首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Anfeg batholith (or composite laccolith) occupies a large surface (2000 km2) at the northern tip of the Laouni terrane, just south of Tamanrasset in Hoggar. It is granodioritic to granitic in composition and comprises abundant enclaves that are either mafic microgranular enclaves (MME) or gneissic xenoliths. It intruded an Eburnian (≈2 Ga) high-grade basement belonging to the LATEA metacraton at approximately 608 Ma (recalculated from the U–Pb dating of [Tectonics 5 (1986) 955]) and cooled at approximately 4 kbar, with a temperature of about 750 °C. This emplacement occurred mainly along subhorizontal thrust planes related to Pan-African subvertical mega-shear zones close to the attachment zone of a strike-slip partitioned transpression system. Although affected by some LILE mobility, the Anfeg batholith can be ascribed to a high-K calc-alkaline suite but characterized by low heavy REE contents and high LREE/HREE ratios. The MME belong to the Anfeg magmatic trend while some xenoliths belong to Neoproterozoic island arc rocks.The Anfeg batholith defines a Nd–Sr isotopic initial ratios trend (Nd/(87Sr/86Sr)i from −2.8/0.7068 to −11.8/0.7111) pointing to a mixing between a depleted mantle and an old Rb-depleted granulitic lower crust. Both sources have been identified within LATEA and elsewhere in the Tuareg shield (Nd/87Sr/86Sr)i of +6.2/0.7028 for the depleted mantle, −22/0.708 for the old lower crust.The model proposed relates the above geochemical features to a lithospheric delamination along the subvertical mega-shear zones that dissected the rigid LATEA former passive margin without major crustal thickening (metacratonization) during the general northward tectonic escape of the Tuareg terranes, a consequence of the collision with the West African craton. This delamination allowed the uprise of the asthenosphere. In turn, this induced the melting of the asthenosphere by adiabatic pressure release and of the old felsic and mafic lower crust due to the high heat flow. A gradient in the mantle/crust ratio within the source of the Pan-African magmatism is observed in LATEA from the northeast (Egéré-Aleksod terrane) where rare plutons are rooted within the Archaean/Eburnian basement to the southwest (Laouni terrane) where abundant batholiths, including Anfeg, have a mixed signature. Some mantle melts with only slight crustal contamination (Laouni troctolitic layered intrusions) are even present. This suggests that the southern boundary of LATEA microcontinent is not far south of the Tuareg shield.  相似文献   

2.
The Saghro Group consists of a thick volcanic-sedimentary sequence with intercalated basaltic lavas, the first magmatic event in eastern Saghro area. Nd isotopes of basaltic pillow lavas show TDM model ages ranging from 640 to 580 Ma, which represent a maximum age for basalt eruption.Granitoids within the Saghro Group consist of a charnockitic suite, tonalites, granodiorites and monzogranites. They are high-K calc-alkaline (HKCA) with a post-collisional character, and were emplaced at high-levels in the crust. Their ages of emplacement are within the 580–560 Ma bracket, implying that the entire Saghro Group is slightly older than or partly coeval to granitoid emplacement and implying a common geodynamical setting. Sr–Nd isotopic compositions and Nd TDM model ages point to a mixed origin, combining a juvenile mantle source and an Eburnean crustal component, which could be the West African Craton (WAC). The juvenile component in the Saghro granitoids could be the depleted upper mantle that has sourced the earlier basalts.Field observations, geochemical and geochronological data together support that, during the Pan-African orogeny, the Anti-Atlas was subjected to a regional transpressional to transtensional event. This event would have been responsible for the dissection of the northern margin of the WAC into several blocks, the development of deep sedimentary basins and the emplacement of HKCA magmas.  相似文献   

