首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. P. Callot  X. Guichet   《Tectonophysics》2003,366(3-4):207-222
We develop two simple models for simulating the combination of magnetic sub-fabrics related to magma flow in dykes. The basic assumptions are (i) the petrofabric is representative of the flow fabric, and (ii) the petrofabric is composed of S/C-type structures related to flow. The first model consists of summing the magnetic tensors of two identical sub-fabrics, differing solely by their relative rotation. This model accounts for the possible change of the macroscopic magnetic lineation from a flow-related fabric to a lineation situated at the geometric intersection between the two sub-fabrics. Such a result is obtained in the case of oblate to highly oblate sub-fabric ellipsoids. The second model integrates the effect of very oblate grains of variable orientations into calculating the shape controlled magnetic tensor of each sub-fabric, and emphasizes the possible under-estimation of fabric superposition due to microscopic disordering. The magma fluxes along the East Greenland volcanic margin are illustrated by the flow pattern within the major dyke swarm. The magmatic flow vectors inferred from the imbrication of magnetic foliation at the dyke margins are primarily horizontal. The classic use of magnetic lineation can lead to contradictory results, giving flow vectors perpendicular to the flow directions. The magnetic lineation is situated close to the zone axis of magnetic foliation planes over a wide range of scales throughout the dyke swarm, suggesting that the contradiction may arise from the association of several textural domains at the sample scale. Forward modelling of macroscopic magnetic fabrics using the first model yields good agreement with the measured magnetic fabric of the East Greenland dykes. Our results, which are applicable to strained sedimentary rocks, highlight the possible misuse of the magnetic lineation due to combination of magnetic textures. The exchange between a microscopic lineation, i.e. mineralogical lineation, and a macroscopic lineation, i.e. intersection lineation, is particularly expected for dykes that generally bear oblate magnetic textures.  相似文献   

2.
http://www.sciencedirect.com/science/article/pii/S1674987112000618   总被引:1,自引:0,他引:1  
The Moyar Shear Zone(MSZ) of the South Indian granulite terrain hosts a prominent syenite pluton (~560 Ma) and associated NW-SE to NE-SW trending mafic dyke swarm(~65 Ma and 95 Ma). Preliminary magnetic fabric studies in the mafic dykes,using Anisotropy of Magnetic Susceptibly(AMS) studies at low-field,indicate successive emplacement and variable magma flow direction.Magnetic lineation and foliation in these dykes are identical to the mesoscopic fabrics in MSZ mylonites,indicating shear zone guided emplacement.Spatial distribution of magnetic lineation in the dykes suggests a common conduit from which the source magma has been migrated.The magnetic foliation trajectories have a sigmoidal shape to the north of the pluton and curve into the MSZ suggesting dextral sense of shear.Identical fabric conditions for magnetic fabrics in the syenite pluton and measured field fabrics in mylonite indicate syntectonic emplacement along the Proterozoic crustal scale dextral shear zone with repeated reactivation history.  相似文献   

3.
Anisotropy of magnetic susceptibility(AMS)studies were carried out on a precisely dated(2216.0±0.9 Ma),450 km long N-S striking dyke in the Dharwar Craton,to determine the magma flow direction along the dyke length.In order to use the imbrication of the magnetic foliation,forty eight samples were collected from 13 locations along the length of the dyke.Magnetogranulometry studies show that AMS fabric is dominated by medium grained interstitial Ti-poor multidomain magnetite.The corrected anisotropy degree(P_j)of the samples was found to be low to moderate,between 1.007 and 1.072,which indicates primary magnetic fabric.The magnetic ellipsoid is either triaxial,prolate or oblate and clearly defines normal,intermediate and inverse magnetic fabrics related to magma flow during the dyke emplacement.The maximum susceptibility axes(K_(max))of the AMS tensor of the dyke is predominantly inclined at low angles(30°),with no systematic variation in depth along the N-S profile,indicating sub-horizontal flow even at mid crustal levels which could probably be governed by location of the focal region of the magma source(mantle plume?),flow dynamics together with the compressive stresses exerted by the overlying crust.  相似文献   

