources of total greenhouse gas emissions (36.8 and 48.6 % of total). The urban energy sector accounts for between 41.5 and 66.3 % of total energy emissions. Significant differences exist in the urban share of greenhouse gas emissions between developed and developing countries as well as among source sectors for geographic regions. The 50 largest urban emitting areas account for 38.8 % of all urban greenhouse gas emissions. We find that greenhouse gas emissions are significantly associated with population size, density, growth rates, and per capita income. Finally, comparison of our results to “bottom-up” estimates suggest that this research’s data and techniques are best used at the regional and global scales.  相似文献   

4.
The dimensionless bottom-up and top-down gradient functions in the convective boundary layer (CBL) are evaluated utilizing long-term well-calibrated carbon dioxide mixing ratio and flux measurements from multiple levels of a 447-m tall tower over a forested area in northern Wisconsin, USA. The estimated bottom-up and top-down functions are qualitatively consistent with those from large-eddy simulation (LES) results and theoretical expectations. Newly fitted gradient functions are proposed based on observations for this forested site. The integrated bottom-up function over the lowest 4% of the CBL depth estimated from the tower data is about five times larger than that from LES results for a ‘with-canopy’ case, and is smaller than that from LES results for a ‘no-canopy’ case by a factor of 0.7. We discuss the uncertainty in the evaluated gradient functions due to stability, wind direction, and uncertainty in the entrainment flux and show that while all of these have a significant impact on the gradient functions, none can explain the differences between the modelled and observed functions. The effects of canopy features and atmospheric stability may need to be considered in the gradient function relations.  相似文献   

5.
Results of research and practical experience confirm that stabilization of GHG concentrations will require a tremendous effort. One of the sectors identified as a significant source of methane (CH4) emissions are solid waste disposal sites (SWDS). Landfills are the key source of CH4 emissions in the emissions inventory of Slovakia, and the actual emission factors are estimated with a high uncertainty level. The calculation of emission uncertainty of the landfills using the more sophisticated Tier 2 Monte Carlo method is evaluated in this article. The software package that works with the probabilistic distributions and their combination was developed with this purpose in mind. The results, sensitivity analysis, and computational methodology of the CH4 emissions from SWDS are presented in this paper.  相似文献   

6.
A laboratory study of scalar diffusion in the convective boundary layer has found results that are consistent with a 1999 large-eddy simulation (LES) study by Jonker, Duynkerke and Cuijpers. For bottom-up and top-down scalars (introduced as ‘infinite’ area sources of passive tracer at the surface and inversion, respectively) the dominant length scale was found to be much larger than the length scale for density fluctuations, the latter being equal to the boundary-layer depth h. The variance of the normalized passive scalar grew continuously with time and its magnitude was about 3–5 times larger for the top-down case than for the bottom-up case. The vertical profiles of the normalized passive scalar variance were found to be approximately constant through the convective boundary layer (CBL) with a value of about 3–8c*2 for bottom-up and 10–50c*2 for top-down diffusion. Finally, there was some evidence of a minimum in the variance and dominant length scale for scalar flux ratios (top-down to bottom-up flux) close to −0.5. All these convection tank results confirm the LES results and support the hypothesis that there is a distinct difference in behaviour between the dynamic and passive variables in the CBL.  相似文献   

7.
Abstract

The Kyoto Protocol has an ambitious reporting and review system to assess Parties' compliance with their emission commitments. It is based on a ‘bottom-up’ approach; that is, each Party is required to submit detailed inventories of emissions and removals. This requires considerable resources and may still not detect all important cases of non-compliance. We consider the case for introducing ‘top-down’ methods; that is, independent inverse modelling methods that calculate probable emissions using measured concentrations of gases in the atmosphere and meteorological models. We argue that the top-down methods are at present too inaccurate, too cumbersome, and politically too problematic to serve as independent alternatives to the reported emission inventories for assessing compliance, although they could be useful in monitoring the global success of the protocol. We conclude that these top-down approaches may supplement the traditional emission inventories, in particular those dealing with fluorinated gases, thereby providing input for improving the emission inventory methods.  相似文献   

