首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
The differential model MIAGE (see “Mechanistic Interpretation of Alpine Glacierized Environments: Part 1. Model formulation and related dynamical properties” by Perona and Burlando, this issue) is analyzed in this work with the purpose of: (i) showing the model equivalence to a nonlinear reservoir system; (ii) identifying and correlating the model’s coefficients to the hydrogeomorphological properties of a number of different Alpine basins; (iii) testing the model performances to assess the potential impact of climatic change on the hydrologic dynamics of the basins being studied. The study catchments have different topographic, morphologic and hydrologic characteristics, range in size from 4 to 3300 km2 and are 2–32% glacierized. For each basin, the model coefficients are obtained by applying a system identification technique to the mean seasonal basin behaviour. It is shown that the coefficients vary in a reasonable way according to hydrogeomorphological basin characteristics. Model coefficients provide insight into the basin drainage time, and the time dependent damping and elastic properties of the system. Despite its simplicity and in the limit of the model capabilities, results for changing climatic scenarios are also in good qualitative agreement with other well tested modelling approaches. In summary, MIAGE offers an interesting minimalist approach to shed light on the dynamics of glacierized Alpine catchments.  相似文献   

2.
This paper explores patterns within and between climatological and hydrological time series from an alpine glacier basin. Time series recorded in the basin of the Haut Glacier d'Arolla over the 1989 ablation season are subdivided into five subperiods. Box-Jenkins ARIMA (AutoRegressive Integrated Moving Average) and TFN (Transfer Function-Noise) models are estimated for each of the five subperiods and differences between the models are interpreted in the context of changing glacier hydrology, particularly the changing nature and extent of the glacier drainage network.  相似文献   

3.
Flow and transport take place in a heterogeneous medium made up from inclusions of conductivity K submerged in a matrix of conductivity K 0. We consider two-dimensional isotropic media, with circular inclusions of uniform radii, that are placed at random and without overlap in the matrix. The system is completely characterized by the conductivity contrast =K/K 0 and by the volume fraction n. The flow is uniform in the mean, of velocity U=const. The derivation of the velocity field is achieved by a numerical method of high accuracy, based on analytical elements. Approximate analytical solutions are derived by a few methods: composite elements, effective medium, dilute systems and first-order approximation in logconductivity variance. The latter was employed by Rubin (1995), while the dilute system approximation was used by Eames and Bush (1999) and Dagan and Lessoff (2001). Transport is solved in a Lagrangean framework, with trajectories determined numerically from the velocity field, by particle tracking. Results for the velocity variance and for the longitudinal macrodispersivity, for a few values of and n, are presented in Part 2.  相似文献   

4.
The impacts of climate change on storm runoff and erosion in Mediterranean watersheds are difficult to assess due to the expected increase in storm frequency coupled with a decrease in total rainfall and soil moisture, added to positive or negative changes to different types of vegetation cover. This report, the second part of a two‐part article, addresses this issue by analysing the sensitivity of runoff and erosion to incremental degrees of change (from ? 20 to + 20%) to storm rainfall, pre‐storm soil moisture, and vegetation cover, in two Mediterranean watersheds, using the MEFIDIS model. The main results point to the high sensitivity of storm runoff and peak runoff rates to changes in storm rainfall (2·2% per 1% change) and, to a lesser degree, to soil water content (?1·2% per 1% change). Catchment sediment yield shows a greater sensitivity than within‐watershed erosion rates to both parameters: 7·8 versus 4·0% per 1% change for storm rainfall, and ? 4·9 versus ? 2·3% per 1% change for soil water content, indicating an increase in sensitivity with spatial scale due to changes to sediment connectivity within the catchment. Runoff and erosion showed a relatively low sensitivity to changes in vegetation cover. Finally, the shallow soils in one of the catchments led to a greater sensitivity to changes in storm rainfall and soil moisture. Overall, the results indicate that decreasing soil moisture levels caused by climate change could be sufficient to offset the impact of greater storm intensity in Mediterranean watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
PSYCHIC is a process-based model of phosphorus (P) and suspended sediment (SS) mobilisation in land runoff and subsequent delivery to watercourses. Modelled transfer pathways include release of desorbable soil P, detachment of SS and associated particulate P, incidental losses from manure and fertiliser applications, losses from hard standings, the transport of all the above to watercourses in underdrainage (where present) and via surface pathways, and losses of dissolved P from point sources. The model can operate at two spatial scales, although the scientific core is the same in both cases. At catchment scale, the model uses easily available national scale datasets to infer all necessary input data whilst at field scale, the user is required to supply all necessary data. The model is sensitive to a number of crop and animal husbandry decisions, as well as to environmental factors such as soil type and field slope angle. It is envisaged that the catchment-scale model would provide the first tier of a catchment characterisation study, and would be used as a screening tool to identify areas within the catchment which may be at elevated risk of P loss. This would enable targeted data collection, involving farm visits and stakeholder discussion, which would then be followed up with detailed field-scale modelling. Both tiers allow the effects of possible mitigation options at catchment scale (Tier 1) and field scale (Tier 2) to be explored. The PSYCHIC model framework therefore provides a methodology for identifying critical source areas of sediment and P transfer in catchments and assessing what management changes are required to achieve environmental goals.  相似文献   

6.
The Mw = 9.3 megathrust earthquake of December 26, 2004 off the northwest coast of Sumatra in the Indian Ocean generated a catastrophic tsunami that was recorded by a large number of tide gauges throughout the World Ocean. Part 1 of our study of this event examines tide gauge measurements from the Indian Ocean region, at sites located from a few hundred to several thousand kilometers from the source area. Statistical characteristics of the tsunami waves, including wave height, duration, and arrival time, are determined, along with spectral properties of the tsunami records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号