3.
The Atesina Volcanic District, the Monte Luco volcanics, and the Cima d'Asta, Bressanone-Chiusa, Ivigna, Monte Croce and Monte Sabion intrusions, in the central-eastern Southern Alps, form a wide calc-alkaline association of Permian age (ca. 280–260 Ma). The magmatism originated during a period of post-orogenic extensional/transtensional faulting which controlled the magma ascent and emplacement. The magmatic products are represented by a continuum spectrum of rock types ranging from basaltic andesites to rhyolites, and from gabbros to monzogranites, with preponderance of the acidic terms. They constitute a metaluminous to weakly peraluminous series showing mineralogical, petrographic and chemical characteristics distinctive of the high-K calc-alkaline suites. In the MORB-normalized trace element diagrams, the most primitive volcanic and plutonic rocks (basaltic andesites and gabbros with Mg No.=66 to 70; Ni=25 to 83 ppm; Cr=248 to 679 ppm) show LILE and LREE enriched patterns with troughs at Nb–Ta and Ti, a distinctive feature of subduction-related magmas. Field, petrographic, geochemical and isotopic evidence (initial 87Sr/86Sr ratios from 0.7057 to 0.7114; εNd values from −2.7 to −7.4; ∂18O values between 7.6 and 9.5‰) support a hybrid nature for both volcanic and plutonic rocks, originating through complex interactions between mantle-derived magmas and crustal materials. Only the scanty andalusite–cordierite and orthopyroxene–cordierite bearing peraluminous granites in the Cima d'Asta and Bressanone-Chiusa intrusive complexes can be interpreted as purely crustal melts (initial 87Sr/86Sr=0.7143–0.7167; initial εNd values between −7.9 and −9.6, close to average composition of the granulitic metasedimentary crust from the Ivrea Zone in the western Southern Alps). Although the Permian magmatism shows geochemical characteristics similar to those of arc-related suites, palaeogeographic restorations, and geological and tectonic evidence, seem not to support any spatial and/or temporal connection with subduction processes. The magmatism is post-collisional and post-orogenic, and originated in a regime of lithospheric extension and attenuation affecting the whole domain of the European Hercynian belt. A change in the convergence direction between Gondwana and Laurasia, combined with the effects of gravitational collapse of the Hercynian chain, could have been the driving mechanism for lithosphere extension and thinning, as well as for upwelling of hot asthenosphere that caused thermal perturbation and magma generation. In the above context, the calc-alkaline affinity and the orogenic-like signature of the Permian magmatism might result from extensive contamination of basaltic magmas, likely derived from enriched lithospheric mantle source(s), with felsic crustal melts.  相似文献   

