首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The turbulence characteristics of flows passing through a tetrahedron frame were investigated by using a 2-dimensional fiber-optic laser Doppler velocimeter (2-D FLDV). Experiments for uniform flows with different bed slopes under both submerged and un-submerged conditions were carried out in a re-circulating flume with glass side walls. The experimental bed was a smooth fixed bed. It was observed that with the tetrahedron frame the mean longitudinal velocity decrease in the retardation zone. However, both the longitudinal and the vertical turbulence intensities are larger than those for the undisturbed approach flow. The tetrahedron frame may reduce the probability of sediment entrainment by retarding the flow and reducing the boundary shear stress. In addition, it may induce sediment deposition in a sediment laden flow by changing the flow direction and increasing the energy dissipation.  相似文献   

2.
A Reynolds stress model for the numerical simulation of compound open-channel flows with vegetation on the floodplain is described. The Reynolds stress model consists of various sub-models such as Speziale et al.’s model, Mellor and Herring’s model, and Rotta’s model for the pressure–strain correlation term, the turbulent diffusion term, and the dissipation term, respectively. For validation of the model, plain compound open-channel flows are simulated. The computed results were compared with measured data by [Tominaga A, Nezu I. Turbulent structure in compound open-channel flows. J Hydraul Eng, ASCE 1991;117(1):21–41] and the results show that the Reynolds stress model successfully simulates the mean flow and turbulence structure of plain compound channel flows. The model was then applied to compound open-channel flows with vegetated floodplains. Good agreement between the simulated results and data from an algebraic stress model by [Naot D, Nezu I, Nakagawa H. Hydrodynamic behavior of partly vegetated open channels. J Hydraul Eng, ASCE 1996;122(11):625–33] was found. However, it was shown that the RSM is capable of predicting the velocity dip and lateral shift in the maximum streamwise velocity, which were not observed in the data from algebraic stress modeling. Finally, a depth-averaged analysis of the streamwise momentum equation was performed to investigate the lateral momentum transfer in compound channel flows with vegetated floodplains. Compared with components by the secondary currents and Reynolds stress, the drag force due to the presence of vegetation appears to be a factor in reducing the bottom shear stress in both main channel and floodplain.  相似文献   

3.
Sheet flow hydrodynamics over a non-uniform sand bed channel   总被引:1,自引:0,他引:1  
The current study experimentally investigates the flow characteristics and temporal variations in the sheet flow profile of a non-uniform sand bed channel. Experiments were done to explore turbulent structures in the presence of a sheet flow layer with and without seepage. The turbulent events, such as stream wise velocity, Reynolds shear stresses, and turbulence intensities were found to be increasing and vertical velocity was found decreasing with a sheet layer. The presence of a sheet layer also effects the turbulent energy production and energy dissipation. All the turbulence parameters with and without a sheet layer have also been influenced by the presence of downward seepage. The rate of sheet flow movement is increased with seepage, owing to increased turbulence with seepage. The current study used wavelet analysis on temporally lagged spatial bed elevation profiles obtained from a set of laboratory experiments and synchronized the wavelet coefficients with bed elevation fluctuation at different spatial scales. A spatial cross correlation analysis at multiple scales, based on the wavelet coefficients, has been done on these bed elevation datasets to observe the effect of downward seepage on the dynamic behavior of sheet flow at different length scales. It is found that seepage increases average bed celerity and also increases the celerity of sheet flow of similar length scales. This increase in the celerity has been hypothesized as the increase of sheet flow movement as well as the increase in turbulent parameters with seepage, which destabilizes the bed particles resulting in a disruption in the continuous propagation pattern of the sheet flow. The increase of sheet flow celerity with seepage is confirmed from the saturation level of the wavelet power spectra of the bed elevation series. The presence of seepage also affects the non-uniformity of collective sheet material.  相似文献   