4.
张臣  侯贵廷 《地质论评》1994,40(3):245-251
华北克拉通区内的吕梁-晋北地区广泛发育晚前寒武纪镁铁质岩墙群。该地区近EW向和NW-NNW向岩墙的磁组构测量结果表明,岩墙群磁各向异性与岩墙侵位的关系密切,磁化率的长轴能指示其岩浆侵位的流向。该区的岩墙群的岩浆源位于东侧的燕辽拗拉槽处,岩浆沿岩墙走向以一定仰角由ESE(或E)朝NW-NNW(或W)向流动,具板内裂谷模式。  相似文献   

5.
本文对藏东昌都地区侏罗纪汪布组、东大桥组和小索卡组红层共71个采点开展了磁组构(AMS)研究。磁组构测试结果表明,早侏罗世汪布组岩石磁线理较磁面理发育,磁化率各向异性度较高,磁化率椭球最小轴K3散布于层面缩短方向,代表了与构造成因相关的磁组构;中侏罗世东大桥组和晚侏罗世小索卡组岩石则磁面理较磁线理发育,磁化率各向异性度较低,磁化率椭球最小轴K3与层面近垂直,指示了原生沉积磁组构。早侏罗世汪布组地层的磁组构揭示了其构造应力场方向为NE-SW向。中侏罗世东大桥组的磁组构指示了其沉积时的古水流方向为SE向(138.3°),而晚侏罗世小索卡组磁组构指示了其沉积时的古水流方向为NNW向(328.3°)。古水流方向的明显变化揭示了昌都地区从中侏罗世到晚侏罗世沉积物物源发生了相应的转变,表明昌都地区南早北晚的隆升过程。  相似文献   

6.
华北晚前寒武纪镁铁质岩墙群的流动构造及侵位机制   总被引:21,自引:1,他引:21       下载免费PDF全文
华北克拉通中部广泛发育晚前寒武纪镁铁质岩墙群。这些岩墙群未变形和未变质,保存了清晰完好的流动构造,完整地反映了前寒武纪岩浆活动的特征和流动构造,这在世界上是罕见的。通过对晚前寒武纪镁铁质岩墙群的形态和流动构造研究,如:流动线理、矿物组构和磁组构等,提出岩墙群的侵位方向和侵位方式。结合本区岩墙群与燕辽—中条拗拉槽系的关系以及岩墙群的力学性质,探讨本区岩墙群的侵位机制。  相似文献   

7.
This study highlights the usefulness of anisotropy of magnetic susceptibility data from a deformed granitoid in deciphering its kinematic evolution vis-à-vis shear zone. Data are presented from the Chakradharpur Granitoid (CKPG) that lies to the north of the northerly dipping, ENE–WSW striking Singhbhum Shear Zone (SSZ; eastern India). Whilst the foliation recorded in the field in some parts of the granitoid is parallel to the SSZ, the magnetic foliation is N54°E/90° (mean orientation). It is suggested that the magnetic fabric provides a window into an evolutionary stage prior to the final shearing/thrusting event, the evidence of which is preserved on the mesoscopic scale. It is envisaged that during the initial stages of deformation there was simple shear along the evolving SSZ that resulted in sinistral strike-slip movement; the vorticity axis at this stage was steeply plunging and sense of rotation was anticlockwise. Space was generated in a direction ∼N25°E (perpendicular to maximum-Instantaneous Stretching Axis) into which CKPG emplaced synchronously with regional deformation and evolving SSZ. With continued deformation, there was thrusting along the SSZ. The vorticity axis flipped to a sub-horizontal orientation, thus leading to the development of down-dip stretching lineations and sheath folds within the SSZ. However, at the same time, the vorticity axis responsible for fabric evolution within the syntectonically crystallizing/cooling CKPG was steeply plunging with clockwise rotation. The magnetic foliation (mean orientation N54°E/90°) developed during the final stage of syntectonic crystallization. However, deformation in the region and thrusting along the SSZ continued even after the CKPG had fully crystallized and solidified, which led to the development of the ENE–WSW striking mesoscopic foliation that is parallel with the SSZ. We propose that the angle between the magnetic foliation and the SSZ/foliation recorded in the field, enables to decipher the kinematic vorticity number of flow responsible for fabric evolution of the CKPG. It is concluded that transpression was an important mechanism, and during regional deformation, whilst the SSZ developed structures by dominantly simple shear, the CKPG underwent dominantly pure shear.  相似文献   

