首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the popularity of complex hydrologic models, the time taken to run these models is increasing substantially. Comparing and evaluating the efficacy of different optimization algorithms for calibrating computationally intensive hydrologic models is becoming a nontrivial issue. In this study, five global optimization algorithms (genetic algorithms, shuffled complex evolution, particle swarm optimization, differential evolution, and artificial immune system) were tested for automatic parameter calibration of a complex hydrologic model, Soil and Water Assessment Tool (SWAT), in four watersheds. The results show that genetic algorithms (GA) outperform the other four algorithms given model evaluation numbers larger than 2000, while particle swarm optimization (PSO) can obtain better parameter solutions than other algorithms given fewer number of model runs (less than 2000). Given limited computational time, the PSO algorithm is preferred, while GA should be chosen given plenty of computational resources. When applying GA and PSO for parameter optimization of SWAT, small population size should be chosen. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The main goal of this study is to assess the potential of evolutionary algorithms to solve highly non-linear and multi-modal tomography problems (such as first arrival traveltime tomography) and their abilities to estimate reliable uncertainties. Classical tomography methods apply derivative-based optimization algorithms that require the user to determine the value of several parameters (such as regularization level and initial model) prior to the inversion as they strongly affect the final inverted model. In addition, derivative-based methods only perform a local search dependent on the chosen starting model. Global optimization methods based on Markov chain Monte Carlo that thoroughly sample the model parameter space are theoretically insensitive to the initial model but turn out to be computationally expensive. Evolutionary algorithms are population-based global optimization methods and are thus intrinsically parallel, allowing these algorithms to fully handle available computer resources. We apply three evolutionary algorithms to solve a refraction traveltime tomography problem, namely the differential evolution, the competitive particle swarm optimization and the covariance matrix adaptation–evolution strategy. We apply these methodologies on a smoothed version of the Marmousi velocity model and compare their performances in terms of optimization and estimates of uncertainty. By performing scalability and statistical analysis over the results obtained with several runs, we assess the benefits and shortcomings of each algorithm.  相似文献   

3.
应用改进蜂群算法反演面波频散曲线以获得近地表横波速度剖面.蜂群算法属于群智能算法中的一种,灵感来源于蜜蜂群体特定的觅食行为,在该算法的基础上结合粒子群算法中的全局最优解引导思想,同时引入遗传算法中交叉运算操作,即采用基于交叉操作的全局人工蜂群算法对面波频散曲线进行反演研究.改进蜂群算法在继承传统算法精于探索特性的同时,针对其疏于开发的缺陷着重加强了算法对全局的探索能力.使用理论和实测瑞雷波数据,本文研究了改进蜂群算法在推导近地表横波速度分布的有效性和适用性.在反演中,目标函数的收敛性好,改进算法在迭代的过程中能够快速收敛到全局最优;模型参数的概率分布高,即在寻找到全局最优解的同时,能够确保解中每个参数同时达到最优,保证了反演的结果可靠度,使其能有效地应用于瑞雷波频散曲线的反演和解释中.  相似文献   

4.
《国际泥沙研究》2022,37(5):601-618
Landslides are considered as one among many phenomena jeopardizing human beings as well as their constructions. To prevent this disastrous problem, researchers have used several approaches for landslide susceptibility modeling, for the purpose of preparing accurate maps marking landslide prone areas. Among the most frequently used approaches for landslide susceptibility mapping is the Artificial Neural Network (ANN) method. However, the effectiveness of ANN methods could be enhanced by using hybrid metaheuristic algorithms, which are scarcely applied in landslide mapping. In the current study, nine hybrid metaheuristic algorithms, genetic algorithm (GA)-ANN, evolutionary strategy (ES)-ANN, ant colony optimization (ACO)-ANN, particle swarm optimization (PSO)-ANN, biogeography based optimization (BBO)-ANN, gravitational search algorithm (GHA)-ANN, particle swarm optimization and gravitational search algorithm (PSOGSA)-ANN, grey wolves optimization (GWO)-ANN, and probability based incremental learning (PBIL)-ANN have been used to spatially predict landslide susceptibility in Algiers’ Sahel, Algeria. The modeling phase was done using a database of 78 landslides collected utilizing Google Earth images, field surveys, and six conditioning factors (lithology, elevation, slope, land cover, distance to stream, and distance to road). Initially, a gamma test was used to decrease the input variable numbers. Furthermore, the optimal inputs have been modeled by the mean of hybrid metaheuristic ANN techniques and their performance was assessed through seven statistical indicators. The comparative study proves the effectiveness of the co-evolutionary PSOGSA-ANN model, which yielded higher performance in predicting landslide susceptibility compared to the other models. Sensitivity analysis using the step-by-step technique was done afterward, which revealed that the distance to the stream is the most influential factor on landslide susceptibility, followed by the slope factor which ranked second. Lithology and the distance to road have demonstrated a moderate effect on landslide susceptibility. Based on these findings, an accurate map has been designed to help land-use managers and decision-makers to mitigate landslide hazards.  相似文献   