8.
We investigate the composition of 63 C2-C10 nonmethane hydrocarbons (NMHCs), methane (CH4) and carbon monoxide (CO), in Jeddah, Mecca, and Madina (Saudi Arabia), in Lahore, (Pakistan), and in Singapore. We established a database with which to compare and contrast NMHCs in regions where ambient levels and emissions are poorly characterized, but where conditions are favorable to the formation of tropospheric ozone, and where measurements are essential for improving emission inventories and modeling. This dataset will also serve as a base for further analysis of air pollution in Western Saudi Arabia including, but not limited to, the estimation of urban emissions and long range pollution transport from these regions. The measured species showed enhanced levels in all Saudi Arabian cities compared to the local background but were generally much lower than in Lahore. In Madina, vehicle exhaust was the dominant NMHC source, as indicated by enhanced levels of combustion products and by the good correlation between NMHCs and CO, while in Jeddah and Mecca a combination of sources needs to be considered. Very high NMHC levels were measured in Lahore, and elevated levels of CH4 in Lahore were attributed to natural gas. When we compared our results with 2010 emissions from the MACCity global inventory, we found discrepancies in the relative contribution of NMHCs between the measurements and the inventory. In all cities, alkenes (especially ethene and propene) dominated the hydroxyl radical (OH) reactivity (k OH) because of their great abundance and their relatively fast reaction rates with OH.  相似文献   

9.
M. Gusti  M. Jonas 《Climatic change》2010,103(1-2):159-174
Our research addresses the need to close the gap between bottom-up and top-down accounting of net atmospheric carbon dioxide (CO2) emissions. Russia is sufficiently large to be resolved in a bottom-up/top-down accounting exercise, as well as being a signatory state of the Kyoto Protocol. We resolve Russia’s atmospheric CO2 balance (1988–1992) in terms of four major land-use/cover units and eight bioclimatic zones. On the basis of our results we conclude that the Intergovernmental Panel on Climate Change (IPCC) must revise its carbon balance for northern Asia. We find a less optimistic, although more realistic, bottom-up versus top-down match for northern Asia than the IPCC authors. Nonetheless, in spite of the larger uncertainties involved, our research shows that (1) there is indeed an added value in linking bottom-up and top-down carbon accounting because our dual-constrained regional carbon balance is incomparably more rigorous; and that (2) the need persists for more atmospheric measurements, including atmospheric inversion experiments, over Russia.  相似文献   

10.
Emissions may affect climate indirectly through chemical interactions in the atmosphere, but quantifications of such effects are difficult and uncertain due to incomplete knowledge and inadequate methods. A preliminary assessment of the climatic impact of changes in tropospheric O3 and CH4 in response to various emissions is given. For a 10% increase in the CH4 emissions the relative increase in concentration has been estimated to be 37% larger. The radiative forcing from enhanced levels of tropospheric O3 is estimated to 37% of the forcing from changes in CH4. Inclusion of indirect effects approximately doubles the climatic impact of CH4 emissions. Emissions of NOx increase tropospheric O3, while the levels of CH4 are reduced. For emissions of NOx from aircraft, the positive effects via O3 changes are significantly larger than the negative through changes in CH4. For NOx emitted from surface sources, the effects through changes in O3 and CH4 are estimated to be of similar magnitude and large uncertainty is connected to the sign of the net effect. Emissions of CO have positive indirect effects on climate through enhanced levels of tropospheric o3 and increased lifetime of CH4. These results form the basis for estimates of global warming potentials for sustained step increases in emissions.  相似文献   

11.
Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions   总被引:2,自引:1,他引:2  
This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion.The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed.  相似文献   

12.
甲烷作为油气生产中的主要气态污染物和增温潜势较强的一类温室气体,其逃逸排放检测与核算是中国油气行业温室气体控制与减排过程中的首要问题。通过比较国内外油气行业逃逸甲烷排放核算方法,以及总结当前国内外油气田现场开展的甲烷排放检测研究,对油气行业企业级温室气体清单编制提出了建议。在甲烷逃逸排放核算方面,由于生产过程、工艺等出现的变化,建议加快建立符合我国油气生产实际情况的排放因子,纳入放空气燃烧的周期变化、绿色完井措施使用、陆上/海上油气生产等内容,鼓励油气生产企业通过设备组件统计、现场实测等方式进行排放因子更新。针对逃逸甲烷现场检测数据不足,影响核算结果对比的现状,在开展油气生产过程现场检测时,建议自下而上与自上而下检测方法相结合,保证检测结果的可验证性、可重复性,并谨慎看待针对部分油气生产区块的检测结果进行大尺度区域甲烷逃逸排放量的推算结果。  相似文献   

