首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A methodology for transport upscaling of three-dimensional highly heterogeneous formations is developed and demonstrated. The overall approach requires a prior hydraulic conductivity upscaling using an interblock-centered full-tensor Laplacian-with-skin method followed by transport upscaling. The coarse scale transport equation includes a multi-rate mass transfer term to compensate for the loss of heterogeneity inherent to all upscaling processes. The upscaling procedures for flow and transport are described in detail and then applied to a three-dimensional highly heterogeneous synthetic example. The proposed approach not only reproduces flow and transport at the coarse scale, but it also reproduces the uncertainty associated with the predictions as measured by the ensemble variability of the breakthrough curves.  相似文献   

2.
Macrodispersion is spreading of a substance induced by spatial variations in local advective velocity at field scales. Consider the case that the steady-state seepage velocity and the local dispersion coefficients in a heterogeneous formation may be modeled as periodic in all directions in an unbounded domain. The equations satisfied by the first two spatial moments of the concentration are derived for the case of a conservative non-reacting solute. It is shown that the moments can be calculated from the solution of well-defined deterministic boundary value problems. Then, it is described how the rate of increase of the first two moments can be calculated at large times using a Taylor-Aris analysis as generalized by Brenner. It is demonstrated that the second-order tensor of macrodispersion (or effective dispersion) can be computed through the solution of steady-state boundary-value problems followed by the determination of volume averages. The analysis is based solely on volume averaging and is not limited by the assumption that the fluctuations are small. The large-time results are valid when the system is in a form of equilibrium in which a tagged particle samples all locations in an appropriately defined phase space with equal probability.  相似文献   

3.
Macrodispersion is spreading of a substance induced by spatial variations in local advective velocity at field scales. Consider the case that the steady-state seepage velocity and the local dispersion coefficients in a heterogeneous formation may be modeled as periodic in all directions in an unbounded domain. The equations satisfied by the first two spatial moments of the concentration are derived for the case of a conservative non-reacting solute. It is shown that the moments can be calculated from the solution of well-defined deterministic boundary value problems. Then, it is described how the rate of increase of the first two moments can be calculated at large times using a Taylor-Aris analysis as generalized by Brenner. It is demonstrated that the second-order tensor of macrodispersion (or effective dispersion) can be computed through the solution of steady-state boundary-value problems followed by the determination of volume averages. The analysis is based solely on volume averaging and is not limited by the assumption that the fluctuations are small. The large-time results are valid when the system is in a form of equilibrium in which a tagged particle samples all locations in an appropriately defined phase space with equal probability.  相似文献   

4.
During probabilistic analysis of flow and transport in porous media, the uncertainty due to spatial heterogeneity of governing parameters are often taken into account. The randomness in the source conditions also play a major role on the stochastic behavior in distribution of the dependent variable. The present paper is focused on studying the effect of both uncertainty in the governing system parameters as well as the input source conditions. Under such circumstances, a method is proposed which combines with stochastic finite element method (SFEM) and is illustrated for probabilistic analysis of concentration distribution in a 3-D heterogeneous porous media under the influence of random source condition. In the first step SFEM used for probabilistic solution due to spatial heterogeneity of governing parameters for a unit source pulse. Further, the results from the unit source pulse case have been used for the analysis of multiple pulse case using the numerical convolution when the source condition is a random process. The source condition is modeled as a discrete release of random amount of masses at fixed intervals of time. The mean and standard deviation of concentration is compared for the deterministic and the stochastic system scenarios as well as for different values of system parameters. The effect of uncertainty of source condition is also demonstrated in terms of mean and standard deviation of concentration at various locations in the domain.  相似文献   

5.
In this work, the influence of non-equilibrium effects on solute transport in a weakly heterogeneous medium is discussed. Three macro-scale models (upscaled via the volume averaging technique) are investigated: (i) the two-equation non-equilibrium model, (ii) the one-equation asymptotic model and (iii) the one-equation local equilibrium model. The relevance of each of these models to the experimental system conditions (duration of the pulse injection, dispersivity values…) is analyzed. The numerical results predicted by these macroscale models are compared directly with the experimental data (breakthrough curves). Our results suggest that the preasymptotic zone (for which a non-Fickian model is required) increases as the solute input pulse time decreases. Beyond this limit, the asymptotic regime is recovered. A comparison with the results issued from the stochastic theory for this regime is performed. Results predicted by both approaches (volume averaging method and stochastic analysis) are found to be consistent.  相似文献   

