首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a "clinopyroxene paradox". The highest magnesium.bearing MORB sample E13-3B (MGO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the "clinopyroxene paradox".  相似文献   

2.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO–Al2O3 and negative MgO–Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a “clinopyroxene paradox”. The highest magnesium-bearing MORB sample E13-3B (MgO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4 ±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure ~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the “clinopyroxene paradox”.  相似文献   

3.
On the basis of the first systematic mapping of Ua Pou, longknown for its exceptionally abundant phonolites, we estimatethat these rocks cover 65% of the surface of the island whereasmafic lavas cover 27% and intermediate ones 8%. The silica-undersaturatedsuite was erupted in a restricted time span (2·9–2·35Myr), following the emplacement of tholeiites derived from ayoung HIMU-type source at c. 4 Ma. Primitive basanites, derivedfrom a heterogeneous mantle source with a dominant EM II + HIMUsignature, represent likely parental magmas. The series is characterizedby a Daly gap defined by a lack of phonotephrites. We considerthat the most likely model for the origin of evolved lavas ispartial melting at depth of primitive basanites, leaving anamphibole-rich residuum and producing tephriphonolitic magmas.These tephriphonolitic magmas may have evolved by closed-systemfractional crystallization towards Group A phonolites. Threeother groups of phonolites could have been derived from tephriphonoliticmagmas by open-system fractional crystallization processes,characterized respectively by seawater contamination (GroupB), assimilation of nepheline syenite-type materials (GroupC) and extreme fractionation coupled with assimilation of theunderlying oceanic crust (Group D). The prominence of evolvedlavas is a consequence of their origin from partial meltingof mafic precursors followed by crustal contamination. KEY WORDS: Marquesas; French Polynesia; phonolite; partial melting; contamination  相似文献   

4.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

5.
Tertiary volcanic rocks from the Westerwald region range frombasanites and alkali basalts to trachytes, whereas lavas fromthe margin of the Vogelsberg volcanic field consist of morealkaline basanites and alkali basalts. Heavy rare earth elementfractionation indicates that the primitive Westerwald magmasprobably represent melts of garnet peridotite. The Vogelsbergmelts formed in the spinel–garnet peridotite transitionregion with residual amphibole for some magmas suggesting meltingof relatively cold mantle. Assimilation of lower-crustal rocksand fractional crystallization altered the composition of lavasfrom the Westerwald and Vogelsberg region significantly. Thecontaminating lower crust beneath the Rhenish Massif has a differentisotopic composition from the lower continental crust beneaththe Hessian Depression and Vogelsberg, implying a compositionalboundary between the two crustal domains. The mantle sourceof the lavas from the Rhenish Massif has higher 206Pb/204Pband 87Sr/86Sr than the mantle source beneath the Vogelsbergand Hessian Depression. The 30–20 Ma volcanism of theWesterwald apparently had the same mantle source as the QuaternaryEifel lavas, suggesting that the magmas probably formed in apulsing mantle plume with a maximum excess temperature of 100°Cbeneath the Rhenish Massif. The relatively shallow melting ofamphibole-bearing peridotite beneath the Vogelsberg and HessianDepression may indicate an origin from a metasomatized portionof the thermal boundary layer. KEY WORDS: continental rift volcanism; basanites; trachytes; assimilation; fractional crystallization; partial melting  相似文献   

