首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper provides an introduction to fundamental concepts of mathematical modeling of mass transport in fractured porous heterogeneous rocks. Keeping aside many important factors that can affect mass transport in subsurface, our main concern is the multi-scale character of the rock formation, which is constituted by porous domains dissected by the network of fractures. Taking into account the well-documented fact that porous rocks can be considered as a fractal medium and assuming that sizes of pores vary significantly (i.e. have different characteristic scales), the fractional-order differential equations that model the anomalous diffusive mass transport in such type of domains are derived and justified analytically. Analytical solutions of some particular problems of anomalous diffusion in the fractal media of various geometries are obtained. Extending this approach to more complex situation when diffusion is accompanied by advection, solute transport in a fractured porous medium is modeled by the advection-dispersion equation with fractional time derivative. In the case of confined fractured porous aquifer, accounting for anomalous non-Fickian diffusion in the surrounding rock mass, the adopted approach leads to introduction of an additional fractional time derivative in the equation for solute transport. The closed-form solutions for concentrations in the aquifer and surrounding rocks are obtained for the arbitrary time-dependent source of contamination located in the inlet of the aquifer. Based on these solutions, different regimes of contamination of the aquifers with different physical properties can be readily modeled and analyzed.  相似文献   

2.
A new wave equation is derived for modelling viscoacoustic wave propagation in transversely isotropic media under acoustic transverse isotropy approximation. The formulas expressed by fractional Laplacian operators can well model the constant-Q (i.e. frequency-independent quality factor) attenuation, anisotropic attenuation, decoupled amplitude loss and velocity dispersion behaviours. The proposed viscoacoustic anisotropic equation can keep consistent velocity and attenuation anisotropy effects with that of qP-wave in the constant-Q viscoelastic anisotropic theory. For numerical simulations, the staggered-grid pseudo-spectral method is implemented to solve the velocity–stress formulation of wave equation in the time domain. The constant fractional-order Laplacian approximation method is used to cope with spatial variable-order fractional Laplacians for efficient modelling in heterogeneous velocity and Q media. Simulation results for a homogeneous model show the decoupling of velocity dispersion and amplitude loss effects of the constant-Q equation, and illustrate the influence of anisotropic attenuation on seismic wavefields. The modelling example of a layered model illustrates the accuracy of the constant fractional-order Laplacian approximation method. Finally, the Hess vertical transversely isotropic model is used to validate the applicability of the formulation and algorithm for heterogeneous media.  相似文献   

3.
Taking the anisotropy of velocity and attenuation into account, we investigate the wavefield simulation of viscoacoustic waves in 3D vertical transversely isotropic attenuating media. The viscoacoustic wave equations with the decoupled amplitude attenuation and phase dispersion are derived from the fractional Laplacian operator and using the acoustic approximation. With respect to the spatially variable fractional Laplacian operator in the formulation, we develop an effective algorithm to realize the viscoacoustic wavefield extrapolation by using the arbitrary-order Taylor series expansion. Based on the approximation, the mixed-domain fractional Laplacian operators are decoupled from the wavenumbers and fractional orders. Thus, the viscoacoustic wave propagation can be conveniently implemented by using a generalized pseudospectral method. In addition, we perform the accuracy and efficiency analyses among first-, second- and third-order Taylor series expansion pseudospectral methods with different quality factors. Considering both the accuracy and computational cost, the second-order Taylor series expansion pseudospectral method can generally satisfy the requirements for most attenuating media. Numerical modelling examples not only illustrate that our decoupled viscoacoustic wave equations can effectively describe the attenuating property of the medium, but also demonstrate the accuracy and the high robustness of our proposed schemes.  相似文献   

4.
A macroscopic transport model is developed, following the Taylor shear dispersion analysis procedure, for a 2D laminar shear flow between parallel plates possessing a constant specified concentration. This idealized geometry models flow with contaminant dissolution at pore-scale in a contaminant source zone and flow in a rock fracture with dissolving walls. We upscale a macroscopic transient transport model with effective transport coefficients of mean velocity, macroscopic dispersion, and first-order mass transfer rate. To validate the macroscopic model the mean concentration, covariance, and wall concentration gradient are compared to the results of numerical simulations of the advection–diffusion equation and the Graetz solution. Results indicate that in the presence of local-scale variations and constant concentration boundaries, the upscaled mean velocity and macrodispersion coefficient differ from those of the Taylor–Aris dispersion, and the mass transfer flux described by the first-order mass transfer model is larger than the diffusive mass flux from the constant wall. In addition, the upscaled first-order mass transfer coefficient in the macroscopic model depends only on the plate gap and diffusion coefficient. Therefore, the upscaled first-order mass transfer coefficient is independent of the mean velocity and travel distance, leading to a constant pore-scale Sherwood number of 12. By contrast, the effective Sherwood number determined by the diffusive mass flux is a function of the Peclet number for small Peclet number, and approaches a constant of 10.3 for large Peclet number.  相似文献   