6.
Modelling of field-scale transport of chemicals is of deep interest to public as well as private sectors, and it represents an area of active theoretical research in many environmentally-based disciplines. However, the experimental data needed to validate field-scale transport models are very limited due to the numerous logistic difficulties that one faces out.  相似文献   

7.
The effect of aquifer heterogeneity on flow and solute transport in two-dimensional isotropic porous media was analyzed using the Monte Carlo method. The two-dimensional logarithmic permeability (ln K) was assumed to be a non-stationary random field with its increments being a truncated fractional Lévy motion (fLm). The permeability fields were generated using the modified successive random additions (SRA) algorithm code SRA3DC [http://www.iamg.org/CGEditor/index.htm]. The velocity and concentration fields were computed respectively for two-dimensional flow and transport with a pulse input using the finite difference codes of MODFLOW 2000 and MT3DMS. Two fLm control parameters, namely the width parameter (C) and the Lévy index (α), were varied systematically to examine their effect on the resulting permeability, flow velocity and concentration fields. We also computed the first- and second-spatial moments, the dilution index, as well as the breakthrough curves at different control planes with the corresponding concentration fields. In addition, the derived breakthrough curves were fitted using the continuous time random walk (CTRW) and the traditional advection-dispersion equation (ADE). Results indicated that larger C and smaller α both led to more heterogeneous permeability and velocity fields. The Lévy-stable distribution of increments in ln K resulted in a Lévy-stable distribution of increments in logarithm of the velocity (ln v). Both larger C and smaller α created sharper leading edges and wider tailing edges of solute plumes. Furthermore, a relatively larger amount of solute still remained in the domain after a relatively longer time transport for smaller α values. The dilution indices were smaller than unity and increased as C increased and α decreased. The solute plume and its second-spatial moments increased as C increased and α decreased, while the first-spatial moments of the solute plume were independent of C and α values. The longitudinal macrodispersivity was scale-dependent and increased as a power law function of time. Increasing C and decreasing α both resulted in an increase in longitudinal macrodispersivity. The transport in such highly heterogeneous media was slightly non-Gaussian with its derived breakthrough curves being slightly better fitted by the CTRW than the ADE, especially in the early arrivals and late-time tails.  相似文献   

8.
A 3D ERT study of solute transport in a large experimental tank   总被引:2,自引:0,他引:2  
A high resolution, cross-borehole, 3D electrical resistivity tomography (ERT) study of solute transport was conducted in a large experimental tank. ERT voxels comprising the time sequence of electrical images were converted into a 3D array of ERT estimated fluid conductivity breakthrough curves and compared with direct measurements of fluid conductivity breakthrough made in wells. The 3D ERT images of solute transport behaviour were also compared with predictions based on a 3D finite-element, coupled flow and transport model, accounting for gravity induced flow caused by concentration differences.The tank (dimensions 185×245×186 cm) was filled with medium sand, with a gravel channel and a fine sand layer installed. This heterogeneous system was designed to complicate solute transport behaviour relative to a homogeneous sand tank, and to thus provide a challenging but insightful analysis of the ability of 3D ERT to resolve transport phenomena. Four ERT arrays and 20 piezometers were installed during filling. A NaCl tracer (conductivity 1.34 S/m) was injected and intensively monitored with 3D ERT and direct sampling of fluid chemistry in piezometers.We converted the bulk conductivity estimate for 250 voxels in the ERT imaged volume into ERT estimated voxel fluid conductivity by assuming that matrix conduction in the tank is negligible. In general, the ERT voxel response is in reasonable agreement with the shape of fluid conductivity breakthrough observed in six wells in which direct measurements of fluid conductivity were made. However, discrepancies occur, particularly at early times, which we attribute to differences between the scale of the image voxels and the fluid conductivity measurement, measurement errors mapped into the electrical inversion and artificial image roughness resulting from the inversion.ERT images revealed the 3D tracer distribution at 15 times after tracer injection. The general pattern and timing of solute breakthrough observed with ERT agreed with that predicted from the flow/transport modelling. However, the ERT images indicate a vertical component of tracer transport and preferential flow paths in the medium sand. We attribute this to transient vertical gradients established during tracer injection, and heterogeneity caused by sorting of the sand resulting from the filling procedure. In this study, ERT provided a unique dataset of 250 voxel breakthrough curves in 1.04 m3. The use of 3D ERT to generate an array of densely sampled estimated fluid conductivity breakthrough curves is a potentially powerful tool for quantifying solute transport processes.  相似文献   