6.
Pressures of Crystallization of Icelandic Magmas   总被引:1,自引:0,他引:1  
Iceland lies astride the Mid-Atlantic Ridge and was createdby seafloor spreading that began about 55 Ma. The crust is anomalouslythick (20–40 km), indicating higher melt productivityin the underlying mantle compared with normal ridge segmentsas a result of the presence of a mantle plume or upwelling centeredbeneath the northwestern edge of the Vatnajökull ice sheet.Seismic and volcanic activity is concentrated in 50 km wideneovolcanic or rift zones, which mark the subaerial Mid-AtlanticRidge, and in three flank zones. Geodetic and geophysical studiesprovide evidence for magma chambers located over a range ofdepths (1·5–21 km) in the crust, with shallow magmachambers beneath some volcanic centers (Katla, Grimsvötn,Eyjafjallajökull), and both shallow and deep chambers beneathothers (e.g. Krafla and Askja). We have compiled analyses ofbasalt glass with geochemical characteristics indicating crystallizationof ol–plag–cpx from 28 volcanic centers in the Western,Northern and Eastern rift zones as well as from the SouthernFlank Zone. Pressures of crystallization were calculated forthese glasses, and confirm that Icelandic magmas crystallizeover a wide range of pressures (0·001 to 1 GPa), equivalentto depths of 0–35 km. This range partly reflects crystallizationof melts en route to the surface, probably in dikes and conduits,after they leave intracrustal chambers. We find no evidencefor a shallow chamber beneath Katla, which probably indicatesthat the shallow chamber identified in other studies containssilica-rich magma rather than basalt. There is reasonably goodcorrelation between the depths of deep chambers (> 17 km)and geophysical estimates of Moho depth, indicating that magmaponds at the crust–mantle boundary. Shallow chambers (<7·1 km) are located in the upper crust, and probablyform at a level of neutral buoyancy. There are also discretechambers at intermediate depths (11 km beneath the rift zones),and there is strong evidence for cooling and crystallizing magmabodies or pockets throughout the middle and lower crust thatmight resemble a crystal mush. The results suggest that themiddle and lower crust is relatively hot and porous. It is suggestedthat crustal accretion occurs over a range of depths similarto those in recent models for accretionary processes at mid-oceanridges. The presence of multiple stacked chambers and hot, porouscrust suggests that magma evolution is complex and involvespolybaric crystallization, magma mixing, and assimilation. KEY WORDS: Iceland rift zones; cotectic crystallization; pressure; depth; magma chamber; volcanic glass  相似文献   

7.
Wolf volcano, an active shield volcano on northern Isabela Islandin the Galápagos Archipelago, has undergone two majorstages of caldera collapse, with a phase of partial calderarefilling between. Wolf is a typical Galápagos shieldvolcano, with circumferential vents on the steep upper carapaceand radial vents distributed in diffuse rift zones on the shallower-slopinglower flanks. The radial fissures continue into the submarineenvironment, where they form more tightly focused rift zones.Wolf's magmas are strikingly monotonous: estimated eruptivetemperatures of the majority of lavas span a total of only 22°C.This homogeneity is attributed to buffering of magmas as theyascend through a thick column of olivine gabbroic mush thathas been deposited from a thin, shallow (<2 km deep) subcalderasill that is in a thermochemical steady state. Wolf's lavashave the most depleted isotopic compositions of any historicallyactive intraplate ocean island volcano on the planet and haveisotopic compositions (except for 3He/4He) indistinguishablefrom mid-ocean ridge basalt erupted from the GalápagosSpreading Center (GSC) 250–410 km away from the peak ofinfluence of the Galápagos plume. Wolf's lavas are enrichedin incompatible trace elements and have systematic major elementdifferences relative to GSC lavas, however. Wolf's magmas resultfrom lower extents of melting, deeper melt extraction, and agreater influence of garnet compared with GSC magmas, but Wolfand the GSC share the same sources. These melt generation conditionsare attributed to melting in a thermal and mechanical boundarylayer of depleted asthenosphere at the margins of the Galápagosplume. The lower degrees of melting and extraction from deeperlevels result from a thicker lithospheric cap at Wolf than existsat the GSC. KEY WORDS: caldera; Galápagos; mush; partial melting; plume  相似文献   

