首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF2, AlF3 and Ca5(PO4)3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis.  相似文献   

2.
Volcanoes can emit fine-sized ash particles (1–10 μm radii) into the atmosphere and if they reach the upper troposphere or lower stratosphere, these particles can have deleterious effects on the atmosphere and climate. If they remain within the lowest few kilometers of the atmosphere, the particles can lead to health effects in humans and animals and also affect vegetation. It is therefore of some interest to be able to measure the particle size distribution, mass and other optical properties of fine ash once suspended in the atmosphere. A new imaging camera working in the infrared region between 7–14 μm has been developed to detect and quantify volcanic ash. The camera uses passive infrared radiation measured in up to five spectral channels to discriminate ash from other atmospheric absorbers (e.g. water molecules) and a microphysical ash model is used to invert the measurements into three retrievable quantities: the particle size distribution, the infrared optical depth and the total mass of fine particles. In this study we describe the salient characteristics of the thermal infrared imaging camera and present the first retrievals from field studies at an erupting volcano. An automated ash alarm algorithm has been devised and tested and a quantitative ash retrieval scheme developed to infer particle sizes, infrared optical depths and mass in a developing ash column. The results suggest that the camera is a useful quantitative tool for monitoring volcanic particulates in the size range 1–10 μm and because it can operate during the night, it may be a very useful complement to other instruments (e.g. ultra-violet spectrometers) that only operate during daylight.  相似文献   

3.
Plinian plumes erupt with a bulk density greater than that of air, and depend upon air entrainment during their gas-thrust phase to become buoyant; if entrainment is insufficient, the column collapses into a potentially deadly pyroclastic flow. This study shows that strombolian ash plumes can be erupted in an initially buoyant state due to their extremely high initial gas content, and in such cases are thus impervious to column collapse. The high gas content is a consequence of decoupled gas rise in the conduit, in which particles are ultimately incidental. The relations between conduit gas flow, eruption style and plume density are explored here for strombolian scenarios and contrasted with conventional wisdom derived from plinian eruptions. Considering the inherent relation between gas content and initial plume density together with detailed measurements of plume velocities can help unravel ambiguities surrounding conduit processes, eruption styles and hazards at poorly understood volcanoes. Analysis of plume dynamics at Santiaguito volcano, Guatemala adds further support for a model involving decoupled gas rise in the conduit.  相似文献   

4.
Geostationary Operational Environmental Satellite (GOES) Imager and Sounder data were evaluated to determine the potential effects of volcanic ash detection without the use of a 12 μm infrared (IR) band, on GOES-M (12) through Q (a period of at least 10 years). Principal component analysis (PCA) images with and without 12 μm IR data were compared subjectively for six weak to moderate eruptions using pattern recognition techniques, and objectively by determining a false detection rate parameter. GOES Sounder data were also evaluated in a few instances to assess any potential contributions from the new 13.3 μm Imager band.Results indicated that, during periods of daylight, there was little apparent difference in the quality of IR detection without the 12 μm IR, likely due to a maximum in solar reflectance of silicate ash in a shortwave IR (SWIR) band centered near 3.9 μm. At night when SWIR reflectance diminished, the ash detection capability appeared to be significantly worse, evidenced by increased ambiguity between volcanic ash and meteorological clouds or surface features. The possible effects of this degradation on aviation operations are discussed. The new 13.3 μm IR band on GOES has the capability to help distinguish ash from cirrus clouds, but not from low level clouds consisting of water droplets.Multi-spectral data from higher resolution polar orbiting satellites may also be used to supplement analyses from lower resolution GOES for long-lived ash cloud events. The Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments appear to be the best options in accomplishing this, with additional satellite missions becoming available later in the decade. In summary, it will still be possible to observe and track significant volcanic ash clouds in the GOES-M through Q era (2003–2012) without the benefit of 12 μm IR data, but with some degradation that will be most significant at night.  相似文献   

5.
During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate , duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's  1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.  相似文献   

6.
7.
Improved prediction and tracking of volcanic ash clouds   总被引:2,自引:1,他引:2  
During the past 30 years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality.  相似文献   

8.
Correlation of distal ash deposits with their proximal counterparts mainly relies on chemical and mineralogical characterization of bulk rock and matrix glasses. However, the study of juvenile fragments often reveals the heterogeneity in terms of clast shape, external surface, groundmass texture and composition. This is particularly evident in small scale eruptions, characterized by a strong variability in texture and relative abundance of juvenile fragments. This heterogeneity introduces an inherent uncertainty, that makes the compositional data alone inadequate to unequivocally characterize the tephra bed. Pyroclast characteristics, if described and quantified, can represent an additional clue for the correct identification of the tephra.  相似文献   