9.
The mining industry has grown strongly in China in recent decades, resulting in large amounts of coal gangues, which cause water and soil pollution, soil erosion, and various other environmental problems. They are often used in reclamation projects in attempts to restore land damaged by mining, hence they are frequently present (in widely varying proportions) in the topsoil in areas around mines. Their presence can strongly affect key soil variables, including its bulk density, structure, water retention, water movement, and solute transport rates. In the study presented here, the effects of gangue contents on infiltration, saturated hydraulic conductivity, and solute transport parameters of a Chinese Loess plateau soil were examined. The results show that infiltration rates and saturated hydraulic conductivity decreased with increasing gangue content. The Peck–Watson equation modeled these relationships well, but Bouwer–Rice equations provided poorer matches with the acquired data. Cumulative infiltration over time was described well by both the Philip equation and Kostiakov equation. Both the simplified convection–dispersion equation and a two‐region model described the solute transport processes well. In addition, the dispersion increased, while both the Peclet number and mobile water fraction decreased, with increases in gangue contents.  相似文献   

10.
Numerical simulations of non-ergodic transport of a non-reactive solute plume by steady-state groundwater flow under a uniform mean velocity, , were conducted in a three-dimensional heterogeneous and statistically isotropic aquifer. The hydraulic conductivity, K(x), is modeled as a random field which is assumed to be log-normally distributed with an exponential covariance. Significant efforts are made to reduce the simulation uncertainties. Ensemble averages of the second spatial moments of the plume and the plume centroid variances were simulated with 1600 Monte Carlo (MC) runs for three variances of log K, Y2=0.09, 0.23, and 0.46, and a square source normal to of three dimensionless lengths. It is showed that 1600 MC runs are needed to obtain stabilized results in mildly heterogeneous aquifers of Y20.5 and that large uncertainty may exist in the simulated results if less MC runs are used, especially for the transverse second spatial moments and the plume centroid variance in transverse directions. The simulated longitudinal second spatial moment and the plume centroid variance in longitudinal direction fit well to the first-order theoretical results while the simulated transverse moments are generally larger than the first-order values. The ergodic condition for the second spatial moments is far from reaching in all cases simulated and transport in transverse directions may reach ergodic condition much slower than that in longitudinal direction.  相似文献   

11.
A well-controlled 3-D experiment with pre-defined block heterogeneities is conducted, where neutron tomography is used to map 3-D water distribution after two successive drainage steps. The material and hydraulic properties of the two sands are first measured in the laboratory with multistep outflow experiments. Additionally, the pore structure of the sands is acquired by means of image analysis of synchrotron tomography data and the structure is used for pore-scale simulation of one- and two-phase flow with Lattice-Boltzmann methods. This gives us another set of material and hydraulic parameters of the sands. The two sets of hydraulic properties (from the lab scale and from the pore scale) are then used in numerical simulations of the 3-D experiment.  相似文献   

12.
Transport of sorbing solutes in 2D steady and heterogeneous flow fields is modeled using a particle tracking random walk technique. The solute is injected as an instantaneous pulse over a finite area. Cases of linear and Freundlich sorption isotherms are considered. Local pore velocity and mechanical dispersion are used to describe the solute transport mechanisms at the local scale. This paper addresses the impact of the degree of heterogeneity and correlation lengths of the log-hydraulic conductivity field as well as negative correlation between the log-hydraulic conductivity field and the log-sorption affinity field on the behavior of the plume of a sorbing chemical. Behavior of the plume is quantified in terms of longitudinal spatial moments: center-of-mass displacement, variance, 95% range, and skewness. The range appears to be a better measure of the spread in the plumes with Freundlich sorption because of plume asymmetry. It has been found that the range varied linearly with the travelled distance, regardless of the sorption isotherm. This linear relationship is important for extrapolation of results to predict behavior beyond simulated times and distances. It was observed that the flow domain heterogeneity slightly enhanced the spreading of nonlinearly sorbing solutes in comparison to that which occurred for the homogeneous flow domain, whereas the spreading enhancement in the case of linear sorption was much more pronounced. In the case of Freundlich sorption, this enhancement led to further deceleration of the solute plume movement as a result of increased retardation coefficients produced by smaller concentrations. It was also observed that, except for plumes with linear sorption, correlation between the hydraulic conductivity and the sorption affinity fields had minimal effect on the spatial moments of solute plumes with nonlinear sorption.  相似文献   