8.
ODP Leg 209 Site 1274 mantle peridotites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg# (up to 0.92) and spinel Cr# (∼0.5), suggesting high degree of partial melting (>20%). Detailed studies of their microstructures show that they have extensively reacted with a pervading intergranular melt prior to cooling in the lithosphere, leading to crystallization of olivine, clinopyroxene and spinel at the expense of orthopyroxene. The least reacted harzburgites are too rich in orthopyroxene to be simple residues of low-pressure (spinel field) partial melting. Cu-rich sulfides that precipitated with the clinopyroxenes indicate that the intergranular melt was generated by no more than 12% melting of a MORB mantle or by more extensive melting of a clinopyroxene-rich lithology. Rare olivine-rich lherzolitic domains, characterized by relics of coarse clinopyroxenes intergrown with magmatic sulfides, support the second interpretation. Further, coarse and intergranular clinopyroxenes are highly depleted in REE, Zr and Ti. A two-stage partial melting/melt–rock reaction history is proposed, in which initial mantle underwent depletion and refertilization after an earlier high pressure (garnet field) melting event before upwelling and remelting beneath the present-day ridge. The ultra-depleted compositions were acquired through melt re-equilibration with residual harzburgites. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
Two picrite flows from the SW rift zone of Mauna Loa containxenoliths of dunite, harzburgite, lherzolite, plagioclase-bearinglherzolite and harzburgite, troctolite, gabbro, olivine gabbro,and gabbronorite. Textures and olivine compositions precludea mantle source for the xenoliths, and rare earth element concentrationsof xenoliths and clinopyroxene indicate that the xenolith sourceis not old oceanic crust, but rather a Hawaiian, tholeiitic-stagemagma. Pyroxene compositions, phase assemblages and texturalrelationships in xenoliths indicate at least two different crystallizationsequences. Calculations using the pMELTS algorithm show thatthe two sequences result from crystallization of primitive MaunaLoa magmas at 6 kbar and 2 kbar. Independent calculations ofolivine Ni–Fo compositional variability in the plagioclase-bearingxenoliths over these crystallization sequences are consistentwith observed olivine compositional variability. Two parentsof similar bulk composition, but which vary in Ni content, arenecessary to explain the olivine compositional variability inthe dunite and plagioclase-free peridotitic xenoliths. Xenolithsprobably crystallized in a small magma storage area beneaththe rift zone, rather than the large sub-caldera magma reservoir.Primitive, picritic magmas are introduced to isolated rift zonestorage areas during periods of high magma flux. Subsequenteruptions reoccupy these areas, and entrain and transport xenolithsto the surface. KEY WORDS: xenolith; Hawaii; volcano plumbing; mineral composition; picrite  相似文献   

10.
The origin of compositional heterogeneities among the magmas parental to mid-ocean ridge basalts (MORB) was investigated using a single rock piece of the olivine-phyric basalt from 43°N, Mid-Atlantic Ridge (AII D11-177). The exceptional feature of this sample is presence of very primitive olivine crystals (90–91 mol% Fo) that are significantly variable in terms of CaO (0.15–0.35 wt%). A population of low-Ca olivine (0.15–0.25 wt% CaO) is also notably distinct from high-Ca olivine population in AII D11-177, and primitive MORB olivine in general, in having unusual assemblage of trapped mineral and glass inclusions. Mineral inclusions are represented by high-magnesian (Mg# 90.7–91.1 mol%) orthopyroxene and Cr-spinel, distinctly enriched in TiO2 (up to 5 wt%, c.f. <1 wt% in common MORB spinel). Glass inclusions associated with orthopyroxene and high-Ti Cr-spinel have andesitic compositions (53–58 wt% SiO2). Compared to the pillow-rim glass and “normal” MORB inclusions, the Si-rich glass inclusions in low-Ca olivine have strongly reduced Ca and elevated concentrations of Ti, Na, K, P, Cl, and highly incompatible trace elements. Strong variability is recorded among glass inclusions within a single olivine phenocrysts. We argue that the observed compositional anomalies are mineralogically controlled, and thus may arise from the interaction between hot MORB magmas and crystal cumulates in the oceanic crust or magma chamber.  相似文献   

11.
Experimental melting studies were conducted on a nepheline mugearitecomposition to pressures of 31 kbar in the presence of 0–30%added water. A temperature maximum in the near-liquidus stabilityof amphibole (with olivine) was found for a water content of3·5 wt % at a pressure of 14 kbar. This is interpretedto have petrogenetic significance for the derivation of nephelinemugearite magmas from nepheline hawaiite by amphibole-dominatedfractional crystallization at depth within the lithosphericmantle. Synthetic liquids at progressively lower temperaturesrange to nepheline benmoreite compositions very similar to thoseof natural xenolith-bearing high-pressure lavas elsewhere, andsupport the hypothesis that continued fractional crystallizationcould lead to high-pressure phonolite liquids. Independent experimentaldata for a basanite composition modeled on a lava from the sameigneous province (the Newer Basalts of Victoria) permit theinference that primary asthenospheric basanite magmas undergopolybaric fractional crystallization during ascent, and mayevolve to liquids ranging from nepheline hawaiite to phonoliteupon encountering cooler lithospheric mantle at depths of 42–50km. Such a model is consistent with the presence in some evolvedalkalic lavas of both lithospheric peridotite xenoliths indicativeof similar depths and of megacryst suites that probably representdisrupted pegmatitic segregations precipitated from precursoralkalic magmas in conduit systems within lithospheric mantle. KEY WORDS: experiment; high pressure; alkalic magmas; amphibole; nepheline mugearite; basanite; lithosphere  相似文献   