4.
Historically, the Tuareg shield is divided into three parts bordered by mega-shear zones with the centre, the Central Polycyclic Hoggar, characterized by Archaean and Palaeoproterozoic lithologies. Nearly 10 years ago, the Tuareg shield was shown to be composed of 23 displaced terranes [Geology 22 (1994) 641] whose relationships were deciphered in Aïr to the SE [Precambr. Res. 67 (1994) 59]. The Polycyclic Central Hoggar terranes were characterized by the presence of well preserved Archaean/Palaeoproterozoic and Neoproterozoic lithologies.We show here that the terranes from Central Hoggar (Laouni, Azrou-n-Fad, Tefedest, Egéré-Aleksod) belonged to a single old passive margin, to which we gave the acronym name LATEA, which behaved as a craton during the Mesoproterozoic and the Early-Middle Neoproterozoic but was partly destabilized and dissected during the Late Neoproterozoic as a consequence of its involvement as a passive margin in the Pan-African orogen.An early Pan-African phase consisted of thrust sheets including garnet-bearing lithologies (eclogite, amphibolite, gneiss) that can be mapped and correlated in three LATEA terranes. In the Tin Begane area, PTt paths have been established from>15 kbar––790 °C (eclogite) to 4 kbar––500 °C (greenschist retrogression) through 12 kbar––830 °C (garnet amphibolite) and 8 kbar––700 °C (garnet gneiss), corresponding to the retrograde path of a Franciscan-type loop. Sm–Nd geochronology on minerals and laser ablation ICP-MS on garnet show the mobility of REE, particularly LREE, during the retrograde greenschist facies that affects, although slightly, some of these rocks. The amphibolite-facies metamorphism has been dated at 685 ± 19 Ma and the greenschist facies at 522 ± 27 Ma. During the thrust phase, the Archaean–Palaeoproterozoic basement was only locally affected by the Pan-African tectonics. LATEA behaved as a craton. Other juvenile terranes were also thrust early onto LATEA: the Iskel island arc at ≈850 Ma to the west of LATEA, the Serouenout terrane in the 700–620 Ma age range to the east. No subduction-related magmas have intruded LATEA during this epoch, which behaved as a passive margin.During the main Pan-African phase (625–580 Ma), LATEA was dissected by mega-shear zones that induced several hundreds km of relative displacement and allowed the emplacement of high-K calc-alkaline batholiths. Smaller movements continued till 525 Ma, accompanied by the emplacement of subcircular plutons with alkaline affinity. Here is dated the Ounane granodiorite (624 ± 15 Ma; 87Sr/86Sri=0.70839 ± 0.00016; 6WR, MSWD=0.87) and the Tisselliline granite (552 ± 15 Ma; 87Sr/86Sri=0.7074 ± 0.0001; 5WR, MSWD=1.4). Nd isotopes indicate a preponderant Palaeoproterozoic crustal source for these two plutons: Nd=−14 to −21 at 624 Ma and TDM=1650–2320 Ma for Ounane and Nd=−13 to −15 at 555 Ma and TDM=1550–1720 Ma for Tisselliline. Our model links these intrusions to a linear lithospheric delamination along mega-shear zones, allowing the hot asthenosphere to rise, melt by adiabatic pressure release and inducing the melting of the Palaeoproterozoic and Archaean lower crust.The LATEA cratonic microcontinent remained however sufficiently rigid to preserve Archaean and Palaeoproterozoic lithologies as well as Middle Neoproterozoic oceanic thrust sheets. This corresponds to the notion of metacraton [J. African Earth Sci. 34 (2002) 119], i.e. a craton that has been remobilized during an orogenic event but is still recognizable dominantly through its rheological, geochronological, isotopic and sometimes petrological characteristics.  相似文献   

5.
The Nagoundéré Pan-African granitoids in Central North Cameroon belong to a regional-scale massif, which is referred to as the Adamawa-Yade batholith. The granites were emplaced into a ca. 2.1 Ga remobilised basement composed of metasedimentary and meta-igneous rocks that later underwent medium- to high-grade Pan-African metamorphism. The granitoids comprise three groups: the hornblende–biotite granitoids (HBGs), the biotite ± muscovite granitoids (BMGs), and the biotite granitoids (BGs). New Th–U–Pb monazite data on the BMGs and BGs confirm their late Neoproterozoic emplacement age (ca. 615 ± 27 Ma for the BMGs and ca. 575 Ma for the BGs) during the time interval of the regional tectono-metamorphic event in North Cameroon. The BMGs also show the presence of ca. 926 Ma inheritances, suggesting an early Neoproterozoic component in their protolith.The HBGs are characterized by high Ba–Sr, and low K2O/Na2O ratios. They show fairly fractionated REE patterns (LaN/YbN 6–22) with no Eu anomalies. The BMGs are characterized by higher K2O/Na2O and Rb/Sr ratios. They are more REE-fractionated (LaN/YbN = 17–168) with strong negative Eu anomalies (Eu/Eu* = 0.2–0.5). The BGs are characterized by high SiO2 with K2O/Na2O > 1. They show moderated fractionated REE patterns (LaN/YbN = 11–37) with strong Eu negative anomalies (Eu/Eu* = 0.2–0.8) and flat HREE features (GdN/YbN = 1.5–2.2). In Primitive Mantle-normalized multi-element diagrams, the patterns of all rocks show enrichment in LILE relative to HFSE and display negative Nb–Ta and Ti anomalies. All the granitoids belong to high-K calc-alkaline suites and have an I-type signature.Major and trace element data of the HBGs are consistent with differentiation of a mafic magma from an enriched subcontinental lithospheric mantle, with possible crustal assimilation. In contrast, the high Th content, the LREE-enrichment, and the presence of inherited monazite suggest that the BGs and BMGs were derived from melting of the middle continental crust. Structural and petrochemical data indicate that these granitoids were emplaced in both syn- to post-collision tectonic settings.  相似文献   