13.
Fisheries and aquaculture are important sources of food for hundreds of millions of people around the world. World fish production is projected to increase by 15% in the next 10 years, reaching around 200 million tonnes per year. The main driver of this increase will be based on fish farming management in developing countries. In Brazil, fish farming is increasing due to the climate conditions and large supply of water resources, with the production system based on Nile tilapia (Oreochromis niloticus) farming in reservoirs. Inland waters like reservoirs are a natural source of methane (CH4) to the atmosphere. However, knowledge of the impact from intensive fish production in net cages on CH4 fluxes is not well known. This paper presents in situ measurements of CH4 fluxes and dissolved CH4 (DM) in the Furnas Hydroelectric Reservoir in order to evaluate the impact of fish farming on methane emissions. Measurements were taken in a control area without fish production and three areas with fish farming. The overall mean of diffusive methane flux (DMF) (5.9?±?4.5 mg CH4 m?2 day?1) was significantly lower when compared to the overall mean of bubble methane flux (BMF) (552.9?±?1003.9 mg CH4 m?2 day?1). The DMF and DM were significantly higher in the two areas with fish farming, whereas the BMF was not significantly different. The DMF and DM were correlated to depth and chlorophyll-a. However, the low production of BMF did not allow the comparison with the limnological parameters measured. This case study shows that CH4 emissions are influenced more by reservoir characteristics than fish production. Further investigation is necessary to assess the impact of fish farming on the greenhouse gas emissions.  相似文献   

14.
Developed regions of the world represent a major atmospheric methane(CH_4) source, but these regional emissions remain poorly constrained. The Yangtze River Delta(YRD) region of China is densely populated(about 16% of China's total population) and consists of large anthropogenic and natural CH_4 sources. Here, atmospheric CH_4 concentrations measured at a 70-m tall tower in the YRD are combined with a scale factor Bayesian inverse(SFBI) modeling approach to constrain seasonal variations in CH_4 emissions. Results indicate that in 2018 agricultural soils(AGS, rice production) were the main driver of seasonal variability in atmospheric CH_4 concentration. There was an underestimation of emissions from AGS in the a priori inventories(EDGAR—Emissions Database for Global Atmospheric Research v432 or v50), especially during the growing seasons. Posteriori CH_4 emissions from AGS accounted for 39%(4.58 Tg, EDGAR v432) to 47%(5.21 Tg, EDGAR v50) of the total CH_4 emissions. The posteriori natural emissions(including wetlands and water bodies) were1.21 Tg and 1.06 Tg, accounting for 10.1%(EDGAR v432) and 9.5%(EDGAR v50) of total emissions in the YRD in2018. Results show that the dominant factor for seasonal variations in atmospheric concentration in the YRD was AGS,followed by natural sources. In summer, AGS contributed 42%(EDGAR v432) to 64%(EDGAR v50) of the CH_4 concentration enhancement while natural sources only contributed about 10%(EDGAR v50) to 15%(EDGAR v432). In addition, the newer version of the EDGAR product(EDGAR v50) provided more reasonable seasonal distribution of CH_4 emissions from rice cultivation than the old version(EDGAR v432).  相似文献   

15.
A global three-dimensional chemical transport model has been used to identify and evaluate possible candidates for the `missing' surface source required to balance the atmospheric budget of methyl bromide. Both natural and anthropogenic emissions of methyl bromide are `coloured' in the model, thus allowing the global CH3Br distribution to be broken-down into its source components. These coloured CH3Br tracers are then combined in various ways to create one base-line emission scenario and five further plausible scenarios. The additional emission scenarios are specifically designed to test whether the geographical distribution and seasonal cycles of additional vegetation and/or increased biomass burning emissions are consistent with atmospheric observations of methyl bromide mixing ratios. Due to an imbalance in our current understanding of the methyl bromide budget, simulated CH3Br mixing ratios from the base-line emission scenario are significantly lower than atmospheric measurements. Both the inclusion of a vegetation source in the tropics and a double strength biomass burning source substantially improve the agreement between model simulations and atmospheric measurements compared with the base-line emission scenario. While measurement data provides useful information on global fluxes and regional CH3Br seasonal cycles, small differences between the simulated seasonal cycles of different emission scenarios makes it difficult to distinguish between the relative likelihoods of model scenarios containing a tropical vegetation source or an increased biomass burning source. Further measurements performed in continental mid-to-high northern latitudes, central-southern Africa and South America would be of particular benefit in future attempts to constrain the location and magnitude of the natural terrestrial sources of methyl bromide.  相似文献   