12.
A Refined Solution to the First Terrestrial Pb-isotope Paradox   总被引:2,自引:2,他引:2  
The first terrestrial Pb-isotope paradox refers to the factthat on average, rocks from the Earth’s surface (i.e.the accessible Earth) plot significantly to the right of themeteorite isochron in a common Pb-isotope diagram. The Earthas a whole, however, should plot close to the meteorite isochron,implying the existence of at least one terrestrial reservoirthat plots to the left of the meteorite isochron. The core andthe lower continental crust are the two candidates that havebeen widely discussed in the past. Here we propose that subductedoceanic crust and associated continental sediment stored asgarnetite slabs in the mantle Transition Zone or mid–lowermantle are an additional potential reservoir that requires consideration.We present evidence from the literature that indicates thatneither the core nor the lower crust contains sufficient unradiogenicPb to balance the accessible Earth. Of all mantle magmas, onlyrare alkaline melts plot significantly to the left of the meteoriteisochron. We interpret these melts to be derived from the missingmantle reservoir that plots to the left of the meteorite isochronbut, significantly, above the mid-ocean ridge basalt (MORB)-sourcemantle evolution line. Our solution to the paradox predictsthe bulk silicate Earth to be more radiogenic in 207Pb/204Pbthan present-day MORB-source mantle, which opens the possibilitythat undegassed primitive mantle might be the source of certainocean island basalts (OIB). Further implications for mantledynamics and oceanic magmatism are discussed based on a previouslyjustified proposal that lamproites and associated rocks couldderive from the Transition Zone. KEY WORDS: Pb isotopes, paradox, mantle Transition Zone, undegassed mantle, core formation  相似文献   

13.
阿尔巴尼亚布尔其泽纯橄岩壳非常新鲜,主要由橄榄石、尖晶石和单斜辉石等矿物组成.其中橄榄石存在单斜辉石和铬尖晶石(磁铁矿)共生包裹体现象,包裹体矿物粒度在1~10 μm,有些甚至为纳米级200~500 nm.纯橄岩橄榄石的Fo值为94.7~96.0,铬尖晶石的Cr#为76.5~82.4,远高于蛇绿岩地幔橄榄岩中常见纯橄岩的铬值(Cr#>60).基于前人研究结果,提出这种现象是由于亏损方辉橄榄岩与含钛、铬、铁熔体发生交代作用,从而形成橄榄石的固溶体并存在Ti4+、Al3+、Ca2+、Fe3+,而部分Cr3+进入铬尖晶石结晶.后期由于岩体在抬升过程中降温,橄榄石中混溶的组分析出包裹体形成磁铁矿和铬尖晶石.并且依据铬尖晶石-橄榄石的矿物化学成分,识别出岩体内方辉橄榄岩相对较低的部分熔融程度约为30%~40%,纯橄岩部分熔融程度约为40%,表明不同岩相间其形成背景存在明显差异.因此,认为布尔奇泽蛇绿岩具有多阶段的过程,首先是在洋中脊环境下经历部分熔融作用形成了方辉橄榄岩,后受到俯冲环境(SSZ)的岩石-熔体反应生成更富Mg、Si和Cr等的熔体,致使地幔橄榄岩高度部分熔融,形成此类纯橄岩.   相似文献   

