首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This sketch is based on the following line of thought. If we understand by (physical or dynamical) time the independent variable in the equations of motion, only quantities which are in a strictly linear relationship with this mechanical — physical time should properly be called time. This excludes therefore such concepts as e.g., sidereal time; in general that Earth Rotation Parameter which is one of the angles which define the orientation in space of a coordinate system fixed in a rigid model Earth. The relationships between these Eulerian angles and the ERP which follow from the theory of motion are discussed, also for the case that the reference system is an arbitrary noninertial system whose relationship (as a function of time) with an inertial system is known.  相似文献   

2.
Rust (1974) stated that the classical (e.g., Doppler) explanations of the cosmological red shift contradict the results of astronomical observations of the period of changes in the brightness of supernovae. This paper is an attempt at explaining this discrepancy between observations and the theoretical predictions on the grounds of a hypothesis published by the author (Bellert, 1969). That hypothesis explains the cosmological red shift by the geometry of the space of events, which is a static space.We regret to report that, soon after the submission of this paper, Professor Bellert passed away on 27 March, 1976 in Warsaw.  相似文献   

3.
This paper reports on the time and frequency standard system for the Five-hundred meter Aperture Spherical radio Telescope(FAST),including the system design,stability measurements and pulsar timing observations.The stability and drift rate of the frequency standard are calculated using 1-year monitoring data.The UTC-NIM Disciplined Oscillator(NIMDO)system improves the system time accuracy and stability to the level of 5 ns.Pulsar timing observations were carried out for several months.The weighted RMS of timing residuals reaches the level of less than 3.0μs.  相似文献   

4.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Bianchi type-I universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The model obtained approaches isotropy. The cosmological term tends asymptotically to a genuine cosmological constant, and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

5.
《New Astronomy Reviews》1999,43(6-7):425-429
We present an account of the current understanding of Sakurai's object. Since its discovery in early 1996 this star has shown a highly remarkable evolution in terms of brightness, spectrum and energy distribution. All observational facts are in agreement with the notion that Sakurai's object is undergoing a late helium flash. Despite the theory estimate that about 10% of all low mass stars will experience such an event, a late He-flash is an exceedingly rare observational event due to its brief duration. Therefore Sakurai's object offers a unique opportunity to witness stellar evolution in “real time”; in fact it is the first such opportunity for modern instrumentation.  相似文献   

6.
The inertial and gravitational mass of electromagnetic radiation (i.e., a photon distribution) in a cavity with reflecting walls has been treated by many authors for over a century. After many contending discussions, a consensus has emerged that the mass of such a photon distribution is equal to its total energy divided by the square of the speed of light. Nevertheless, questions remain unsettled on the interaction of the photons with the walls of the box. In order to understand some of the details of this interaction, a simple case of a single photon with an energy Eν=hν bouncing up and down in a static cavity with perfectly reflecting walls in a constant gravitational field g, constant in space and time, is studied and its contribution to the weight of the box is determined as a temporal average.  相似文献   

7.
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach’s cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach’s cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρa −4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.  相似文献   

8.
Choudhary  Debi Prasad  Gary  G. Allen 《Solar physics》1999,188(2):345-364
The high-resolution H images observed during the decay phase of a long-duration flare on 23 March 1991 are used to study the three-dimensional magnetic field configuration of the active region NOAA 6555. Whereas all the large flares in NOAA 6555 occurred at the location of high magnetic shear and flux emergence, this long-duration flare was observed in the region of low magnetic shear at the photosphere. The H loops activity started soon after the maximum phase of the flare. There were a few long loop at the initial phase of the activity. Some of these were sheared in the chromosphere at an angle of about 45° to the east-west axis. Gradually, an increasing number of shorter loops, oriented along the east-west axis, started appearing. The chromospheric Dopplergrams show blue shifts at the end points of the loops. By using different magnetic field models, we have extrapolated the photospheric magnetograms to chromospheric heights. The magnetic field lines computed by using the potential field model correspond to most of the observed H loops. The height of the H loops were derived by comparing them with the computed field lines. From the temporal evolution of the H loop activity, we derive the negative rate of appearance of H features as a function of height. It is found that the field lines oriented along one of the neutral lines were sheared and low lying. The higher field lines were mostly potential. The paper also outlines a possible scenario for describing the post-flare stage of the observed long-duration flare.  相似文献   