6.
The Central African Belt in the Nkambe area, northwestern Cameroon represents a collisional zone between the Saharan metacraton and the Congo craton during the Pan-African orogeny, and exposes a variety of granitoids including foliated and massive biotite monzogranites in syn- and post-kinematic settings. Foliated and massive biotite monzogranites have almost identical high-K calc-alkaline compositions, with 73–67 wt.% SiO2, 17–13 wt.% Al2O3, 2.1–0.9 wt.% CaO, 4.4–2.7 wt.% Na2O and 6.3–4.4 wt.% K2O. High concentrations of Rb (264–96 ppm), Sr (976–117 ppm), Ba (3680–490 ppm) and Zr (494–99 ppm), with low concentrations of Y (mostly< 20 ppm with a range 54–6) and Nb (up to 24 ppm) suggest that the monzogranites intruded in collisional and post-collisional settings. The Sr/Y ratio ranges from 25 to 89. K, Rb and Ba resided in a single major phase such as K-feldspar in the source. Garnet was present in the source and remained as restite at the site of magma generation. This high K2O and Sr/Y granitic magma was generated by partial melting of a granitic protolith under high-pressure and H2O undersaturated conditions where garnet coexists with K-feldspar, albitic plagioclase. CHIME (chemical Th–U-total Pb isochron method) dating of zircon yields ages of 569 ± 12–558 ± 24 Ma for the foliated biotite monzogranite and 533 ± 12–524 ± 28 Ma for the massive biotite monzogranite indicating that the collision forming the Central African Belt continued in to Ediacaran (ca 560 Ma).  相似文献   

7.
Rutile, as an important component in alluvial or eluvial heavy mineral deposits, is known in southern Cameroon. These deposits are underlain by the Neoproterozoic low- to high-grade Yaoundé Group. Geochemical, thermometric, fluid inclusion and Pb isotopic studies of the rutile from alluvial and eluvial concentrates and from medium-grade micaschist from the nearby Yaoundé region permit the following conclusions: (1) alluvial and eluvial rutile of the Yaoundé region are derived from the degradation of metapelites, metamafic rocks and pegmatites of the nearby Yaoundé Group; (2) rutile in the Yaoundé Group formed during the Pan-African metamorphism, or was inherited as detrital rutile from a 900 Ma source. The study also shows that the rutile can be used to trace the history of the Pan-African belt north of the Congo craton.  相似文献   

8.
We report whole-rock geochemistry and Sr–Nd–Pb isotopic compositions of mafic dykes intruded in the Precambrian granito-gneissic basement complex, exposed at Nyos, Batibo, Dschang and Foumban on the Cameroon Line. The dykes are alkaline (Batibo), transitional (Foumban), and subalkaline (Nyos, Batibo and Dschang) with SiO2 of 45–54 wt% and MgO of 2–9 wt%, similar to dykes reported in other areas of the Cameroon Line (CL) and the Central Atlantic Magmatic Province (CAMP). The abundances of rare earth elements (REE) and the Primitive Mantle normalised patterns for the Nyos, Batibo and Dschang dykes are similar to those of MORB, indicating that the dykes formed at shallower depths by a higher degree of partial melting relative to the Foumban dykes and the alkaline lavas of the CL. The transitional basaltic dykes with steeper REE patterns have their sources at deeper levels in the lithospheric mantle, possibly the garnet-spinel transition zone and were generated by a lower degree partial melting of the lithospheric and plume components. The Nyos and Batibo subalkaline dykes show similar isotopic compositions with a spectrum extending from depleted (DMM-like) to enriched (EM1-like) mantle, indicating the similarity in their source components. The Dschang dykes show distinct isotopic characteristics with relatively unradiogenic Nd-Pb isotope compositions compared to the Batibo and Nyos dykes. The Foumban transitional dykes with characteristic wide ranges in Sr-Nd-Pb isotopic compositions reveal varying contributions from enriched mantle components (EM1 and EM2) in addition to its plume signature similar to those of CL lavas. The Nyos and Batibo dykes alongside other dykes on the CL have low TiO2 abundances (<2 wt%), negative PM-normalised Nb-anomalies, and moderately to strongly enriched REE patterns, and isotopic composition that overlaps with those of CAMP, suggesting a similar lithospheric origin.  相似文献   