14.
The Southwest Indian Ridge (SWIR) at 9–16°E and 52–53°Sis characterized by ultra-slow, oblique spreading and containsone of the few documented occurrences of pyroxenite veins associatedwith abyssal peridotites. The origin of these uncommon lithologiesis still debated. We present a detailed study (including electronmicroprobe and laser ablation inductively coupled plasma massspectrometry) of spinel websterites collected during Cruise162, Leg 9, of the R.V. Knorr. Rare earth element patterns inclinopyroxenes (Cpx) lead us to discard a possible origin ofthe pyroxenites as residues from partial melting of garnet pyroxenites(i.e. relics of a layered mantle protolith). Their compositionand cumulate texture (when not obscured by mylonitization relatedto emplacement on the seafloor) are better interpreted in termsof fractional crystallization from a basaltic melt at relativelyhigh pressure. Evidence for a high pressure of crystallizationincludes the lack of plagioclase in the cumulate assemblageand the high Al2O3 contents of the pyroxenes: up to 5 wt % inorthopyroxene (Opx) and up to 7 wt % in Cpx. These values areamong the highest reported for pyroxenes in a mid-ocean ridgesetting. Sub-solidus breakdown of spinel to plagioclase (nowaltered) is observed in one sample, providing a rough estimateof the final equilibration pressure of these cumulates, around0· 6–0· 7 GPa (plagioclase–spineltransition for a bulk pyroxenite composition). The inferredpyroxenite parent melts were close to equilibrium with the associatedresidual peridotites; some samples have a slightly evolved compositionin terms of the Mg-number [Mg/(Mg + total Fe)]. These parentalmelts had major and trace element compositions consistent witha mid-ocean ridge basalt (MORB) affinity, although they werenot rigorously identical to MORB. Among other characteristics,these melts were relatively depleted in highly incompatibleelements. We propose that they correspond to the latest, shallowest,incremental melt fractions produced during fractional decompressionmelting of a normal MORB (N-MORB) mantle source. These meltsexperienced fractional crystallization as soon as they segregatedfrom the peridotite matrix, moved upward, and crossed the lithosphere–asthenosphereboundary (defined here as the base of the conductive lid). Asa consequence, these shallow melt fractions produced beneathmid-ocean ridges did not fully mix with melt fractions producedand extracted at greater depths. Our study provides concreteevidence for the actuality of pyroxene crystallization in meltchannels beneath mid-ocean ridges at relatively high pressures,a process frequently invoked to account for the ‘pyroxeneparadox’ in MORB petrogenesis. KEY WORDS: abyssal pyroxenites; cumulates; lithospheric mantle; melt migration; Southwest Indian Ridge  相似文献   

15.
One of the goals of igneous petrology is to use the subtle andmore obvious differences in the geochemistry of primitive basaltsto place constraints on mantle composition, melting conditionsand dynamics of mantle upwelling and melt extraction. For thisgoal to be achieved, our first-order understanding of mantlemelting must be refined by high-quality, systematic data oncorrelated melt and residual phase compositions under knownpressures and temperatures. Discrepancies in earlier data onmelt compositions from a fertile mantle composition [MORB (mid-oceanridge basalt) Pyrolite mg-number 87] and refractory lherzolite(Tinaquillo Lherzolite mg-number 90) are resolved here. Errorsin earlier data resulted from drift of W/Re thermocouples at1 GPa and access of water, lowering liquidus temperatures by30–80°C. We demonstrate the suitability of the ‘sandwich’technique for determining the compositions of multiphase-saturatedliquids in lherzolite, provided fine-grained sintered oxidemixes are used as the peridotite starting materials, and thechanges in bulk composition are considered. Compositions ofliquids in equilibrium with lherzolitic to harzburgitic residueat 1 GPa, 1300–1450°C in the two lherzolite compositionsare reported. Melt compositions are olivine + hypersthene-normative(olivine tholeiites) with the more refractory composition producinga lower melt fraction (7–8% at 1300°C) compared withthe model MORB source (18–20% at 1300°C). KEY WORDS: mantle melting; sandwich experiments; reversal experiments; anhydrous peridotite melting; thermocouple oxidation; olivine geothermometry  相似文献   

16.
 Picritic units of the Miocene shield volcanics on Gran Canaria, Canary Islands, contain olivine and clinopyroxene phenocrysts with abundant primary melt, crystal and fluid inclusions. Composition and crystallization conditions of primary magmas in equilibrium with olivine Fo90-92 were inferred from high-temperature microthermometric quench experiments, low-temperature microthermometry of fluid inclusions and simulation of the reverse path of olivine fractional crystallization based on major element composition of melt inclusions. Primary magmas parental for the Miocene shield basalts range from transitional to alkaline picrites (14.7–19.3 wt% MgO, 43.2–45.7 wt% SiO2). Crystallization of these primary magmas is believed to have occurred over the temperature range 1490–1150° C at pressures ≈5 kbar producing olivine of Fo80.6-90.2, high-Ti chrome spinel [Mg/ (Mg+Fe2+)=0.32–0.56, Cr/(Cr+Al)=0.50–0.78, 2.52–8.58 wt% TiO2], and clinopyroxene [Mg/(Mg+Fe)=0.79–0.88, Wo44.1-45.3, En43.9-48.0, Fs6.8-11.0] which appeared on the liquidus together with olivine≈Fo86. Redox conditions evolved from intermediate between the QFM and WM buffers to late-stage conditions of NNO+1 to NNO+2. The primary magmas crystallized in the presence of an essentially pure CO2 fluid. The primary magmas originated at pressures >30 kbar and temperatures of 1500–1600° C, assuming equilibrium with mantle peridotite. This implies melting of the mantle source at a depth of ≈100 km within the garnet stability field followed by migration of melts into magma reservoirs located at the boundary between the upper mantle and lower crust. The temperatures and pressures of primary magma generation suggest that the Canarian plume originated in the lower mantle at depth ≈900 km that supports the plume concept of origin of the Canary Islands. Received: 23 October 1995/Accepted: 21 February 1996  相似文献   