5.
《Journal of Hydrology》2006,316(1-4):266-280
Traditionally, the calibration of groundwater models has depended on gradient-based local optimization methods. These methods provide a reasonable degree of success only when the objective function is smooth, second-order differentiable, and satisfies the Lipschitz's condition. For complicated and highly nonlinear objective functions it is almost impractical to satisfy these conditions simultaneously. Research in the calibration of conceptual rainfall-runoff models, has shown that global optimization methods are more successful in locating the global optimum in the region of multiple local optima. In this study, a global optimization technique, known as shuffle complex evolution (SCE), is coupled to the gradient-based Lavenberg–Marquardt algorithm (GBLM). The resultant hybrid global optimization algorithm (SCEGB) is then deployed in parallel testing with SCE and GBLM to solve several inverse problems where parameters of a nonlinear numerical groundwater flow model are estimated. Using perfect (i.e. noise-free) observation data, it is shown SCEGB and SCE are successful at identifying the global optimum and predicting all model parameters; whereas, the commonly applied GBLM fails to identify the optimum. In subsequent inverse simulations using observation data corrupted with noise, SCEGB and SCE again outperform GBLM by consistently producing more accurate parameter estimates. Finally, in all simulations the hybrid SCEGB is seen to be equally effective as SCE but computationally more efficient.  相似文献   

6.
Automatic calibration of complex subsurface reaction models involves numerous difficulties, including the existence of multiple plausible models, parameter non-uniqueness, and excessive computational burden. To overcome these difficulties, this study investigated a novel procedure for performing simultaneous calibration of multiple models (SCMM). By combining a hybrid global-plus-polishing search heuristic with a biased-but-random adaptive model evaluation step, the new SCMM method calibrates multiple models via efficient exploration of the multi-model calibration space. Central algorithm components are an adaptive assignment of model preference weights, mapping functions relating the uncertain parameters of the alternative models, and a shuffling step that efficiently exploits pseudo-optimal configurations of the alternative models. The SCMM approach was applied to two nitrate contamination problems involving batch reactions and one-dimensional reactive transport. For the chosen problems, the new method produced improved model fits (i.e. up to 35% reduction in objective function) at significantly reduced computational expense (i.e. 40–90% reduction in model evaluations), relative to previously established benchmarks. Although the method was effective for the test cases, SCMM relies on a relatively ad-hoc approach to assigning intermediate preference weights and parameter mapping functions. Despite these limitations, the results of the numerical experiments are empirically promising and the reasoning and structure of the approach provide a strong foundation for further development.  相似文献   