9.
Striking characteristics of the western Neoproterozoic belt of Cameroon (NFBC) are the large volume of granitoids and crustal-scale shear zones. New structural and geochronological data from this area are provided to put constraints on the tectonic evolution of this segment of the belt and to make further correlations between major shear zones exposed on both sides of the Atlantic Ocean.

Three different complexes have been identified in the study area: the migmatitic complex of Foumbot (MCF), the metagranitoid complex of Bangwa (BC), and the Batié pluton (BP). The MCF was intruded by the BC, while the BP cuts through the BC. U–Pb zircon dating of metaleucogranite and metagranodiorite of the BC yielded concordant to subconcordant ages of 638 ± 2 Ma and 637 ± 5 Ma, respectively. A concordant U–Pb zircon age of 602 ± 1.4 Ma has been obtained from porphyrogranite of the BP. These ages are interpreted as emplacement ages. Continuous deformation from magmatic to solid-state flow along the BP margins and the (sub)parallelism of the steep solid-state foliation in the BP margins with the foliation in the surrounding BC and MFC suggest synkinematic emplacement of the BP along crustal-scale NNE to ENE-trending strike–slip shear zones. Subhorizontal foliations in migmatitic-gneiss xenoliths found in the BC suggest that the major transcurrent motion was preceded by thrusting.

The new data confirm previous assumptions that the western NFBC is equivalent to parts of the Borborema province of Brazil. There are geochronological correlations between the studied (meta)granitoids and Brasiliano pre- to syn-transcurrent granitoids of the Borborema province.  相似文献   


10.
The talcschists of the Boumnyebel area (southern Cameroon) form ≤ 30 m thick discontinuous layers within a Pan-African nappe unit (Yaoundé group), which includes, at the base, muscovite + biotite ± garnet micaschists associated with amphibolites and pyroxenites, and, at the top, muscovite + biotite + garnet + kyanite micaschists locally associated with marble and amphibolites. The metamorphic peak (∼650 °C/9.5 kbar; ca. 620 Ma) postdates nappe emplacement. Isograds are in normal position, micaschists passing downwards to migmatites in the northwestern part of the area studied. The rock types in the lower part of this nappe suggest active margin environments with detrital input from a nearby continental crust (arc or back-arc context).  相似文献   

11.
王盟  张进江  戚国伟  郑勇  刘凯 《岩石学报》2014,30(10):3051-3061
桑树园子剪切带位于中天山南缘,经历了多期韧性变形事件。对其变形样式和变形历史进行深入研究有利于加深对天山造山带构造演化的认识。本文对剪切带北部发生强烈韧性变形的岩石进行变形样式及相关年代学研究,识别出一期早志留世右旋剪切运动。该期走滑剪切事件造成部分前寒武纪斜长角闪岩发生深熔作用形成浅色脉体,使花岗闪长岩发生强烈的糜棱岩化石,并伴随同构造花岗质脉体的侵入。斜长角闪岩中浅色脉体中的锆石具弱的振荡环带或无环带,Th/U比值较低,具深熔作用中新生锆石的特点,其206Pb/238U加权平均年龄为430.1Ma。糜棱状花岗闪长岩样品锆石核部LAICPMS U-Pb年龄为496.3Ma,是中天山北缘古天山洋向南俯冲的记录。其锆石的变质增生边给出430.5Ma的年龄,记录了花岗闪长岩遭受后期糜棱岩化改造的时间。侵入花岗闪长岩中的同构造花岗质脉体也给出较为一致的432.9Ma的锆石结晶年龄。这一年龄范围与中天山北缘古天山洋盆闭合的时间一致,因此桑树园子剪切带北部在~430Ma的右旋走滑事件可能是吐哈地块与中天山碰撞事件的陆内响应。  相似文献   