8.
A magnetic fabric study has been made in the eastern branch of the Montmarault granite. Magnetic foliation (in accordance with the visible foliation of the country rocks) and magnetic lineation dip typically towards the SE in the eastern part of the massif (monzonitic granite) and towards the WNW in the western part (granodiorite), thus indicating an antiformal structure with a SW-dipping axis. This SW direction coincides with the magnetic lineation at some sites. The susceptibility ellipsoid is oblate, showing a clear predominance of foliation relative to lineation. We infer that the granite was thus probably subjected to strong compression during or shortly after its emplacement, at the end of the Upper Devonian metamorphism, or, more probably, during the latest tectono-metamorphic event in this area, in Early Westphalian time. The antiformal structure most probably corresponds to a Stephanian deformation.  相似文献   

9.
Anisotropy of Magnetic Susceptibility (AMS) as a tool has been explored here to investigate the nature of petrofabrics in Deccan Volcanic Province (DVP) of west-central Indian region by representative sampling in typical pahoehoe and rubbly pahoehoe lava flows, dykes within flows, shear zone and the impact crater units. The rock magnetic analysis indicate varying degree of concentration of titanomagnetite compositions dominated by multi domain (MD) to pseudo single domain (PSD) grains favoring shape anisotropy of minerals that form primary fabrics. The pahoehoe type lava flows shows planar oblate fabrics without any preferred orientation of principle susceptibility axis (K1) depicting crystal settling (of magnetic grains) as chief mechanism of fabric development. The rubbly pahoehoe type lava flow exhibit prolate fabrics with well clustered maximum susceptibility axis within horizontal to sub-horizontal planes depicting their response to viscosity shear. The dykes show well clustered K1 parallel to it’s plane locked during rapid contractional cooling. The sampling at Lonar impact crater was unable to trace any clear fabric due to impact/shock induced deformation and rather preserve the primary fabrics. Further, the shear zone depict random fabrics demanding more detailed and systematic sampling in both the cases. The present investigation infer that the magnetic mineralogy and magnetic fabric variations in the DVP are controlled by the flow mechanism and style of cooling that is characteristic of the given flow unit or dyke and any secondary or superimposed fabric needs to be examined by critical sampling strategy. While more detailed attempts are required to establish the AMS as a tool to record various aspects including the flow dynamics and rate of effusion in the vast terrain of DVP; the present approach is useful to characterize and correlate the lava flow units and dyke occurrences.  相似文献   

10.
Drag patterns of foliation are graphically constructed around very competent dykes under bulk strain of pure shear, simple shear and a combination of pure shear and simple shear. Four different types of drag patterns may be produced, depending on the nature of the bulk deformation and the initial orientations of the dyke and the foliation. The drag pattern can be symmetric or asymmetric, inward curving or outward curving. Both the magnitude and the sense of drag may vary along a dyke wall. A uniform sense of drag develops all along a dyke wall only in certain special situations. The type of foliation drag near a dyke may give us a rough idea of the nature of bulk deformation and the relative orientations of the dyke and the foliation with respect to the bulk strain axes.  相似文献   