7.
There is no meta‐heuristic approach best suited for solving all optimization problems making this field of study highly active. This results in enhancing current approaches and proposing new meta‐heuristic algorithms. Out of all meta‐heuristic algorithms, swarm intelligence is preferred as it can preserve information about the search space over the course of iterations and usually has fewer tuning parameters. Grey Wolves, considered as apex predators, motivated us to simulate Grey Wolves in the optimization of geophysical data sets. The grey wolf optimizer is a swarm‐based meta‐heuristic algorithm, inspired by mimicking the social leadership hierarchy and hunting behaviour of Grey Wolves. The leadership hierarchy is simulated by alpha, beta, delta and omega types of wolves. The three main phases of hunting, that is searching, encircling and attacking prey, is implemented to perform the optimization. To evaluate the efficacy of the grey wolf optimizer, we performed inversion on the total gradient of magnetic, gravity and self‐potential anomalies. The results have been compared with the particle swarm optimization technique. Global minimum for all the examples from grey wolf optimizer was obtained with seven wolves in a pack and 2000 iterations. Inversion was initially performed on thin dykes for noise‐free and noise‐corrupted (up to 20% random noise) synthetic data sets. The inversion on a single thin dyke was performed with a different search space. The results demonstrate that, compared with particle swarm optimization, the grey wolf optimizer is less sensitive to search space variations. Inversion of noise‐corrupted data shows that grey wolf optimizer has a better capability in handling noisy data as compared to particle swarm optimization. Practical applicability of the grey wolf optimizer has been demonstrated by adopting four profiles (i.e. surface magnetic, airborne magnetic, gravity and self‐potential) from the published literature. The grey wolf optimizer results show better data fit than the particle swarm optimizer results and match well with borehole data.  相似文献   

8.
This study presents single‐objective and multi‐objective particle swarm optimization (PSO) algorithms for automatic calibration of Hydrologic Engineering Center‐ Hydrologic Modeling Systems rainfall‐runoff model of Tamar Sub‐basin of Gorganroud River Basin in north of Iran. Three flood events were used for calibration and one for verification. Four performance criteria (objective functions) were considered in multi‐objective calibration where different combinations of objective functions were examined. For comparison purposes, a fuzzy set‐based approach was used to determine the best compromise solutions from the Pareto fronts obtained by multi‐objective PSO. The candidate parameter sets determined from different single‐objective and multi‐objective calibration scenarios were tested against the fourth event in the verification stage, where the initial abstraction parameters were recalibrated. A step‐by‐step screening procedure was used in this stage while evaluating and comparing the candidate parameter sets, which resulted in a few promising sets that performed well with respect to at least three of four performance criteria. The promising sets were all from the multi‐objective calibration scenarios which revealed the outperformance of the multi‐objective calibration on the single‐objective one. However, the results indicated that an increase of the number of objective functions did not necessarily lead to a better performance as the results of bi‐objective function calibration with a proper combination of objective functions performed as satisfactorily as those of triple‐objective function calibration. This is important because handling multi‐objective optimization with an increased number of objective functions is challenging especially from a computational point of view. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
We present a novel approach for optimizing reservoir operation through fuzzy programming and a hybrid evolution algorithm, i.e. genetic algorithm (GA) with simulated annealing (SA). In the analysis, objectives and constraints of reservoir operation are transformed by fuzzy programming for searching the optimal degree of satisfaction. In the hybrid search procedure, the GA provides a global search and the SA algorithm provides local search. This approach was investigated to search the optimizing operation scheme of Shihmen Reservoir in Taiwan. Monthly inflow data for three years reflecting different hydrological conditions and a consecutive 10‐year period were used. Comparisons were made with the existing M‐5 reservoir operation rules. The results demonstrate that: (1) fuzzy programming could effectively formulate the reservoir operation scheme into degree of satisfaction α among the users and constraints; (2) the hybrid GA‐SA performed much better than the current M‐5 operating rules. Analysis also found the hybrid GA‐SA conducts parallel analyses that increase the probability of finding an optimal solution while reducing computation time for reservoir operation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
大地电磁的人工鱼群最优化约束反演   总被引:3,自引:2,他引:1       下载免费PDF全文
大地电磁的反演问题是非线性,如果采用线性反演方法容易陷入局部极小,使得反演结果非唯一性严重.本文将人工鱼群算法引入到地球物理反演之中,提出了非线性的大地电磁人工鱼群最优化反演.该方法不需要进行偏导数的求取,可以对反演的范围进行约束,以减小反演结果的非唯一性.同时我们对搜索步长进行了改进,给出适用于大地电磁反演的人工鱼群参数.大量的理论数据试算表明,人工鱼群反演算法能够较好地寻找到全局最优解.实测数据的处理结果表明,该方法可以用来处理实际资料,并且能够取得很好的应用效果.  相似文献   