9.
Data from a series of laboratory experiments show the relationships between measured correlation spectrometer (COSPEC) sulfur-dioxide (SO2) burdens, automatic gain control (AGC) deflections, and visible wavelength opacities in ash-laden plumes. The data show that the COSPEC reliably measures (within a 10% accuracy) SO2 burdens up to AGC deflections of 2 V and visible wavelength opacities of 50%. Beyond these limits, the under measurement of the SO2 burden is not well constrained. During typical COSPEC runs, these limits are rarely violated. The 10% error introduced by measuring ash-laden plumes is acceptable because the error is small relative to other error sources associated with the technique, especially plume velocity; and the error is correctable which allows for a wider range of plume conditions to be measured.These results imply that the densest SO2 concentrations near the volcanic source can be measured. This is important so that SO2 is not lost from the volcanic plume due to physical and chemical processes and that measurements are conducted under maximum signal to noise ratios.  相似文献   

10.
The plume height represents a crucial piece of evidence about an eruption, feeding later assessment of its size, character, and potential impact, and feeding real-time warnings for aviation and ground-based populations. There have been many observed discrepancies between different observations of maximum plume height for the same eruption. A comparison of maximum daily height estimates of volcanic clouds over Indonesia and Papua New Guinea during 1982–2005 shows marked differences between ground and satellite estimates, and a general tendency towards lower height estimates from the ground. Without improvements in the quality of these estimates, reconciled among all available methods, warning systems will be less effective than they should be and the world's record of global volcanism will remain hard to quantify. Examination of particular cases suggests many possible reasons for the discrepancies. Consideration of the satellite and radar cloud observations for the 1991 Pinatubo eruptions shows that marked differences can exist even with apparently good observations. The problem can be understood largely as a sampling issue, as the most widely reported parameter, the maximum cloud height, is highly sensitive to the frequency of observation. Satellite and radar cloud heights also show a pronounced clumping near the height of the tropopause and relative lack of eruptions reaching only the mid-troposphere, reinforcing the importance of the tropopause in determining the eruption height in convectively unstable environments. To reduce the discrepancies between ground and satellite estimates, a number of formal collaboration measures between vulcanological, meteorological and aviation agencies are suggested.  相似文献   

11.
Two groups of poorly sorted ash-rich beds, previously interpreted as rain-flushed ashes, occur in the ca. AD 180 Hatepe Plinian pumice fall deposit at Taupo volcano, New Zealand. Two ash beds with similar dispersal patterns and an aggregate thickness of up to 13 cm make up the lowermost group (A). Group A beds extend 45 km north-east of the vent and cover 290 km2. In the southern part of the group A distribution area, a coarse ash to lapilli-size Plinian pumice bed (deposit B) separates the two group A beds. The scarcity of lapilli (material seen elsewhere from the still-depositing pumice fall) in group A beds indicates that they were rapidly transported and deposited. However, this rapid transportation and deposition did not produce cross-bedding, nor did it erode the underlying deposits. It is proposed that thick (>600 m) but dilute gravity currents generated from the collapsing outer margin of the otherwise buoyant Hatepe Plinian eruption column deposited the group A beds. The upper ash beds (group C) consist of one to seven layers, attain an aggregate thickness of 35 cm, and vary considerably in thickness and number of beds with respect to distance from vent. Group C beds contain variable amounts of ash mixed with angular Plinian pumices and are genuine rain-flushed ashes. Several recent eruptions at other volcanoes (Ukinrek Maars, Vulcan, Rabaul, La Soufrère de Guadeloupe and Soufrière, St Vincent) have produced gravity currents similar in style, but much smaller than those envisaged for group A deposits. The overloaded margins of otherwise buoyant eruption plumes generated these gravity currents. Laboratory studies have produced experimental gravity current analogues. Hazards from dilute gravity currents are considerable but often overlooked, thus the recognition of gravity current deposits will contribute to more thorough volcanic hazard assessment of prehistoric eruption sequences.  相似文献   