12.
Alpine deformation in the Grimsel granodiorite (Aar massif, Central Alps) at greenschist facies conditions (6.5 ± 1 kbar for 450°C ± 25°C) is characterized by the development of a network of centimetre to decametre localized shear zones that surround lenses of undeformed granodiorite. Localization of deformation is assumed to be the result of a first stage of extreme localization on brittle precursors (nucleation stage) followed by a transition to ductile deformation and lateral propagation into the weakly deformed granodiorite (widening stage). A paradox of this model is that the development of the ductile shear zone is accompanied by the crystallization of large amounts of phyllosilicates (white mica and chlorite) that maintains a weak rheology in the localized shear zone relative to the host rock so that deformation is localized and prevents shear zone widening. We suggest that chemical processes, and more particularly, the metamorphic reactions and metasomatism occurring during re‐equilibration of the metastable magmatic assemblage induced shear zone widening at these P–T–X conditions. These processes (reactions and mass transfer) were driven by the chemical potential gradients that developed between the thermodynamically metastable magmatic assemblage at the edge of the shear zone and the stable white mica and chlorite rich ultramylonite formed during the first stage of shear zone due to localized fluid infiltration metasomatism. PT and chemical potential projections and sections show that the process of equilibration of the wall rocks (μ–μ path) occurs via the reactions: kf + cz + ab + bio + MgO + H2O = mu + q + CaO + Na2O and cz + ab + bio + MgO + H2O = chl + mu + q + CaO + Na2O. Computed phase diagram and mass balance calculations predict that these reactions induce relative losses of CaO and Na2O of ~100% and ~40% respectively, coupled with hydration and a gain of ~140% for MgO. Intermediate rocks within the strain gradient (ultramylonite, mylonite and orthogneiss) reflect various degrees of re‐equilibration and metasomatism. The softening reaction involved may have reduced the strength at the edge of the shear zone and therefore promoted shear zone widening. Chemical potential phase diagram sections also indicate that the re‐equilibration process has a strong influence on equilibrium mineral compositions. For instance, the decrease in Si‐content of phengite from 3.29 to 3.14 p.f.u, when white mica is in equilibrium with the chlorite‐bearing assemblage, may be misinterpreted as the result of decompression during shear zone development while it is due only to syn‐deformation metasomatism at the peak metamorphic condition. The results of this study suggest that it is critical to consider chemical processes in the formation of shear zones particularly when deformation affects metastable assemblages and mass transfer are involved.  相似文献   

13.
华家岭-葫芦河韧性剪切带呈NWW走向,属北祁连造山带与中祁连地块分界断裂,通过对其几何学、运动学、动力学等分析研究,认为峰期变形系加里东末期南北两大板块汇聚碰撞,拼合于华北板块南缘的软质陆壳(北祁连)向南侧刚性的中祁连地块斜向逆冲叠覆,从而产生自NEE向SWW兼右行走滑的逆冲式韧性剪切活动。  相似文献   

14.
唐哲民  陈方远 《岩石学报》2007,23(12):3309-3316
位于苏鲁超高压变质地体南部的中国大陆科学钻探工程(CCSD)主孔深度1596~2038m的榴辉岩段和2038~2500m的片麻岩段之间存在一条厚一百余米的韧性剪切带(深度2010~2145m).韧性剪切带由糜棱岩化退变榴辉岩、花岗质糜棱岩等强应变岩石组成,韧性剪切带的面理倾向SEE,倾角由上部平均52°向中、下部平均32°转变,拉伸线理产状与面理倾向近一致,是220~200Ma期间折返应变的产物.糜棱岩化退变榴辉岩和花岗质糜棱岩的显微构造与石英晶格优选方位显示了折返阶段早期自SEE向NWW逆冲剪切指向以及后期自NWW向SEE正滑剪切指向转化的应变行为.CCSD主孔2010~2145m韧性剪切带的形成与它位于以榴辉岩为主的岩性.构造单元与其下以片麻岩为主的岩性.构造单元的界线附近有密切联系.第一期超高压阶段南北向韧性剪切作用形成的叶理、拉伸线理产状及相关的岩石类型与第二期、第三期阶段SEE-NWW向折返变形明显不同.  相似文献   