11.
基于改进粒子群算法的地震标量波方程反演   总被引:4,自引:2,他引:2       下载免费PDF全文
针对标准粒子群优化(PSO)算法存在易出现早熟而陷入局部最优以及进化后期收敛速度慢等缺陷,通过考虑粒子所处位置间相互作用,提出了一种改进的并行粒子群优化算法.由于引入粒子位置间的相互影响,减少了粒子搜索过程盲目性,因此能有效提高算法的收敛速度.数值试验表明,这种改进的粒子群算法适用于二维标量波方程的速度反演,且算法具有...  相似文献   

12.
Abstract

Genetic algorithms are among of the global optimization schemes that have gained popularity as a means to calibrate rainfall–runoff models. However, a conceptual rainfall–runoff model usually includes 10 or more parameters and these are interdependent, which makes the optimization procedure very time-consuming. This may result in the premature termination of the optimization process which will prejudice the quality of the results. Therefore, the speed of optimization procedure is crucial in order to improve the calibration quality and efficiency. A hybrid method that combines a parallel genetic algorithm with a fuzzy optimal model in a cluster of computers is proposed. The method uses the fuzzy optimal model to evaluate multiple alternatives with multiple criteria where chromosomes are the alternatives, whilst the criteria are flood performance measures. In order to easily distinguish the performance of different alternatives and to address the problem of non-uniqueness of optimum, two fuzzy ratios are defined. The new approach has been tested and compared with results obtained by using a two-stage calibration procedure. The current single procedure produces similar results, but is simpler and automatic. Comparison of results between the serial and parallel genetic algorithms showed that the current methodology can significantly reduce the overall optimization time and simultaneously improve the solution quality.  相似文献   

13.
Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L1 norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies.  相似文献   

14.
Finding an operational parameter vector is always challenging in the application of hydrologic models, with over‐parameterization and limited information from observations leading to uncertainty about the best parameter vectors. Thus, it is beneficial to find every possible behavioural parameter vector. This paper presents a new methodology, called the patient rule induction method for parameter estimation (PRIM‐PE), to define where the behavioural parameter vectors are located in the parameter space. The PRIM‐PE was used to discover all regions of the parameter space containing an acceptable model behaviour. This algorithm consists of an initial sampling procedure to generate a parameter sample that sufficiently represents the response surface with a uniform distribution within the “good‐enough” region (i.e., performance better than a predefined threshold) and a rule induction component (PRIM), which is then used to define regions in the parameter space in which the acceptable parameter vectors are located. To investigate its ability in different situations, the methodology is evaluated using four test problems. The PRIM‐PE sampling procedure was also compared against a Markov chain Monte Carlo sampler known as the differential evolution adaptive Metropolis (DREAMZS) algorithm. Finally, a spatially distributed hydrological model calibration problem with two settings (a three‐parameter calibration problem and a 23‐parameter calibration problem) was solved using the PRIM‐PE algorithm. The results show that the PRIM‐PE method captured the good‐enough region in the parameter space successfully using 8 and 107 boxes for the three‐parameter and 23‐parameter problems, respectively. This good‐enough region can be used in a global sensitivity analysis to provide a broad range of parameter vectors that produce acceptable model performance. Moreover, for a specific objective function and model structure, the size of the boxes can be used as a measure of equifinality.  相似文献   

15.
With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi‐objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and effective multi‐objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi‐algorithm, genetically adaptive multi‐objective method (AMALGAM) for multi‐site calibration of a distributed hydrologic model—Soil and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi‐objective optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non‐dominated Sorted Genetic Algorithm II (NSGA‐II)). In order to provide insights into each method's overall performance, these three methods were tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide competitive or superior results compared with the other two methods. The multi‐method search framework of AMALGAM, which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi‐site calibration of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multi‐objective optimization algorithms and multi‐mode search operators into AMALGAM deserves further research. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Different variants of parameters’ calibration of land surface model SWAP were examined with the aim to maximize the accuracy of reproducing rainfall runoff hydrograph. The optimization of parameter values was automated based on two different algorithms for the search of the global optimum of an objective function: a random search technique and a shuffled complex evolution method SCE-UA. In both cases, two objective functions, based on the mean systematic error and the Nash and Sutcliffe coefficient of efficiency, were used. The number of calibrated parameters varied from 10 to 15, and their values were within the reasonable range so as not to contradict the physical meaning and to ensure the best agreement between the simulated and observed daily river runoff. The streamflow hydrographs for some rivers in USA simulated with the use of different sets of optimized parameters were compared with observation data.  相似文献   