11.
The anisotropy of magnetic susceptibility (AMS) has been studied in a 120 km long, Early Cretaceous tholeiitic dyke swarm emplaced during the early stages of rifting and opening of the equatorial Atlantic Ocean. The vertical dykes filled a set of E-trending fractures that cut the structural grain of the Precambrian basement of northeastern Brazil at a high angle. These strongly magnetic rocks contain pseudo-single domain, Ti-poor magnetite and secondary maghemite as revealed by thermomagnetic and hysteresis data. The contribution of the paramagnetic and the high coercivity antiferromagnetic fractions to the bulk susceptibility is less than 1.2%. The dykes generally show well-clustered AMS principal directions. The plunge of the magnetic lineation varies from nearly subvertical in the center of the swarm to horizontal in the west. The strike of the magnetic foliation is generally oblique to the dyke wall and exhibits a curved trend at the regional scale. This fabric pattern suggests that the magma source that fed the dykes was situated in the center of the swarm, which is presently below Tertiary sandstones.  相似文献   

12.
This paper reports on the complex relation between rock emplacement and remanence acquisition in tuffs deposited by pyroclastic density currents, disclosed by systematic measurements of the anisotropy of magnetic susceptibility and natural remanent magnetization (NRM). Thermal demagnetization shows that the NRM consists of two components with different blocking-temperature spectra. The direction of the low-temperature component is consistent with the geocentric axial dipole value, whereas the high-temperature component has dispersed directions. The magnetic fabric is oblate, the magnetic foliation is close to the bedding and the lineations are generally dispersed along a girdle within the foliation plane. The directions of the magnetic lineation and the high-temperature remanence component of individual specimens are close to each other. This correspondence suggests that the high blocking-temperature grains acquired a remanence aligned to their long dimension before deposition, while cooling within the explosive cloud and the moving pyroclastic current. Thereafter, during deposition, the traction processes at the base of the current oriented the grains along the flow direction and affected both fabric and high-temperature remanence. This NRM component results from mechanical orientation of previously magnetized grains and is thus detrital in origin. A second, thermal component was then acquired during the cooling of the low blocking-temperature grains after deposition. These results show that NRM in fine-grained pyroclastic rocks is affected by the Earth’s magnetic field as well as the emplacement processes and that magnetic fabric data are essential to unravel its complex nature.  相似文献   