9.
James M. Ryan 《Solar physics》1986,105(2):365-382
Much of the evidence for second stage particle acceleration in solar flares lies in the temporal variation of solar X- and -ray emissions. However, the solar flare X- and -ray burst time-intensity profiles are governed not only by the production or acceleration of electrons and protons but by the propagation of these particles in the solar atmosphere. The effects of particle propagation on X-ray and -ray time profiles are illustrated and compared through the use of three models with the result that a variety of particle propagation schemes reproduce effects commonly associated with second stage acceleration. The first model is that of a closed uniform density trap. The other two models employ particle diffusion from a trap to denser regions of the solar atmosphere to produce the high energy radiation. These calculations show that delayed peaking of the photon flux with respect to particle production and reduction in the impulsiveness of the high energy emission is to be expected, effects commonly associated with second stage acceleration. Thus, well understood physical processes are capable of producing so-called time delays in the high energy emission independent of any delays produced by additional particle acceleration processes. Diagnostic differences between these models are also discussed.  相似文献   

10.
By adopting the Newman–Penrose–Jogia–Griffith formalism, the field equations in Einstein–Cartan theory for matter with spin creating torsion in space–time are solved in a spherically symmetric space–time by assuming only one non-vanishing component of spin. The exact solution might be the prototype for more realistic models.  相似文献   

11.
The non-canonical Hamiltonian dynamics of a triaxial gyrostat in Newtonian interaction with two punctual masses is considered. This serves as a model for the study of the attitude dynamics of a spacecraft located at a Lagrangian equilibrium point of the system formed by a binary asteroid and a spacecraft. Using geometric-mechanics methods, the approximated dynamics that arises when developing the potential in series of Legendre functions and truncating the series to the second harmonics is studied. Working in the reduced problem, the existence of equilibria in Lagrangian form are studied, in analogy with classic results on the topic. In this way, the classical results on equilibria of the three-body problem, as well as other results by different authors that use more conventional techniques for the case of rigid bodies, are generalized. The rotational Poisson dynamics of a spacecraft located at a Lagrangian equilibrium and the study of the nonlinear stability of some important equilibria are considered. The analysis is done in vectorial form avoiding the use of canonical variables and the tedious expressions associated with them.  相似文献   

12.
We present an analysis of the long-term evolution of outbursts in the neutron star soft X-ray transient GRS 1747–312. Observations taken from ASM/RXTE, in the 1.5–12 keV passband, are utilized. We reveal a cyclic behavior in the residuals of the outburst recurrence time with respect to the mean value of TC = 136 ± 2 days. The profile of this cycle is approximately sinusoidal; the remaining cycle-to-cycle fluctuations possess a considerably smaller amplitude. We find that, although the peak flux of the outbursts displays a significant scatter at a given phase of the cycle, the most luminous outbursts occur after the longest TC. The fluence displays a large scatter for the individual outbursts and tends to decrease with time. We argue that although the cycle-length of ~5.4 yr is compatible with that of the presumed magnetic activity of the late-type donor, it cannot be explained by variations of the mass outflow from the donor to the disk. In our interpretation, the stellar activity is translated to variations of TC via interaction of the magnetic field of the spots on the donor with the magnetic field of the disk. This gives rise to a variable efficiency of the removal of the angular momentum from the quiescent disk during the activity cycle of the donor. This mechanism can be strengthened by accompanying variations of the radius of the optically thin advection-dominated accretion flow in quiescence. We show that the peak mass accretion rate onto the neutron star in the individual outbursts of GRS 1747–312 is considerably more stable than in two other similar systems with frequent outbursts, Aql X-1 and 4U 1608–52; this allows the cyclic modulation of TC to show itself in GRS 1747–312.  相似文献   