17.
The nature of the oceanic crust produced through rifting and oceanic spreading between North and South America during the Late Jurassic is a key element for the Caribbean plate tectonic model reconstruction. Located in the Cordillera Central of Hispaniola, the Loma La Monja volcano-plutonic assemblage (LMA) is composed of gabbros, dolerites, basalts, and oceanic sediments, as well as metamorphic equivalents, which represent a dismembered fragment of this proto-Caribbean oceanic crust. Petrologic and geochemical data show that the LMA have a relatively broad diversity in composition, which represent the crystallization products of a typical low-pressure tholeiitic fractionation of mid-ocean ridge basalts (MORB)-type parental magmas, ranging from N- to E-MORB. Three geochemical groups have been distinguished in the volcanic sequence: LREE-flat to slightly LREE-enriched basalts of groups II and III occur interlayered in the lower stratigraphic levels; and LREE-depleted basalts of group I in the upper levels. Mantle melt modeling suggests that group III magmas are consistent by mixing within a mantle melt column of low-degree (<1%) melts of a deep garnet lherzolite source and high-degree (>15%) melts of a shallow spinel source, and groups II and I magmas are explained with moderate to high (14–18%) and very high (>20%) fractional melting degrees of a shallower spinel mantle source, respectively. Thus, upward in the volcanic sequence of the LMA, the magmas represent progressively more extensive melting of shallower sources, in a plume-influenced spreading ridge of the proto-Caribbean oceanic crust. Nb/Y versus Zr/Y systematics combined with recent plate tectonic model reconstructions reveal that Caribbean Colombian oceanic plateau fragments in Hispaniola formed through melting of heterogeneous mantle source regions related with distinct plumes during at least from Aptian–Albian (>96 Ma) to Late Campanian.  相似文献   

18.
Olivine is the principal mineral of kimberlite magmas, and isthe main contributor to the ultramafic composition of kimberliterocks. Olivine is partly or completely altered in common kimberlites,and thus unavailable for studies of the origin and evolutionof kimberlite magmas. The masking effects of alteration, commonin kimberlites worldwide, are overcome in this study of theexceptionally fresh diamondiferous kimberlites of the Udachnaya-Eastpipe from the Daldyn–Alakit province, Yakutia, northernSiberia. These serpentine-free kimberlites contain large amountsof olivine (50 vol.%) in a chloride–carbonate groundmass.Olivine is represented by two populations (olivine-I and groundmassolivine-II) differing in morphology, colour and grain size,and trapped mineral and melt inclusions. The large fragmentalolivine-I is compositionally variable in terms of major (Fo85–94)and trace element concentrations, including H2O content (10–136ppm). Multiple sources of olivine-I, such as convecting andlithospheric mantle, are suggested. The groundmass olivine-IIis recognized by smaller grain sizes and perfect crystallographicshapes that indicate crystallization during magma ascent andemplacement. However, a simple crystallization history for olivine-IIis complicated by complex zoning in terms of Fo values and traceelement contents. The cores of olivine-II are compositionallysimilar to olivine-I, which suggests a genetic link betweenthese two types of olivine. Olivine-I and olivine-II have oxygenisotope values (+ 5·6 ± 0·1 VSMOW, 1 SD)that are indistinguishable from one another, but higher thanvalues (+ 5·18 ± 0·28) in ‘typical’mantle olivine. These elevated values probably reflect equilibriumwith the Udachnaya carbonate melt at low temperatures and 18O-enrichedmantle source. The volumetrically significant rims of olivine-IIhave constant Fo values (89·0 ± 0·2 mol%),but variable trace element compositions. The uniform Fo compositionsof the rims imply an absence of fractionation of the melt'sFe2+/Mg, which is possible in the carbonatite melt–olivinesystem. The kimberlite melt is argued to have originated inthe mantle as a chloride–carbonate liquid, devoid of ‘ultramafic’or ‘basaltic’ aluminosilicate components, but becameolivine-laden and olivine-saturated by scavenging olivine crystalsfrom the pathway rocks and dissolving them en route to the surface.During emplacement the kimberlite magma changed progressivelytowards an original alkali-rich chloride–carbonate meltby extensively crystallizing groundmass olivine and gravitationalseparation of solids in the pipe. KEY WORDS: kimberlite; olivine; partial melting; carbonatitic melt; oxygen isotopes; H2O  相似文献   