15.
Ion microprobe U–Pb dating of zircons from Neoproterozoic volcano-sedimentary sequences in Cameroon north of the Congo craton is presented. For the Poli basin, the depositional age is constrained between 700–665 Ma; detrital sources comprise ca. 920, 830, 780 and 736 Ma magmatic zircons. In the Lom basin, the depositional age is constrained between 613 and 600 Ma, and detrital sources include Archaean to Palaeoproterozoic, late Mesoproterozoic to early Neoproterozoic (1100–950 Ma), and Neoproterozoic (735, 644 and 613 Ma) zircons. The Yaoundé Group is probably younger than 625 Ma, and detrital sources include Palaeoproterozoic and Neoproterozoic zircons. The depositional age of the Mahan metavolcano-sedimentary sequence is post-820 Ma, and detrital sources include late Mesoproterozoic (1070 Ma) and early Neoproterozoic volcanic rocks (824 Ma). The following conclusions can be made from these data. (1) The three basins evolved during the Pan-African event but are significantly different in age and tectonic setting; the Poli is a pre- to syn-collisional basin developed upon, or in the vicinity of young magmatic arcs; the Lom basin is post-collisional and intracontinental and developed on old crust; the tectono-metamorphic evolution of the Yaoundé Group resulted from rapid tectonic burial and subsequent collision between the Congo craton and the Adamawa–Yade block. (2) Late Mesoproterozoic to early Neoproterozoic inheritance reflects the presence of magmatic event(s) of this age in west–central Africa.  相似文献   

16.
A lower amphibolite Alpine shear zone from the Fibbia metagranite (Gotthard Massif, Central Alps) has been studied to better understand the parameters controlling strain localization in granitic rocks. The strain gradient on the metre‐scale shows an evolution from a weakly deformed metagranite (QtzI–KfsI–AbI–BtI ± PlII–ZoI–PhgI–Grt) to a fine banded ultramylonite (QtzII–KfsII–AbII–PlII–BtII–PhgII ± Grt–ZoII). Strain localization is coeval with dynamic recrystallization of the quartzofeldspathic matrix and a modal increase in mica, at the expense of K‐feldspar. The continuous recrystallization of plagioclase during deformation into a very fine‐grained assemblage forming anastomosed ribbons is interpreted as the dominant process in the shear zone initiation and development. The shear zone initiated under closed‐system conditions with the destabilization of metastable AbI–ZoI porphyroclasts into fine‐grained (20–50 μm sized) AbII–PlII aggregates, and with minor crystallization of phengite at the expense of K‐feldspar. The development of the shear zone requires a change in state of the system, which becomes open to externally derived fluids and mass transfer. Indeed, mass balance calculations and thermodynamic modelling show that the ultramylonite is characterized by gains in CaO, FeO and H2O. The progressive input of externally derived CaO drives the continuous metamorphic recrystallization of the fine‐grained AbII–PlII aggregate into a more PlII‐rich and finer aggregate. Input of water favours the crystallization of phengite at the expense of K‐feldspar to form an interconnected network of weak phases. Thus, recrystallization of 50% of the bulk rock volume would induce a decrease of the strength of the rock that might contribute to the development of the shear zone. This study emphasizes the major role of metamorphic reactions and more particularly plagioclase on strain localization process. Plagioclase represents at least one‐third of the bulk rock volume in granitic systems and forms a stress‐supporting framework that controls the rock rheology. Therefore, recrystallization of plagioclase due to changes in P–T conditions and/or bulk composition must be taken into account, together with quartz and K‐feldspar, in order to understand strain localization processes in granites.  相似文献   