4.
In this paper a semi-analytical approach is proposed to understand the mechanism by which a non-uniform vegetated flowpasses over a finite thick soil layer covered with grass. The flow region is divided into three layers: a homogenous water layer, a mixed water-grass layer, and a finite thick soil layer (hereafter referred to as the water layer, the grass layer, and the soil layer). The flow of the water layer is governed by the Navier–Stokes equations. Both the grass and soil layers are regarded as porous media and the Biot’s theory of poroelasticity is applied to the porous medium flow. The semi-closed solutions are then obtained by the Runge–Kutta method. The drag force induced by the flow through the grass layer and the flow profiles of three patterns: submerged grass, emergent grass and mixed type are also discussed.  相似文献   

5.
Based on the detailed laboratory experiments and theoretical analysis, a new three-layer model is proposed to predict the vertical velocity distribution in an open channel flow with submerged vegetation. The time averaged velocity and turbulence behaviour of a steady uniform flow with fully submerged artificial rigid vegetation was measured using a 3D Micro ADV, and the vertical distribution of velocity and Reynolds shear stress at different vegetation height, vegetation density and measuring positions were obtained. The results show that the velocity profile consists of three hydrodynamic regimes (i.e. the upper non-vegetated layer, the outer and bottom layer within vegetation); accordingly different methods had been adopted to describe the vertical velocity distribution. For the upper non-vegetated layer, a modified mixing length theory combined with the concept of ‘the new vegetation boundary layer’ was adopted, and an analytical model was presented to predict the vertical velocity distribution in this region. For the bottom layer within vegetation, the depth average velocity was obtained by numerically solving the momentum equations. For the upper layer within vegetation, the analytical solution was presented by expressing the shear stress as a formula fitted to the experimental data. Finally, the analytical predictions of the vertical velocity over the whole flow depth were compared with the results obtained by other researchers, and the good agreement proved that the three-layer model can be used to predict the velocity distribution of the open channel flow with submerged rigid vegetation.  相似文献   

6.
This study investigates the interaction of the vertical velocity v and the streamwise velocity u in a gradually accelerating flow. The analytical result shows that the momentum of uv driven by the mean velocities in a non-uniform flow is not negligible. This additional momentum directly results in the concave profiles of Reynolds shear stress in gradually accelerating flows, a departure from the expected linear profile. Consequently, this momentum causes the maximum velocity to be located below the free surface, i.e., the dip-phenomenon. This paper investigated the interactions of the Reynolds shear stress, non-zero vertical velocity and dip-phenomenon, it is found that the non-zero vertical velocity causes the dip-phenomenon. The approach is tested using the experimental data of Song and others, and good agreements between the predicted and measured velocity profiles have been achieved.  相似文献   

7.
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two- and three-dimensional numerical models. In particular, they possess greater capacity to be applied in large river basins with many tributaries. This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport. The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model. This one-dimensional model, therefore, can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River. Moreover, a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed. The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River. A comparison of the calculated water level and river bed deformation with field measurements Shows that the improved numerical model is capable of predicting flow, sediment transport, bed changes, and bed-material sorting in various situations, with reasonable accuracy and reliability.  相似文献   

8.
The internal deformation within debris flows holds essential information on dynamics and flow resistance of such mass-wasting processes. Systematic measurements of velocity profiles in real-scale debris flows are not yet available. Additionally, data on basal stresses of the solid and the fluid phase are rare. Here, we present and analyse measurements of vertical velocity profiles in two debris flows naturally occurring in the Gadria Creek, Italy. The method is based on cross-correlation of paired conductivity signals from an array of sensors installed on a fin-shaped wall located in the middle of the channel. Additionally, we measure normal stress and pore fluid pressure by two force plates with integrated pressure transducers. We find internal deformation throughout the flows. Only at the very front was some en-bloc movement observed. Velocity profiles varied from front to tail and between flows. For one debris flow, pore fluid pressure close to normal stress was measured, whereas the other flow was less liquefied. The median shear rates were mostly less than 5 s−1 and Savage numbers at the basal layer ranged from 0.01 to 1. Our results highlight the variable nature of debris flows and provide quantitative data on shear rate and basal stress distribution to help guide model development for hazard assessment and landscape evolution. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