5.
The success of transient storage (TS) modeling for natural streams depends, in part, on the ability to describe the dispersion process accurately. Evidence based on stream tracer data shows that solute transport processes often do not follow the classical second-order dispersion model (e.g., early breakthrough and faster than Fickian travel times were observed). While models based on space-fractional dispersion are a promising alternative, different definitions of fractional derivatives exist in the literature. Unlike integer-order derivatives, fractional derivatives represent convolutions of concentration with long-range spatial correlation and numerical approximations can produce dense matrices. Therefore issues of both accuracy and computational efficiency need to be examined to successfully identify model parameters for natural streams. In this paper, we first compare the performance of several numerical approaches for solving the space-fractional dispersion equation. We examine three different numerical approaches to approximate the space-fractional derivatives including: (a) a fully-implicit scheme based on the shifted Grünwald–Letnikov (GL) approximation (b) a three-point implicit representation based on the GL formula and (c) a three-point implicit scheme based on mass conservation and the Caputo definition of the fractional derivative. We then use an operator-splitting technique to evaluate a TS model based on space-fractional dispersion (the FSTS model) and test the model against analytical solutions and stream tracer data. A sequence acceleration method (Richardson extrapolation) significantly improves the performance of all schemes examined. Results indicate that the fully-implicit GL method with Richardson extrapolation produces the most accurate solutions while the three-point implicit GL scheme has a stringent time-step restriction to produce acceptable solutions. The three-point implicit scheme based on the Caputo derivative produces accurate solutions in a fraction of the time taken by the fully-implicit GL method and represents the best trade-off between accuracy and computational efficiency for practical applications. The scheme is suitable for parameter estimation and is used to successfully describe tracer data in a natural stream.  相似文献   

6.
A two-sided fractional conservation of mass equation is derived by using left and right fractional Mean Value Theorems. This equation extends the one-sided fractional conservation of mass equation of Wheatcraft and Meerschaert. Also, a two-sided fractional advection-dispersion equation is derived. The derivations are based on Caputo fractional derivatives.  相似文献   

7.
 In this paper, a class of spatio-temporal processes with first-order autoregressive temporal structure and functional spatio-temporal interaction is introduced. The spatial second-order regularity is allowed to change over time and is characterized in terms of fractional Sobolev spaces. The associated filtering problem is considered, assuming that observations are defined by spatial linear functionals of the process of interest, being affected by additive noise. Conditions under which a stable solution to this problem is obtained are studied. A functional least-squares linear estimate fusion method is derived to calculate this solution A multiscale finite-dimensional approximation to the problem is obtained from the wavelet-based orthogonal expansions of the time cross-section spatial processes, which allows the numerical inversion of the linear operator involved.  相似文献   

8.
A general constitutive equation for viscoelastic behaviour of rocks and minerals with fractional-order derivative is investigated. This constitutive law is derived based on differential geometry and thermodynamics of rheology, and the fractional order of derivative represents the degree of time delay. Analyzing some laboratory experimental data of high temperature deformation of rocks and minerals such as halite, marble and orthopyroxene, we propose how to determine the orders of fractional derivative for viscoelastic behaviours of rocks and minerals. The order is related to the exponents for the temporal scaling in the relaxation modulus and the stress power-law of strain rate, i.e., the non-Newtonian flow law, and considered as an indicator representing the macroscopic behaviour and microscopic dynamics of rocks.  相似文献   

9.
Forward seismic modelling in the acoustic approximation, for variable velocity but constant density, is dealt with. The wave equation and the boundary conditions are represented by a volume integral equation of the Lippmann-Schwinger (LS) or Fredholm type. A T-matrix (or transition operator) approach from quantum mechanical potential scattering theory is used to derive a family of linear and nonlinear approximations (cluster expansions), as well as an exact numerical solution of the LS equation. For models of 4D anomalies involving small or moderate contrasts, the Born approximation gives identical numerical results as the first-order t-matrix approximation, but the predictions of an exact T-matrix solution can be quite different (depending on spatial extention of the perturbations). For models of fluid-saturated cavities involving large or huge contrasts, the first-order t-matrix approximation is much more accurate than the Born approximation, although it does not lead to significantly more time-consuming computations. If the spatial extention of the perturbations is not too large, it is practical to use the exact T-matrix solution which allows for arbitrary contrasts and includes all the effects of multiple scattering.  相似文献   