13.
We investigate effective solute transport in a chemically heterogeneous medium subject to temporal fluctuations of the flow conditions. Focusing on spatial variations in the equilibrium adsorption properties, the corresponding fluctuating retardation factor is modeled as a stationary random space function. The temporal variability of the flow is represented by a stationary temporal random process. Solute spreading is quantified by effective dispersion coefficients, which are derived from the ensemble average of the second centered moments of the normalized solute distribution in a single disorder realization. Using first-order expansions in the variances of the respective random fields, we derive explicit compact expressions for the time behavior of the disorder induced contributions to the effective dispersion coefficients. Focusing on the contributions due to chemical heterogeneity and temporal fluctuations, we find enhanced transverse spreading characterized by a transverse effective dispersion coefficient that, in contrast to transport in steady flow fields, evolves to a disorder-induced macroscopic value (i.e., independent of local dispersion). At the same time, the asymptotic longitudinal dispersion coefficient can decrease. Under certain conditions the contribution to the longitudinal effective dispersion coefficient shows superdiffusive behavior, similar to that observed for transport in s stratified porous medium, before it decreases to its asymptotic value. The presented compact and easy to use expressions for the longitudinal and transverse effective dispersion coefficients can be used for the quantification of effective spreading and mixing in the context of the groundwater remediation based on hydraulic manipulation and for the effective modeling of reactive transport in heterogeneous media in general.  相似文献   

14.
Large-scale advective transport through highly heterogeneous 3D formations is investigated using highly resolved numerical simulations and simple analytic models. Investigations are focused on impacts of two types of contaminant injection on transport through isotropic formations where flow conditions are uniform in the average. Transport is quantified by analyzing breakthrough curves for control planes at various distances from the injection zone. In flux-proportional injection mode local mass in injection zone is proportional to local groundwater flux; this setup models many practical cases such as contaminant injection through wells. In resident concentration mode local concentration in injection zone is constant. Results show that impacts of injection mode on breakthrough curves and their moments are strong and they persist for hundreds of correlation scales. The resident concentration mode leads to a fatter tails of the breakthrough curves, while the peaks are generally underpredicted. For a synthetic porous medium with logconductivity variance of 8, dispersivity computed using resident concentration mode at control plane 100 integral scales away from the injection zone was about 10 times larger than corresponding one for flux-proportional mode. Hence, injection mode impacts on transport through highly heterogeneous formations are strong and they persist for large distances from the injection zone.  相似文献   

15.
A probabilistic approach is used to simulate particle tracking for two types of porous medium. The first is sand grains with a single intergranular porosity. Particle tracking is carried out by advection and dispersion. The second is chalk granulates with intergranular and matrix porosities. Sorption can occur with advection and dispersion during particle tracking. Particle tracking is modelled as the sum of elementary steps with independent random variables in the sand medium. An exponential distribution is obtained for each elementary step and shows that the whole process is Markovian. A Gamma distribution or probability density function is then deduced. The relationships between dispersivity and the elementary step are given using the central limit theorem. Particle tracking in the chalky medium is a non‐Markovian process. The probability density function depends on a power of the distance. Experimental simulations by dye tracer tests on a column have been performed for different distances and discharges. The probabilistic approach computations are in good agreement with the experimental data. The probabilistic computation seems an interesting and complementary approach to simulate transfer phenomena in porous media with respect to the traditional numerical methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A series of controlled laboratory experiments were conducted in order to obtain precise data on the hydraulic and sediment transport conditions during rill formation. Tests were carried out using a crusting-prone binary mixed soil in a 15 m long flume at an average slope of 0·087 under simulated rainfall. Rainfall intensities varied from 30–35 mm h?1 and developed about 70 per cent of the kinetic energy of natural rainfall of similar intensity. Runoff and sediment discharge measured at the downstream weir were strongly influenced by rill forming processes. Essentially, rill incision reduced runoff discharge as a result of increased percolation in rill channels but increased sediment discharge. Secondary entrainment processes, such as bank collapse, also increased sediment discharge at the weir. Knickpoint bifurcation and colluvial deposition, however, decreased sediment discharge. Rills always developed through the formation of a knickpoint. The critical condition for knickpoint initiation was the development of supercritical flow and waves which mould and incise the bed. Prior smoothing of the soil surface by entrainment and redistribution of sediment facilitated supercritical flow. Statistical analysis showed that hydraulic and sediment transport conditions differed significantly in rilled and unrilled flows. The relationship between sediment discharge, rill erosion, and flow hydraulics was found to be nonlinear, conforming to a standard power function in the form y = axb. Rills were also associated with significantly increased sediment transport capacities. However, rill initiation was not clearly defined by any specific hydraulic threshold. Instead, rilled and unrilled flows were separated by zones of transition within which both types of flow occur.  相似文献   