9.
Shear velocity u* is an important parameter in geophysical flows, in particular with respect to sediment transport dynamics. In this study, we investigate the feasibility of applying five standard methods [the logarithmic mean velocity profile, the Reynolds stress profile, the turbulent kinetic energy (TKE) profile, the wall similarity and spectral methods] that were initially developed to estimate shear velocity in smooth bed flow to turbulent flow over a loose bed of coarse gravel (D50 = 1·5 cm) under sub‐threshold conditions. The analysis is based on quasi‐instantaneous three‐dimensional (3D) full depth velocity profiles with high spatial and temporal resolution that were measured with an Acoustic Doppler Velocity Profiler (ADVP) in an open channel. The results of the analysis confirm the importance of detailed velocity profile measurements for the determination of shear velocity in rough‐bed flows. Results from all methods fall into a range of ± 20% variability and no systematic trend between methods was observed. Local and temporal variation in the loose bed roughness may contribute to the variability of the logarithmic profile method results. Estimates obtained from the TKE and Reynolds stress methods reasonably agree. Most results from the wall similarity method are within 10% of those obtained by the TKE and Reynolds stress methods. The spectral method was difficult to use since the spectral energy of the vertical velocity component strongly increased with distance from the bed in the inner layer. This made the choice of the reference level problematic. Mean shear stress for all experiments follows a quadratic relationship with the mean velocity in the flow. The wall similarity method appears to be a promising tool for estimating shear velocity under rough‐bed flow conditions and in field studies where other methods may be difficult to apply. This method allows for the determination of u* from a single point measurement at one level in the intermediate range (0·3 < h < 0·6). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
水平非均匀基流中行星波的传播   总被引:4,自引:0,他引:4       下载免费PDF全文
行星波传播理论虽然已有很多研究,但是大多以纬向对称基流为主,无法解释东西风带之间相互作用的事实.鉴于此,本文从理论上系统讨论了纬向对称和水平非均匀基流中定常和非定常波动的传播特征.首先,对纬向对称基流中波动传播的周期特征进行分析后发现,西风中位相东传超长波周期大于30 d,而东风中位相西传超长波的周期则小于30 d.之后,从传播的空间以及周期特征等方面系统研究了水平非均匀基流中球面波动传播理论,得到以下结论:经向基流使得定常波可以穿越东风带,在南北两半球间传播,为东西风带之间的相互作用提供了理论解释;强的经向流使得波动传播具有单向性;亚澳季风区低层纬向1波呈低频特征.  相似文献   

11.
This paper addresses the development of a flow region associated with turbulence and stress characteristics over a series of 2-D asymmetric dunes placed successively at the flume surface. Experiments were conducted over twelve asymmetric dunes of mean length 32 cm, crest height 3 cm and the dune width almost as wide as width of the flume, using 3-D Micro-ADV at the Indian Statistical Institute, Calcutta. The variations of turbulence statistics along the flow affected by the wavy bottom roughness have been studied. Quadrant decomposition of the instantaneous Reynolds shear stress has been adopted to calculate the contribution of ejection and sweeping events in shear stress generation. The relative dominance of two events are found to contribute in a cyclic manner (spatially) in the near bed region, whereas such phenomenon seems to be disappeared towards the main flow.  相似文献   