10.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   

11.
A simple and accurate cubic approximation to the solution of the Boussinesq equation is given in case of power-law flux boundary condition being imposed at the inlet of an initially dry aquifer. The new approximation overcomes the numerical intensity of the earlier cubic approximation of Telyakovskiy and Allen [Telyakovskiy AS, Allen MB. Polynomial approximate solutions to the Boussinesq equation. Adv Water Resour 2006;29(12):1767–79], while producing comparably accurate results.  相似文献   

12.
The method of moment inversion, based on the approximation of the gravity anomaly by thetruncated series obtained from its multipole expansion, uses, implicitly,a priori information about the anomalous body. The series truncation imposes a regularizing condition on the equipotential surfaces (produced by the anomalous body), allowing the unique determination of some moments and linear combinations of moments that are the coefficients of the basis functions in the multipole expansion series. These moments define a class of equivalent distributions of mass. The equivalence criterion is based on the misfit between the observations and the field produced by the series truncated at a prefixed maximum order for the moments. The estimates of the moments of the equivalent distribution are shown to compose the stationary solution of a system of first-order linear differential equations for which uniqueness and asymptotic stability are guaranteed. Specifically for the series retaining moments up to second order, the implicita priori information introduced requires that the source have finite volume, be sufficiently distant from the measurement plane and that its spatial distribution of mass present three orthogonal planes of symmetry intersecting at the center of mass. Subject to these hypotheses, it is possible to estimate uniquely and simultaneously the total excess of mass, the position of the center of mass and the directions of the three principal axes of the anomalous body.  相似文献   

13.
For certain initial and boundary conditions the Boussinesq equation, a nonlinear partial differential equation describing the flow of water in unconfined aquifers, can be reduced to a boundary value problem for a nonlinear ordinary differential equation. Using Song et al.'s (2007) [7] approach, we show that for zero head initial condition and power-law flux boundary condition at the inlet boundary, the solution in the form of power series can be obtained with Barenblatt's (1990) [2] rescaling procedure applied to the power series solution obtained in Song et al. (2007) [7] for the power-law head boundary condition. Polynomial approximations can then be obtained by taking terms from the power series. Although for a small number of terms the newly obtained approximations may be worse than polynomial approximations obtained by other techniques, any desired accuracy can be achieved by taking more terms from the power series.  相似文献   

14.
The solution to the 2-D time-dependent unsaturated flow equation is numerically approximated by a second-order accurate cell-centered finite-volume discretization on unstructured grids. The approximation method is based on a vertex-centered Least Squares linear reconstruction of the solution gradients at mesh edges.A Taylor series development in time of the water content dependent variable in a finite-difference framework guarantees that the proposed finite volume method is mass conservative. A Picard iterative scheme solves at each time step the resulting non-linear algebraic problem. The performance of the method is assessed on five different test cases and implementing four distinct soil constitutive relationships. The first test case deals with a column infiltration problem. It shows the capability of providing a mass-conservative behavior. The second test case verifies the numerical approximation by comparison with an analytical mixed saturated–unsaturated solution. In this case, the water drains from a fully saturated portion of a 1-D column. The third and fourth test cases illustrate the performance of the approximation scheme on sharp soil heterogeneities on 1-D and 2-D multi-layered infiltration problems. The 2-D case shows the passage of an abrupt infiltration front across a curved interface between two layers. Finally, the fifth test case compares the numerical results with an analytical solution that is developed for a 2-D heterogeneous soil with a source term representing plant roots. This last test case illustrates the formal second-order accuracy of the method in the numerical approximation of the pressure head.  相似文献   

15.
Turbulence theory has demonstrated that the log law is one of the established theoretical results for describing velocity profiles, which is in principle applicable for the near-bed overlap region, being less than about 20% of the flow depth. In comparison, the power law that is often presented in an empirical fashion could apply to larger fraction of the flow domain. However, limited information is available for evaluating the power-law exponent or index. This paper attempts to show that the power law can be derived as a first-order approximation to the log law, and its power-law index is computed as a function of the Reynolds number as well as the relative roughness height. The result obtained also coincides with the fact that the one-sixth power included in the Manning equation is of prevalent acceptance, while higher indexes would be required for flows over very rough boundaries.  相似文献   

16.
The contaminant transport equation is solved in three dimensions using the Eulerian–Lagrangian Localized Adjoint Method (ELLAM). Trilinear and finite volume test functions defined by the characteristics of the governing equation are employed and compared. Integrations are simplified by forward tracking of integration points along the characteristics. The resulting equations are solved using a preconditioned conjugate gradient method. The algorithm is coupled to a block-centered finite difference approximation of the groundwater flow equation similar to that used in the popular MODFLOW code. The ELLAM is tested by comparison with 1D and 3D analytic solutions. The method is then applied with random, spatially correlated hydraulic conductivities in a simulation of a tracer experiment performed on Cape Cod, Massachusetts. The linear test function ELLAM was found to perform better than the finite volume ELLAM. Both ELLAM formulations were found to be robust, computationally efficient and relatively straightforward to implement. When compared to traditional particle tracking and characteristics codes commonly used with MODFLOW, the ELLAM retains the computational advantages of traditional characteristic methods with the added advantage of good mass conservation.  相似文献   