19.
The Neogene-Quaternary Harrat Rahat volcanic field is part of the major intercontinental Harrat fields in western Saudi Arabia.It comprises lava flows of olivine basalt and hawaiite,in addition to mugearite,benmorite,and trachyte that occur mainly as domes,tuff cones and lava flows.Based on opaque mineralogy and mineral chemistry,the Harrat Rahat volcanic varieties are distinguished into Group I(olivine basalt and hawaiite) and Group II(mugearite,benmorite and trachyte).The maximum forsterite content(~85) is encountered in zoned forsteritic olivine of Group I,whereas olivine of Group II is characterized by intermediate(Fo=50),fayalitic(Fo=25) and pure fayalite in the mugearite,benmorite and trachyte,respectively.The more evolved varieties of Group II contain minerals that show enrichment of Fe2+,Mn2+and Na+that indicates normal fractional crystallization.The common occurrence of coarse apatite with titanomagnetite in the benmorite indicates that P5+becomes saturated in this rock variety and drops again in trachyte.Cr-spinel is recorded in Group I varieties only and the Cr#(0.5) suggests lherzolite as a possible restite of the Harrat Rahat volcanics.The plots of Cr# vs.the forsterite content(Fo) suggest two distinct trends,which are typical of mixing of two basaltic magmas of different sources and different degrees of partial melting.The bimodality of Harrat Rahat Cr-spinel suggests possible derivation from recycled MORB slab in the mantle as indicated by the presence of high-Al spinel.It is believed that the subcontinental lithospheric mantle was modified by pervious subduction process and played the leading role in the genesis of the Harrat Rahat intraplate volcanics.The trachytes of the Harrat Rahat volcanic field were formed most probably by melting of a lower crust at the mantle-crust boundary.The increase in fO2 causes a decrease in Cr2 O3,and Al2 O3,and a strong increase in the proportion of Fe3+and Mg# of spinel crystallizing from the basaltic melt at T ~1200°C.The olivine-pyroxene and olivine-spinel geothermometers yielded equilibrium temperature in the range of 935-1025°C,whereas the range of <500-850°C from single-pyroxene thermometry indicates either post crystallization reequilibrium of the clinopyroxene,or the mineral is xenocrystic and re-equilibrated in a cooling basaltic magma.  相似文献   

20.
Petrogenesis of the Back-arc East Scotia Ridge, South Atlantic Ocean   总被引:9,自引:1,他引:9  
The East Scotia Ridge is an active back-arc spreading centrelocated to the west of the South Sandwich island arc in theSouth Atlantic Ocean, consisting of nine main segments, E1 (north)to E9 (south). Major and trace element and Sr–Nd–Pbisotope compositions are presented, together with water contents,for lavas sampled along the active ridge axis. Magmatism alongthe East Scotia Ridge is chemically heterogeneous, but thereis a common mid-ocean ridge basalt (MORB)-type source componentfor all the magmas. An almost unmodified MORB-source mantleappears to underlie the central part of the back-arc. Subductioncomponents are found at the northern and southern ends of theridge, and there is a marked sediment melt input of up to 2%in segment E4. Enriched (plume) mantle is present beneath segmentE2 at the northern end of the ridge, suggesting that plume mantleis flowing westward around the edges of the subducting slab.The southern part of segment E8 is unique in that its magmasource is similar to sub-arc depleted mantle. KEY WORDS: geochemistry; petrogenesis; volcanism; back-arc; subduction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号