16.
An improvement of methods for the inventory of greenhouse gas (GHG) emissions is necessary to ensure effective control of commitments to emission reduction. The national inventory reports play an important role, but do not reflect specifics of regional processes of GHG emission and absorption for large-area countries. In this article, a GIS approach for the spatial inventory of GHG emissions in the energy sector, based on IPCC guidelines, official statistics on fuel consumption, and digital maps of the region under investigation, is presented. We include mathematical background for the spatial emission inventory of point, line and area sources, caused by fossil-fuel use for power and heat production, the residential sector, industrial and agricultural sectors, and transport. Methods for the spatial estimation of emissions from stationary and mobile sources, taking into account the specifics of fuel used and technological processes, are described. Using the developed GIS technology, the territorial distribution of GHG emissions, at the level of elementary grid cells 2 km?×?2 km for the territory of Western Ukraine, is obtained. Results of the spatial analysis are presented in the form of a geo-referenced database of emissions, and visualized as layers of digital maps. Uncertainty of inventory results is calculated using the Monte Carlo approach, and the sensitivity analysis results are described. The results achieved demonstrated that the relative uncertainties of emission estimates, for CO2 and for total emissions (in CO2 equivalent), depend largely on uncertainty in the statistical data and on uncertainty in fuels’ calorific values. The uncertainty of total emissions stays almost constant with the change of uncertainty of N2O emission coefficients, and correlates strongly with an improvement in knowledge about CH4 emission processes. The presented approach provides an opportunity to create a spatial cadastre of emissions, and to use this additional knowledge for the analysis and reduction of uncertainty. It enables us to identify territories with the highest emissions, and estimate an influence of uncertainty of the large emission sources on the uncertainty of total emissions. Ascribing emissions to the places where they actually occur helps to improve the inventory process and to reduce the overall uncertainty.  相似文献   

17.
During the last two decades, different scalings for convective boundary layer (CBL) turbulence have been proposed. For the shear-free regime, Deardorff (1970) introduced convective velocity and temperature scales based on the surface potential temperature flux,Q s , the buoyancy parameter, , and the time-dependent boundary-layer depth,h. Wyngaard (1983) has proposed decomposition of turbulence into two components, bottom-up (b) and top-down (t), the former characterized byQ s , the latter, by the potential temperature flux due to entrainment,Q h . Sorbjan (1988) has devised height-dependent velocity and temperature scales for both b- and t-components of turbulence.Incorporating velocity shear, the well known similarity theory of Monin and Obukhov (1954) has been developed for the atmospheric surface layer. Zilitinkevich (1971, 1973) and Betchov and Yaglom (1971) have elaborated this theory with the aid of directional dimensional analysis for a particular case when different statistical moments of turbulence can be alternatively attributed as being of either convective or mechanical origin.In the present paper, we attempt to create a bridge between the two approaches pointed out above. A new scaling is proposed on the basis of, first, decomposition of statistical moments of turbulence into convective (c), mechanical (m) and covariance (c&m) contributions using directional dimensional analysis and, second, decomposition of these contributions into bottom-up and top-down components using height-dependent velocity and temperature scales. In addition to the statistical problem, the scaling suggests a new approach of determination of mean temperature and velocity profiles with the aid of the budget equations for the mean square fluctuations.Notation ATL alternative turbulence layer - CBL convective boundary layer - CML convective and mechanical layer - FCL free convection layer - MTL mechanical turbulence layer  相似文献   

18.
New CH4 emission data from a number of Northern and Southern Hemispheric, tropical and temperate termites, are reported, which indicate that the annual global CH4 source due to termites is probably less than 15 Tg. The major uncertainties in this estimate are identified and found to be substantial. Nevertheless, our results suggest that termites probably account for less than 5% of global CH4 emissions.  相似文献   