17.
BFA-CM最优化测井解释方法   总被引:3,自引:0,他引:3       下载免费PDF全文
最优化测井解释方法能充分利用各种测井资料及地质信息,可以有效地评价复杂岩性油气藏.优化算法的选择是最优化测井解释方法的关键,影响着测井解释结果的准确性.细菌觅食算法(BFA)是新兴的一种智能优化算法,具有较强的全局搜索能力,但在寻优后期收敛速度较慢.复合形算法(CM)局部搜索能力极强,将其与BFA算法相结合构成BFA-CM混合算法,既提高了搜索精度又提高了搜索效率.利用BFA-CM最优化测井解释方法对苏里格致密砂岩储层实际资料进行了处理,计算结果与岩心及薄片分析资料吻合得很好.  相似文献   

18.
地震是具有毁坏性的自然灾害,对于震后严重受损的地区,设计合理的应急避难场所是非常必要的,为此提出基于微粒群算法对城乡应急避难场所规划的研究。将退火算法的微粒群理论与城乡地区应急避难场所规划相结合,在约束条件较多的情况下,将应急避难场所视为一个粒子,对应急避难场所规划创建目标函数,从而实现对城乡住区应急避难场所的规模规划设计;其次设计应急场所的内容与位置模型,集合城乡需求点布局的影响因素,修建不同的应急场所设施点,并以覆盖全部需求点为目标,实现应急避难场所的整体规划。通过仿真实验证明,所提微粒群算法具有较好的规划效率,可保证规划后的城乡住区在受到地震侵害后,受灾人群有即时的可避难场所,为人们的震后生活提供帮助。  相似文献   

19.
基于余震分布确定主震断层面的数学模型,以确定断层面的走向和倾角参数进行计算,研究了遗传算法、模拟退火算法、差分演化算法、粒子群算法等4种最优化反演方法的反演效果和可靠性。结果显示,在涉及到的反演参数较少和非线性不太严重时,4种方法都有较好的表现,差分演化算法、粒子群算法速度快,精度高,遗传算法速度较慢,精度较低,模拟退火由于缺乏并行机制,速度较慢,精度高于遗传算法。余震在求出的断层附近分布图直观地反映出4种方法的效果和可靠性。  相似文献   

20.
基于GA-BP理论,将自适应遗传算法与人工神经网络技术(BP算法)有机地相结合,形成了一种储层裂缝自适应遗传-神经网络反演方法.这种新的方法是由编码、适应度函数、遗传操作及混合智能学习等组成,即在成像测井裂缝密度数据约束下,通过对目标问题进行编码(称染色体),然后对染色体进行选择、交叉和变异等遗传操作,使染色体不断进化,从而快速获得全局最优解.在反演执行过程中,利用地震数据和成像测井裂缝密度数据之间的非线性映射关系建立训练样本,将GA算法与BP算法有机地结合,优化三层前向网络参数;或将GA与ANFIS相结合,优化ANFIS网络参数.并采用GA算法与TS算法(Tabu Search)相结合的自适应混合学习算法,该学习算法自始至终将GA和BP两种算法按一定的概率比例进行,其概率自适应变化,以达到混合算法的均衡.这种混合算法提高了网络的收敛速度和精度.我们分别利用两个研究地区的6井和1井成像测井裂缝密度数据与地震数据之间的非线性映射关系建立训练样本,对过这两口井的测线的地震数据进行反演,获得了视裂缝密度剖面,视裂缝密度剖面上裂缝分布特征符合沉积相分布特征和岩石力学性质的变化特征.这种视裂缝密度剖面含有储层裂缝的定量信息,其误差可为油气勘探开发实际要求所允许.因此,这种新的方法优于只能作裂缝定性分析的常规裂缝地震预测方法,具有广阔的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号