13.
We performed deformation experiments on a foliated mylonite under high temperature and pressure conditions in this study. To investigate the effect of pre‐existing fabric on the rheology of rocks, our samples were drilled from natural mylonite with the cylinder axis parallel to the foliation (PAR) and perpendicular to the foliation (PER). We performed 25 tests on seven PAR samples and 21 tests on seven PER samples at temperatures ranging from 600 to 890 °C, confining pressures ranging from 800 to 1400 MPa, and steady‐state strain rates of 1 × 10−4, 1 × 10−5 and 2.5 × 10−6 s−1. In the temperatures of 600–700 °C, the deformation is accommodated by semi‐brittle flow, with the average stress exponent being 6–7 assuming power law flow; in the temperature range of 800–890 °C, deformation is mainly by plastic flow, with an average stress exponent of n = 3 and activation energies of Q = 354 ± 52 kJ/mol (PER and PAR samples). The experimental results show that the strengths of PER samples are higher than those of PAR samples. Deformation microstructures have been studied by optical and electron microscopy. The original foliation of PER samples is destroyed by deformation and replaced by a new foliation, but the deformation of PAR samples followed the original foliation. Electron backscatter diffraction (EBSD) measurements show a strong lattice preferred orientation (LPO) of the quartz c axis fabrics of the starting samples and deformed PER and PAR samples. However, the c axis fabric of quartz in experimentally deformed PER and PAR samples varied with temperature and strain rate is different from that seen in the starting mylonite sample. The initial quartz c axis fabric of the starting mylonite sample has been transformed into a new fabric during experimental deformation. Dehydration melting of biotite and hornblende occurred in both PER and PAR samples at temperatures of 800–890 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A method of kinematic analysis of structures, microstructuresand mineral preferred orientations, initially devised in the study of peridotites, has been applied to crustal rocks bearing evidence of large strains produced in metamorphic environments. Three tectonic lineaments (Angers-Lanvaux, Montagne Noire and Maydan) were selected. They illustrate a general situation arising in continental crusts when they are deformed by ductile transcurrent fault systems.The Angers-Lanvaux structure is bilaterally symmetric; its dominant feature is the horizontal stretching lineation which is parallel to the fold axes. The foliation and slaty cleavage in the most surficial formations wrap around the axis of the whole structure. The folds in the slates away from the axis also exhibit axes parallel to the general trend, but no stretching lineations. These folds are attributed to crustal shortening in a direction normal to the ductile fault. In the Montagne Noire recumbent folds are thrusted away from the axis of the structure over at least 25 km. The metamorphism is also centered on the structure and symmetrically reduced away from it. The core of the structure is occupied by a strongly lineated orthogneiss, cut by a late intrusive granite. The Maydan axial zone displays clear evidence of partial melting at various scales within the deformed gneisses: (1) in gashes perpendicular to the stretching lineation which in these anatectic formations tends to plunge at more than 45°; (2) in bands of deformed pegmatites; and (3) possibly in granites which on the one hand intrude the surrounding formations and on the other converge with increasing deformation on the fault zone. The quartz preferred orientations and microstructures in quartzite layers from Angers indicate that the plastic flow plane and direction lie, respectively, close to the foliation and lineation, the slight departure is ascribed to a flow with a rotational shear component.All this suggests a general model for the origin of such ductile zones. The horizontal relative displacement of crustal blocks along a ductile band is responsible for its overall steeply dipping foliation and horizontal lineations. Viscous heating progressively tends to concentrate the plastic flow along its axis. It is also responsible for the development of metamorphism and of anatexis at depth; the partially melted rocks tend to rise, building at shallower depth the arched structure in the axis of the ductile zone, with a continuing flowage parallel to this axis probably now in the solid state; they can also intrude the surrounding terrain as undeformed batholiths. The folds parallel to the stretching lineation in the axial zone are explained by the fact that, due to the escape of anatectic melts, the formations at depth flow in a narrowing channel. The upwelling of the axial structure induces a compression with folding in the surrounding sedimentary formations and gravity nappe sliding away from the axis.  相似文献   

15.
黄土高原粉尘物质的搬运、沉积过程与来自中高纬度地区的季风密切相关。研究冬季风演化历史将有助于深入理解全球变化背景下,东亚地区气候变化的动力机制。通过对黄土高原的磁组构研究发现:1)各向异性度(P)与磁面理度(F)相关性较高,因此各向异性主要由磁面理引起,磁化率椭球体为压扁状;2)磁面理大致水平,K3近垂直于水平面;3)黄土平均磁面理为1.007,古土壤为1.004,古土壤层的磁面理与各向异性度均要低于其下伏的母质黄土层。成土作用在某种程度上破坏了黄土的原生磁组构;4)P,F和粉尘粒度间具有一定内在联系,一般而言冬季风越强,搬运的粉尘颗粒越粗,从而导致在沉积过程中形成较高的磁面理;5)K1方向的等面积赤平投影图和玫瑰花图解表明,末次间冰期以来该地区的主导风向为NW向冬季风。  相似文献   