12.
《国际泥沙研究》2020,35(2):193-202
The current work focuses on locally resolving velocities,turbulence,and shear stresses over a rough bed with locally non-uniform character.A nonporous subsurface layer and fixed interfacial sublayer of gravel and sand were water-worked to a nature-like bed form and additionally sealed in a hydraulic flume.Two-dimensional Particle Image Velocimetry(2 D-PIV) was applied in the vertical plane of the experimental flume axis.Runs with clear water and weak sediment transport were done under slightly supercritical flow to ensure sediment transport conditions without formation of considerable sediment deposits or dunes.The study design included analyzing the double-averaged flow parameters of the entire measurement domain and investigating the flow development at 14 consecutive vertical subsections.Local geometrical variabilities as well the presence of sediment were mainly reflected in the vertical velocity component.Whereas the vertical velocity decreased over the entire depth in presence of sediment transport,the streamwise velocity profile was reduced only within the interfacial sublayer.In the region with decelerating flow conditions,however,the streamwise velocity profile systematically increased along the entire depth extent.The increase in the main velocity(reduction of flow resistance)correlated with a decrease of the turbulent shear and main normal stresses.Therefore,effects of rough bed smoothening and drag force reduction were experimentally documented within the interfacial sublayer due to mobile sediment.Moreover,the current study leads to the conclusion that in nonuniform flows the maximum Reynolds stress values are a better predictor for the bed shear stress than the linearly extrapolated Reynolds stress profile.This is an important finding because,in natural flows,uniform conditions are rare.  相似文献   

13.
The main purpose of this study is to evaluate the potential of simulating the profiles of the mean velocity and turbulence intensities for the steep open channel flows over a smooth boundary using artificial neural networks. In a laboratory flume, turbulent flow conditions were measured using a fibre‐optic laser doppler velocimeter (FLDV). One thousand and sixty‐four data sets were collected for different slopes and aspect ratios at different locations. These data sets were randomly split into two subsets, i.e. training and validation sets. The multi‐layer functional link network (MFLN) was used to construct the simulation model based on the training data. The constructed MFLN models can almost perfectly simulate the velocity profile and turbulence intensity. The values of correlation coefficient (γ) are close to one and the values of root mean square error (RMSE) are close to zero in all conditions. The results demonstrate that the MFLN can precisely simulate the velocity profiles, while the log law and Reynolds stress model (RSM) are less effective when used to simulate the velocity profiles close to the side wall. The simulated longitudinal turbulence intensities yielded by the MFLN were also fairly consistent with the measured data, while the simulated vertical turbulence intensities by the RSM were not consistent with the measured data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Acoustic Doppler current profilers (ADCPs) have been used to measure Reynolds stresses in tidally dominated environments where wave action was minimal. In this paper, we examine observations from a microtidal estuary where the effects of wind stress and surface waves dominate the velocity variance. Reynolds stress measurements in this setting require a technique for addressing surface gravity wave contamination. We present here a method of reducing the effect of wave motion on Reynolds stresses by subtracting coincident observations along the axis of the ADCP beam. Linear wave theory is used to account for the attenuation of wave orbital velocities with depth. Using this method, Reynolds stress values are brought in line with those predicted by drag laws at the surface and bottom. The apparent Reynolds stress that is removed by the along-axis subtraction is shown to be largely due to the interaction of a slight tilt (1°) in the ADCP and the wave orbital velocity. During periods of stronger wind and waves, there is evidence of enhanced near-surface turbulence and momentum flux, presumably due to breaking waves. During these events, our calculated Reynolds stress magnitudes still appear reasonable, although the directions are suspect. We develop a diagnostic technique that clearly demarcates this region when it occurs. Coincident density profile measurements are used with the ADCP data to compute gradient Richardson numbers throughout the water column. Enhanced Reynolds stresses appear to correspond to Richardson numbers less than one. Responsible editor: Alejandro Souza  相似文献   

16.
纬向非均匀基流对大气长波调整的作用   总被引:2,自引:0,他引:2       下载免费PDF全文
大气长波的发展和演变影响着大气的可预报性,并对提高天气预报和气候预测水平有重要的意义.在影响大气长波演变的因子中,除波与波非线性相互作用外,基流的作用也非常重要.本文利用非均匀基本场下Rossby波运动方程,通过数值求解,分析了基本场结构和初始场对Rossby波演变的影响,揭示了纬向非均匀基本场对长波词整的作用.研究结果表明:基流纬向非均匀时,线性Rossby波也会出现长波调整现象,基流随纬向变化是长波发生调整的又一个重要机制;大气长波调整对波动的初始振幅不敏感,但基本场振幅影响着长波调整能否出现和出现的时间;基本场纬向平均西风基流的大小除影响波动传播的速度和方向外,还影响长波调整出现的时间和规律;长波调整的出现还与基本场和初始场的结构有关,不同基本场时,波动是否发生调整、向高波数还是向低波数调整都决定于基本场结构,相同基本场时,不同初始结构的波动也有着不同的演变过程.  相似文献   