17.
时间域常Q黏声波方程,由于含分数阶时间导数项,数值求解需要大量内存,计算效率低,不利于地震偏移的实施.通过一系列近似,可将该方程简化为介质频散效应和衰减效应解耦的分数阶拉普拉斯算子黏声波方程,数值求解内存需求少,计算效率高.本文采用交错网格有限差分逼近时间导数,改进的伪谱法计算空间导数,PML吸收边界去除边界反射,对该方程进行数值离散和地震正演模拟,开展地震数据的黏声介质逆时偏移,实现波场逆时延拓过程中同时完成频散校正和衰减补偿.改善深层构造的成像精度,数值结果表明,基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移可大幅度提高地震模拟计算效率,偏移剖面明显优于常规声波偏移剖面,极大改善深层构造的成像品质.  相似文献   

18.
The objective of this paper is to demonstrate the formulation of a numerical model for mass transport based on the Bhatnagar–Gross–Krook (BGK) Boltzmann equation. To this end, the classical chemical transport equation is derived as the zeroth moment of the BGK Boltzmann differential equation. The relationship between the mass transport equation and the BGK Boltzmann equation allows an alternative approach to numerical modeling of mass transport, wherein mass fluxes are formulated indirectly from the zeroth moment of a difference model for the BGK Boltzmann equation rather than directly from the transport equation. In particular, a second-order numerical solution for the transport equation based on the discrete BGK Boltzmann equation is developed. The numerical discretization of the first-order BGK Boltzmann differential equation is straightforward and leads to diffusion effects being accounted for algebraically rather than through a second-order Fickian term. The resultant model satisfies the entropy condition, thus preventing the emergence of non-physically realizable solutions including oscillations in the vicinity of the front. Integration of the BGK Boltzmann difference equation into the particle velocity space provides the mass fluxes from the control volume and thus the difference equation for mass concentration. The difference model is a local approximation and thus may be easily included in a parallel model or in accounting for complex geometry. Numerical tests for a range of advection–diffusion transport problems, including one- and two-dimensional pure advection transport and advection–diffusion transport show the accuracy of the proposed model in comparison to analytical solutions and solutions obtained by other schemes.  相似文献   

19.
The fractional advection–dispersion equation (FADE) known as its non-local dispersion, has been proven to be a promising tool to simulate anomalous solute transport in groundwater. We present an unconditionally stable finite element (FEM) approach to solve the one-dimensional FADE based on the Caputo definition of the fractional derivative with considering its singularity at the boundaries. The stability and accuracy of the FEM solution is verified against the analytical solution, and the sensitivity of the FEM solution to the fractional order α and the skewness parameter β is analyzed. We find that the proposed numerical approach converge to the numerical solution of the advection–dispersion equation (ADE) as the fractional order α equals 2. The problem caused by using the first- or third-kind boundary with an integral-order derivative at the inlet is remedied by using the third-kind boundary with a fractional-order derivative there. The problems for concentration estimation at boundaries caused by the singularity of the fractional derivative can be solved by using the concept of transition probability conservation. The FEM solution of this study has smaller numerical dispersion than that of the FD solution by Meerschaert and Tadjeran (J Comput Appl Math 2004). For a given α, the spatial distribution of concentration exhibits a symmetric non-Fickian behavior when β = 0. The spatial distribution of concentration shows a Fickian behavior on the left-hand side of the spatial domain and a notable non-Fickian behavior on the right-hand side of the spatial domain when β = 1, whereas when β = −1 the spatial distribution of concentration is the opposite of that of β = 1. Finally, the numerical approach is applied to simulate the atrazine transport in a saturated soil column and the results indicat that the FEM solution of the FADE could better simulate the atrazine transport process than that of the ADE, especially at the tail of the breakthrough curves.  相似文献   

20.
The expected head and standard deviation of the head from the first order Taylor series approximation is compared to Monte Carlo simulation, for steady flow in a confined aquifer with transmissivity as a random variable. Emphasis is on the effect of changes in the covariance structure of the transmissivity, and pumping rates, on the errors in the first order Taylor series approximation. The accuracy of the first order Taylor series approximation is found to be particularly sensitive to pumping rates. With significant pumping the approximation is found to under estimate both the expected drawdown and head variance, and the error increases as the pumping rate increases. This can lead to large errors in probability constraints based on moments from the first order Taylor series approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号