16.
Automated electron backscattered diffraction (EBSD) was applied using a scanning electron microscope to obtain lattice preferred orientation (LPO) data for olivine in garnet peridotites of the Central Alps. As a reference frame, the LPOs of enstatite were also investigated. In the garnet peridotite at Cima di Gagnone (CDG), a weak foliation carrying a distinct lineation is present. The lineation is characterized by elongated enstatite, olivine and poikiloblastic garnet. Olivine shows a very unusual LPO with [100] normal to foliation and [001] parallel to lineation. Achsenverteilungsanalyse (AVA) maps demonstrate that [001] of olivine grains corresponds quite well to their maximum length axes which are preferentially parallel to the lineation. Numerous planar hydrous defects within (001) planes of olivine are marked by palisades of ilmenite rods and show a preferred orientation normal to lineation. Calculated P-wave velocities for CDG are fastest (8.32 km sу) normal to foliation with a relatively low anisotropy (2.9%). Compared to mantle peridotites with the usual (010)[100] LPO where the fastest Vp direction is towards the lineation, the relationship between flow geometry and seismic anisotropy is significantly different at CDG. Several mechanisms for the formation of the LPO type at CDG are considered, with glide possible on (100)[001] of olivine. On the basis of field data as well as petrographic and petrologic evidence, it has been demonstrated that the CDG garnet peridotite formed by prograde metamorphism from a hydrous protolith at pressures and temperatures of about 3.0 GPa and 750 °C, respectively. The CDG LPO is interpreted to have formed during hydrous subduction zone metamorphism. The same interpretation may hold for the previously investigated olivine LPO at Alpe Arami, which is similar to that at the nearby CDG. The observed anomalous LPO is no proof for ultradeep (>3.0 GPa) conditions.  相似文献   

17.
The mineral assessment programme of Gabon, carried out during the 1980s, showed a 2870 Ma old igneous mafic-ultramafic complex in the Kango area that was first considered to be made up of five separate intrusions associated with Cr---Ni geochemical anomalies. Following the study of the regional relief, the surface materials and the petrography, a heavily incised zone has been selected where outcrops were abundant enough to reasonably define the structure of the complex. Therefore, where observed, the igneous body looks like a subvertical 1–2 km wide dyke composed of an early unit of cumulus feldspathic bronzitites and norites and a late gabbroic unit showing a chilled border against the Archean gneisses. The strike variation of gneisses foliation shows a right-lateral fault of the N40° fracture responsible for the emplacement of the dyke. The mafic-ultramafic complex presents some alkaline late-magmatic and cataclastic effects only along the N170° fractures that affect the dyke by a left-lateral fault. The very same petrography of the other mafic-ultramafic igneous bodies and their relationship with the fractures of the gneisses basement make it possible to interpret the different intrusions as a great dyke some 100 km long within Gabon and possibly extending into equatorial Guinea.  相似文献   

18.
《Gondwana Research》2014,25(2):736-755
The ~ 183 Ma old Karoo Large Igneous Province extends across southern Africa and is related to magmatism in Antarctica (west Dronning Maud Land and Transantarctic Mountains) and parts of Australasia. Intrusive events, including the emplacement of at least ten dyke swarms, occurred between ~ 183 Ma and ~ 174 Ma. We review here the field evidence, structure and geochronology of the dyke swarms and related magmatism as it relates to melt sources and the mantle plume hypothesis for the Karoo LIP. Specifically, the magma flow-related fabric(s) in 90 dykes from five of these swarms is reviewed, paying particular attention to those that converge on triple junctions in southern Africa and Antarctica. The northern Lebombo and Rooi Rand dyke swarms form an integral part of the Lebombo monocline, which converges upon the Karoo triple junction at Mwenezi, southern Zimbabwe. Dykes of the Northern Lebombo dyke swarm (182–178 Ma) appear to have initially intruded vertically, followed later by lateral flow in the youngest dykes. In dykes of the Okavango dyke swarm (178 Ma) there is evidence of steep magma flow proximal to the triple junction, and lateral flow from the southeast to the northwest in the distal regions. This is consistent with the Karoo triple junction and the shallow mantle being a viable magma source for both these dyke swarms. In the Rooi Rand dyke swarm (174 Ma) there is also evidence of vertical and inclined magma flow from north to south. This flow direction cannot be reconciled with the Karoo triple junction, as the northern termination of the Rooi Rand dyke swarm is in east-central Swaziland. The Jutulrøra and Straumsvola dyke swarms of Dronning Maud Land display evidence of sub-vertical magma flow in the north and lateral flow further south. The regional pattern of magma flow is therefore not compatible with direction expected from the Weddell Sea triple junction. The overall flow pattern in Karoo dykes is consistent with the triple junction being an important magma source. However, the Limpopo Belt and Kaapvaal Craton have significantly controlled the structure and distribution of the Lebombo and Save–Limpopo monoclines and the Okavango dyke swarm. The locus of magma flow in dykes of Dronning Maud Land is at least 500 km from the Karoo triple junction, as is the apparent locus for the Rooi Rand dyke swarm. In comparison with recent modelling of continental assembly, the structure and flow of the dyke swarms, linked with geochronology and geochemistry, suggests that thermal incubation during Gondwana assembly led to Karoo magmatism. A plate tectonic, rather than a fluid dynamic plume explanation, is most reasonably applicable to the development of the Karoo LIP which does not bear evidence of a deep-seated, plume source.  相似文献   