17.
本文利用高分辨率中尺度WRF模式,通过改变边界层参数化方案进行多组试验,评估该模式对美国北部森林地区边界层结构的模拟能力,同时比较了五种不同边界层参数化方案模拟得出的边界层热力和动力结构.结果表明:除个别方案外,配合不同边界层方案的WRF模式都能成功模拟出白天对流边界层强湍流混合特征和夜间稳定边界层内强逆温、逆湿和低空急流等热力和动力结构.非局地YSU、ACM2方案在白天表现出强的湍流混合和卷夹,相比于局地MYJ、UW方案,模拟的对流边界层温度更高、湿度更低、混合层高度更高、感热通量更大,更接近实际观测,这表明在不稳定层结下考虑非局地大涡输送更为合理,但局地方案在风速和风向的预报上存在一定优势.TEMF方案得到的白天局地湍流混合强度为所有方案中最弱,混合层难以发展,无法体现对流边界层内气象要素垂直分布均匀的特点.对于夜间稳定边界层的模拟,不同参数化方案之间的差异较小,但是YSU方案在一定程度上高估了机械湍流,导致局地湍流混合偏强,从而影响了其对稳定边界层的模拟能力.  相似文献   

18.
Existing analytical solutions to 2D and 3D contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. An approximate method is developed herein for coordinate mapping of 2D (vertically-averaged) transport solutions to non-uniform steady-state irrotational and divergence-free flow fields in single-layer aquifers. The method enables existing analytical transport solutions to be applied to aquifer systems with wells, non-uniform saturated thickness, surface water features, and (to a limited degree) heterogeneous hydraulic conductivity and recharge. This mass-conservative coordinate mapping approach is inexact in its approximation of the dispersion process but is still sufficiently accurate for many simple flow systems. The degree of model error is directly proportional to the variation of velocity magnitude within the domain. These mapped analytical solutions are compared to numerical simulation results and the coordinate mapping errors are investigated. The methods described herein may be used in the traditional capacity of analytical transport models, i.e., screening and preliminary site assessment, without sacrificing accuracy by assuming locally uniform flow conditions or applying an ad-hoc coordinate transformation. The solutions benefit from the traditional advantages of analytical methods, particularly the removal of artifacts due to spatial and temporal discretization: no time-stepping or numerical discretization is required.  相似文献   

19.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

20.
The speedv, especially the problem whether super S-wave velocity in the classical model (linear elasticity fracture mechanics) exists, of spontaneous propagation of a shear fault is investigated theoretically. An in-plane shear crack propagating in the crack plane is taken as the model of the shear fault. The results obtained firstly by Kostrov (1975) is extended from sub-Rayleigh wave velocity to super S-wave velocity, and the analytical expression for the stress intensity factorK 2 in the case ofα>v>β is derived. It is proved that for Poisson mediumK 2 is positive and real in the velocity range (β, 1.70β). This demonstrates that (β, 1.70β) is the velocity range which fulfils the conditions for spontaneous crack propagation. The existence, convergence and positiveness or negativeness ofK 2 forv in individual sections are examined, and it is found that for an in-plane shear crack: 1. There are three sections forv, i.e., [0.v R], (β, 1.70β), andα, respectively, and 2. There are two physically reasonable sections forv, the first is [v R, β], and the second is [1.70β, α]. These two forbidden sections behave as barriers to fault propagation. The analytical expressions derived in this paper are not only suitable to classical model, but also to the other derivative models (e. g., the slip-weakening model and the renomalization model etc.). The model considered in this paper is more realistic than the static model employed by previous authors. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica, 15, 9–14, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号