13.
Omnidirectional intensities of electrons with energies Ee > 1·5 MeV detected by a low orbiting polar satellite (GRS-A/AZUR) in the outer radiation belt are examined during disturbed times including the main phase of a very strong geomagnetic storm on 8 March 1970. The particle intensity features are discussed in relationship with proposed magnetospheric processes. It is found that a superposition of the two following effects can explain the particle behavior in the trapping region:(A) Radial diffusion. After the southward turning of the interplanetary field an inward motion of both the energetic electron belt and the plasmapause took place. This effect was observed at L > 3 RE and we attribute it to enhanced magnetospheric electric field fluctuations. Later, a strong interplanetary shock impinged upon the magnetosphere which was related to the triggering of intense magnetospheric substorms; a further inward diffusion occurred at L ? 3 RE, accompanied by an inward movement of the electron slot. A rough estimation of the diffusion coefficient leads to a power spectrum of the electric field fluctuations which seems to be consistent with experimentally determined power spectra (Mozer, 1971).(B) Adiabatic response to ring current changes. Large energetic electron intensity decreases within the outer radiation belt are shown to be adiabatic changes due to ring current variations. The influence of the inflation of the magnetosphere due to the developing ring current is simultaneously observed by the decrease of the solar proton outoff (1·7-2·5 MeV).  相似文献   

14.
15.
In this paper, we present the analysis of the stellar system HIP 101227 to determine the actual number of components in the system, and their properties. We use dynamical modeling and complex spectrophotometric(involving atmospheric modeling) techniques with recent data, to determine the physical properties and orbital solution for the system, respectively, with better accuracy than past studies. Based on our analysis, we found that the system is more consistent with being a quadruple rather than a binary or a triple system as suggested by previous studies. The total mass of the system determined from our SED analysis is 3.42 ± 0.20 M, which is distributed almost equally between the four stars. The stars are found to be zero-age main sequence stars; i.e., at the last stage of pre-main sequence, with age less than 200 Myr and spectral types K0. All four stars have very similar physical characteristics, suggesting that the fragmentation process is the most likely theory for the formation and evolution of the system.  相似文献   

16.
We revisit the rotation dynamics of a rigid satellite with either a liquid core or a global subsurface ocean. In both problems, the flow of the fluid component is assumed inviscid. The study of a hollow satellite with a liquid core is based on the Poincaré–Hough model which provides exact equations of motion. We introduce an approximation when the ellipticity of the cavity is low. This simplification allows to model both types of satellite in the same manner. The analysis of their rotation is done in a non-canonical Hamiltonian formalism closely related to Poincaré’s “forme nouvelle des équations de la mécanique”. In the case of a satellite with a global ocean, we obtain a seven-degree-of-freedom system. Six of them account for the motion of the two rigid components, and the last one is associated with the fluid layer. We apply our model to Titan for which the origin of the obliquity is still a debated question. We show that the observed value is compatible with Titan slightly departing from the hydrostatic equilibrium and being in a Cassini equilibrium state.  相似文献   

17.
18.
Alfvén wave turbulence is considered as the source of the non-thermal line broadenings observed in soft X-rays in solar flares. The waves are assumed to lose energy to particle acceleration and the temporal development for the case of Fermi acceleration,W(k)k –2, is investigated. The decay of the wave energy density is compared to that of the non-thermal velocity for the event of 1980 June 29. The wave energy densities required to explain the degree of non-thermal broadening and its temporal characteristics are consistent with those typically inferred from-ray observations. A relationship between the degree of non-thermal broadening and-ray fluxes is predicted. In general, the larger the-ray flux the shorter the time scales for the decay of the wave energy.  相似文献   

19.
On getting motivation from increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data, Einstein’s field equations with variable cosmological “constant” are considered in presence of perfect fluid for a homogeneous and anisotropic Bianchi type-I space-time. Einstein’s field equations are solved by considering a time dependent deceleration parameter which affords a late time acceleration in the universe. The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by consequences from recent supernovae Ia observations. From recently developed Statefinder pair, the behavior of different stages of the evolution of the universe has been studied. The physical significance of the cosmological models have also been discussed.  相似文献   

20.
Hypersurface–homogeneous cosmological models containing a bulk viscous fluid with time varying G and Λ have been presented. We have shown that the field equations are solvable for any arbitrary cosmic scale function. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of the energy density. Exact solutions of Einstein’s field equations are obtained which represent an expanding, shearing and accelerating/decelerating models of the universe. The physical and kinematical behaviours of the models are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号