17.
The Palimé–Amlamé Pluton (PAP) in southern Togo, consists of silica-rich to intermediate granitoids including enclaves of mafic igneous rocks and of gneisses. They are commonly called the “anatectic complex of Palimé–Amlamé” and without any convincing data, they were interpreted either as synkinematic Pan-African granitoids or as reworked pre Pan-African plutons. New field and petrological observations, mineral and whole-rock chemical analyses together with U–Pb zircon dating, have been performed to evaluate the geodynamic significance of the PAP within the Pan-African orogenic belt. With regard to these new data, the granitoids and related enclaves probably result from mixing and mingling processes between mafic and silicic magmas from respectively mantle and lower crust sources. They display Mg–calc-alkaline chemical features and present some similarities with Late Archaean granites such as transitional (K-rich) TTGs and sanukitoids.

The 2127 ± 2 Ma age obtained from a precise U/Pb concordia on zircon, points out a Paleoproterozoic age for the magma crystallization and a lower intercept at 625 ± 29 Ma interpreted as rejuvenation during Pan-African tectonics and metamorphism. Based on these results, a Pan-African syn to late orogenic setting for the PAP, i.e. the so-called “anatectic complex of Palimé–Amlamé”, can be definitively ruled out. Moreover according to its location within the nappe pile and its relationships with the suture zone, the PAP probably represents a fragment of the West African Craton reactivated during the Pan-African collision.  相似文献   


18.
东天山"秋格明塔什-黄山韧性剪切带"是一条多期活动且持续时间很长的韧性剪切变形变质带,介于北部的康古尔塔格-黄山断裂和南部的雅满苏-苦水断裂之间。在研究其空间展布特征、变形组构、演化序列、力学性质、剪切位移量以及变形时代的基础上,对其与成矿的关系进行了初步探讨。  相似文献   

19.
Crustal-scale shear zones may act as prominent electrical conductors given that sufficient amounts of graphite or fluids are present. There are several graphite-enriched shear zones within the 583-m-deep Rittsteig drilling (Bavaria, Germany), two of which are of major importance. One shear zone cuts through Moldanubian biotite-muscovite schists at 320 m depth. The other shear zone separates Teplá-Barrandian amphibolites from Moldanubian biotite-muscovite schists at 460 m depth. To detect these shear zones adjacent to the drilling, the self-potential method and the non-linear impedance spectroscopy have been applied. From the new data, obtained from hole-to-surface and surface measurements, we conclude that (1) graphite is pervasively distributed within the Rittsteig shear zones resulting in powerful electronic conductors, (2) the graphite-bearing shear zones are dipping moderately towards the S, and (3) the shear zone drilled at 320 m depth extends to the Earths surface where it has been detected ca. 400 m to the N of the drilling. As the graphite-bearing shear zones of both the Rittsteig drilling and the German Continental Deep Drilling (KTB) developed in the brittle-ductile regime of quartzofeldspathic rocks, we argue that the brittle-ductile boundary layer may act as a significant graphite attractor in the continental crust.
Gernold ZulaufEmail: Phone: +49-9131-8522617Fax: +49-9131-8529295
  相似文献   

20.
New microstructural data on the mylonites from the well‐exposed Palmi shear zone (southern Calabria) are presented with the aim to shed light on both the kinematics and the geometry of the southwestern branch of the Alpine belt during Eocene. In the study area, located between the Sardinia–Corsica block and the Calabria–Peloritani terrane, previous large‐scale geodynamic reconstructions suggest the presence of strike–slip or transform fault zones dissecting the southwestern branch of the Alpine belt. However, there are no field data supporting the occurrence of these structures. This paper uses vorticity analysis technique based on the aspect ratio and the long axis orientation of rigid porphyroclasts in mylonitic marbles and mylonitic granitoids, to estimate the contribution of pure and simple shear of deformation during the movement of the Palmi shear zone. Porphyroclasts aspect ratio and orientation were measured on thin sections using image analysis. Estimates of the vorticity number, Wm, indicate that the Palmi shear zone recorded general shear with a contribution of pure shear of c. 65%. Then, the Palmi shear zone can be interpreted as a segment of a left‐lateral transpressive bend along the southern termination of the Eocene Alpine front. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号