17.
Modeling transport of contaminants in the earths subsurface relies on numerical solutions over grids with blocks larger than Darcys scale. The hydraulic conductivity is homogenized over the grid blocks and the plumes spreading is reduced as a consequence of the wiped-out variability. To compensate for this loss Rubin et al. (1999) proposed to augment mixing by block-effective dispersion coefficients, and Rubin et al. (2003) showed, by means of two dimensional simulations, how this concept can be applied in practice. In this paper, we present new solutions of the block-effective dispersion tensor for an axisymmetric exponential covariance model. In addition, we discuss the influence of pore-scale dispersion in both two- and three-dimensional applications.  相似文献   

18.
In this paper, we describe carefully conducted numerical experiments, in which a dense salt solution vertically displaces fresh water in a stable manner. The two-dimensional porous media are weakly heterogeneous at a small scale. The purpose of these simulations, conducted for a range of density differences, is to obtain accurate concentration profiles that can be used to validate nonlinear models for high-concentration-gradient dispersion. In this part we focus on convergence of the computations, in numerical and statistical sense, to ensure that the uncertainty in the results is small enough.Concentration variances are computed, which give estimates of the uncertainty in local concentration values. These local variations decrease with increasing density contrast. For tracer transport, obtained longitudinal dispersivities are in accordance with analytical findings. In the case of high-density contrasts, stabilizing gravity forces counteract the growth of dispersive fingers, decreasing the effective width of the transition zone. For small log-permeability variances, the decrease of the apparent dispersivity that is found is in agreement with laboratory results for homogeneous columns.  相似文献   

19.
Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these factors. We developed these models as generalizations of the first-order solutions in the log-conductivity variance of point concentration proposed by [Fiori A, Dagan G. Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications. J Contam Hydrol 2000;45(1–2):139–163]. Our first-order solutions compare well with numerical simulations for small and moderate formation heterogeneity and from small to large sampling and source volumes. However, their performance deteriorates for highly heterogeneous formations. Successively, we used our models to study the interplay among sampler size, source volume, and PSD. Our analysis shows a complex and important interaction among these factors. Additionally, we show that the relative importance of these factors is also a function of plume age, of aquifer heterogeneity, and of the measurement location with respect to the mean plume center of gravity. We found that the concentration moments are chiefly controlled by the sampling volume with pore-scale dispersion playing a minor role at short times and for small source volumes. However, the effect of the source volume cannot be neglected when it is larger than the sampling volume. A different behavior occurs for long periods, which may be relevant for old contaminations, or for small injection volumes. In these cases, PSD causes a significant dilution, which is reflected in the concentration statistics. Additionally, at the center of the mean plume, where high concentrations are most likely to occur, we found that sampling volume and PSD are attenuating mechanisms for both concentration ensemble mean and coefficient of variation, except at very large source and sampler sizes, where the coefficient of variation increases with sampler size and PSD. Formation heterogeneity causes a faster reduction of the ensemble mean concentrations and a larger uncertainty at the center of the mean plume. Therefore, our results highlight the importance of considering the combined effect of formation heterogeneity, exposure volume, PSD, source size, and measurement location in performing risk assessment.  相似文献   

20.
The results of a series of high-resolution numerical experiments are used to test and compare three nonlinear models for high-concentration-gradient dispersion. Gravity stable miscible displacement is considered. The first model, introduced by Hassanizadeh, is a modification of Fick’s law which involves a second-order term in the dispersive flux equation and an additional dispersion parameter β. The numerical experiments confirm the dependency of β on the flow rate. In addition, a dependency on travelled distance is observed. The model can successfully be applied to nearly homogeneous media (σ2 = 0.1), but additional fitting is required for more heterogeneous media.The second and third models are based on homogenization of the local scale equations describing density-dependent transport. Egorov considers media that are heterogeneous on the Darcy scale, whereas Demidov starts at the pore-scale level. Both approaches result in a macroscopic balance equation in which the dispersion coefficient is a function of the dimensionless density gradient. In addition, an expression for the concentration variance is derived. For small σ2, Egorov’s model predictions are in satisfactory agreement with the numerical experiments without the introduction of any new parameters. Demidov’s model involves an additional fitting parameter, but can be applied to more heterogeneous media as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号