19.
The Upper Jurassic Sithonia ophiolite of Chalkidiki (NE Greece) provides the opportunity to study the processes of the formation of fossil oceanic crusts in detail. This ophiolite consists from top to base of:
  1. an over 900 m thick succession of shallow-water sediments frequently interlayered with basic volcanics;
  2. an about 700 m thick basaltic layer which predominantly consists of hyaloclastics;
  3. an excellently developed sheeted dyke complex which is at least 1.2 km thick. It is the main scope of this study.
The sheeted dyke complex consists entirely of dykes. They have intruded each other preferably along their margins. Two groups of dykes may be distinguished. The first group comprises those dykes which were obviously formed within the active spreading zone. These dykes make up the structure of the sheeted complex. They are in average 3.9 m thick and do not display a clear polarity of their chilled margins. The dykes of the second group were formed later, i.e. off-ridge. They are up to 0.8 m thick and almost always symmetrically chilled. The general strike of the dykes is N 54° E. This direction is almost perpendicular to the major tectonic units of Chalkidiki. The geometrical relations between the dykes can be best explained by formation at an oscillatory spreading axis. Available geological and geochemical data suggest a low to very low spreading rate. A periodic process of dyke injection is recognized. The dyke injection periods are of variable duration. This together with the restricted and variable magmatic differentiation within the different periods points towards a nonsteady state magma chamber beneath the spreading axis. The off-ridge dykes impart valuable information as regards the spreading direction and the relative position of the paleoridge. Some ideas about the spreading rate may also be obtained from these dykes. The shallow-water conditions during the sedimentation may be explained as due to the tectonic uplift of the Upper Jurassic oceanic crust possibly along a transcurrent fault. This interpretation is supported by other geological observations.  相似文献   

20.
Beaufort's Dyke is a submarine depression located in the North Channel of the Irish Sea. With a maximum depth of 312 m, the dyke is one of the deepest areas within the European continental shelf. Integration and interpretation of 450 km of sparker seismic data and full‐coverage bathymetric data derived from multi‐beam echo sounder surveys allow for the investigation of the formation processes of Beaufort's Dyke and the evolution of geomorphological features within it. The dyke, formed by composite subglacial processes dominated by subglacial meltwater discharge, is interpreted as a tunnel valley. The regional isolation of Beaufort's Dyke may be explained by the bounding of the North Channel by the bedrock masses of Ireland and Scotland, coupled with the exploitation of structural weakness along a fault plane and presence of halite in the eroded substrate enhancing the erosive potential of the overlying glacier. Beaufort's Dyke has probably been maintained as an open feature by strong rectilinear tidal currents. The morphology of lunate sediment waves and a large parabolic bedform towards the south of the dyke contradict the observed dominant S–N mean hydrodynamic flow recorded within the North Channel, suggesting an alternative hydrodynamic regime either within the dyke or during bedform creation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号