19.
In recent studies, proxy XCH4 retrievals from the Japanese Greenhouse gases Observing SATellite (GOSAT) have been used to constrain top-down estimation of CH4 emissions. Still, the resulting interannual variations often show significant discrepancies over some of the most important CH4 source regions, such as China and Tropical South America, by causes yet to be determined. This study compares monthly CH4 flux estimates from two parallel assimilations of GOSAT XCH4 retrievals from 2010 to 2019 based on the same Ensemble Kalman Filter (EnKF) framework but with the global chemistry transport model (GEOS-Chem v12.5) being run at two different spatial resolutions of 4° × 5° (R4, lon × lat) and 2° × 2.5° (R2, lon × lat) to investigate the effects of resolution-related model errors on the derived long-term global and regional CH4 emission trends. We found that the mean annual global methane emission for the 2010s is 573.04 Tg yr –1 for the inversion using the R4 model, which becomes about 4.4 Tg yr –1 less (568.63 Tg yr –1) when a finer R2 model is used, though both are well within the ensemble range of the 22 top-down results (2008–17) included in the current Global Carbon Project (from 550 Tg yr –1 to 594 Tg yr –1). Compared to the R2 model, the inversion based on the R4 tends to overestimate tropical emissions (by 13.3 Tg yr –1), which is accompanied by a general underestimation (by 8.9 Tg yr –1) in the extratropics. Such a dipole reflects differences in tropical–mid-latitude air exchange in relation to the model’s convective and advective schemes at different resolutions. The two inversions show a rather consistent long-term CH4 emission trend at the global scale and over most of the continents, suggesting that the observed rapid increase in atmospheric methane can largely be attributed to the emission growth from North Africa (1.79 Tg yr –2 for R4 and 1.29 Tg yr –2 for R2) and South America Temperate (1.08 Tg yr –2 for R4 and 1.21 Tg yr –2 for R2) during the first half of the 2010s, and from Eurasia Boreal (1.46 Tg yr –2 for R4 and 1.63 Tg yr –2 for R2) and Tropical South America (1.72 Tg yr–2 for R4 and 1.43 Tg yr –2 for R2) over 2015–19. In the meantime, emissions in Europe have shown a consistent decrease over the past decade. However, the growth rates by the two parallel inversions show significant discrepancies over Eurasia Temperate, South America Temperate, and South Africa, which are also the places where recent GOSAT inversions usually disagree with one other.  相似文献   

20.
This paper evaluates convective boundary layer (CBL) budget methods as a tool for estimating regionally averaged sensible and latent heat fluxes for the study region used in OASIS (Observations at Several Interacting Scales). This is an agricultural region of mixed cropping and grazing extending about 100 km west of the town of Wagga Wagga, NSW, Australia.The analysis proceeds in three stages: first, a simpleone-dimensional model of the well-mixed layer (the CBL slab model), forced with measurements of the surface heat and evaporation fluxes, is evaluated by comparing measured and modelled CBL temperature, humidity and depths. A comparison of several entrainment schemes shows that a simple model, where the entrainment kinetic energy is parameterised as a fraction (3) of the surface sensible heat flux, works well if is set to 0.5. Second, the slab model is coupled to a Penman–Monteith model of surface evaporation to predict regional scale evaporation and thence heat fluxes. Finally, the integral CBL budget approach, which is an inverse method using theone-dimensional slab model, is used to infer regional heat and evaporation fluxes from measured time series of CBL temperature and humidity.We find that the simple CBL slab model works reasonably well for predicting CBL depth and very well for CBL temperature, especially if approximate estimates of subsidence velocity and warming due to advection are included. Regional sensible heat fluxes estimated from the integral CBL method match those measured, although the method is very sensitive to measurement errors. Measurement-model differences were larger for short integration times, because the well-mixed assumptions are violated at particular times of the day. The corollary is that `whole-day' (0530–1530 h) estimates are in reasonable agreement with measured values. Integral methods could not be used to infer the regional evaporation flux directly because CBL humidity profiles were complex and often not well mixed until mid-afternoon. We recommend that regional evaporation fluxes be predicted either from a coupled Penman–Monteith – CBL slab model, or inferred as a residual term from estimates of the regionally averaged available energy and sensible heat flux. Furthermore, we show that inferring fluxes via integral methods will always be difficult when the scalar concentrations have either a large surface source and free atmosphere sink (in the case of water vapour and methane), or a large surface sink and upper level source (in the case of CO2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号