12.
Volcanic eruptions produce ash clouds, which are a major hazard to population centers and the aviation community. Within the North Pacific (NOPAC) region, there have been numerous volcanic ash clouds that have reached aviation routes. Others have closed airports and traveled for thousands of kilometers. Being able to detect these ash clouds and then provide an assessment of their potential movement is essential for hazard assessment and mitigation. Remote sensing satellite data, through the reverse absorption or split window method, is used to detect these volcanic ash clouds, with a negative signal produced from spectrally semi-transparent ash clouds. Single channel satellite is used to detect the early eruption spectrally opaque ash clouds. Volcanic Ash Transport and Dispersion (VATD) models are used to provide a forecast of the ash clouds' future location. The Alaska Volcano Observatory (AVO) remote sensing ash detection system automatically analyzes satellite data of volcanic ash clouds, detecting new ash clouds and also providing alerts, both email and text, to those with AVO. However, there are also non-volcanic related features across the NOPAC region that can produce a negative signal. These can complicate alerts and warning of impending ash clouds. Discussions and examples are shown of these non-volcanic features and some analysis is provided on how these features can be discriminated from volcanic ash clouds. Finally, there is discussion on how information of the ash cloud such as location, particle size and concentrations, could be used as VATD model initialization. These model forecasts could then provide an improved assessment of the clouds' future movement.  相似文献   

13.
It is shown that the subareal volcanic system of the Earth evolves like individual volcanoes, preserving a constant average power. A simple model that allows the forecasting of extreme eruptions is proposed and discussed.  相似文献   

14.
The pattern of volcanic tremor accompanying the 1989 September eruption at the south-east summit crater of Mount Etna is studied. In specific, sixteen episodes of lava fountaining, which occurred in the first phase of the eruption, are analysed. Their periodic behaviour, also evidenced by autocorrelation, allows us to define the related tremor amplitude increases as intermittent volcanic tremor episodes. Focusing on the regular intermittent behaviour found for both lava fountains and intermittent volcanic tremors, we tried an a posteriori forecast using simple statistical methods based on linear regression and the Student’ t-test. We performed the retrospective statistical forecast, and found that several eruptions would have been successfully forecast. In order to focus on the source mechanism of tremor linked to lava fountains, we investigated the relationship between volcanic and seismic parameters. A mechanism based on a shallow magma batch ‘regularly’ refilled from depth is suggested.  相似文献   

15.
Leachates from ash samples of the Popocatépetl eruptions of April 30, 1996, May 12, 1997, and October 17, 1998 settled at different distances from the crater were analyzed for anions (SO42−, Cl, F) and some metals. This study is aimed at determining the causes of the compositional variations of the leachates, to assist the assessment of water, soil and crop contamination due to ash deposits. Different behavior was observed in the ion concentrations with distance for the three eruptions. On April 30, 1996, SO42− and F concentrations increased with distance, and Cl remained almost constant. On May 12, 1997, concentrations of the three anions decreased with distance. On October 17, 1998, F, Cl and SO42− increased more than three-fold with distance. Tephra size distributions were also different for the three eruptions. The observed trends of the leachates’ anion concentrations may have different causes: the type and intensity of the eruptions, the distribution of the tephra sizes, the degree of interaction of the tephras with volcanic gases, humidity, static charge, the original characteristics of the solid material, the transport time from the crater to the site of settling, and the relative angle between the wind direction and the sampling line. Enrichment factors and concentration trends for metals with distance suggest that Co, Ni, Cu and Pb in the leachates resulted mostly from volcanic gas adsorption.  相似文献   

16.
国外火山减灾研究进展   总被引:3,自引:1,他引:3  
徐光宇  皇甫岗 《地震研究》1998,21(4):397-405
概述了国外近期火山灾害减轻进展,内容包括:火山灾害分类,识别高危险性火山,灾害识别、评价和分带,火山监测和喷发预测。减轻火山灾害的工程措施以有火山应急管理等方面。并对几次重大火山喷发灾难实例作了介绍和分析比较  相似文献   

17.
PUFF and HAZMAP, two tephra dispersal models developed for volcanic hazard mitigation, are used to simulate the climatic 1991 eruption of Mt. Pinatubo. PUFF simulations indicate that the majority of ash was advected away from the source at the level of the tropopause (~ 17 km). Several eruptive pulses injected ash and SO2 gas to higher altitudes (~ 25 km), but these pulses represent only a small fraction (~ 1%) of the total erupted material released during the simulation. Comparison with TOMS images of the SO2 cloud after 71 and 93 h indicate that the SO2 gas originated at an altitude of ~ 25 km near the source and descended to an altitude of ~ 22 km as the cloud moved across the Indian Ocean. HAZMAP simulations indicate that the Pinatubo tephra fall deposit in the South China Sea was formed by an eruption cloud with the majority of the ash concentrated at a height of 16–18 km. Results of this study demonstrate that the largest concentration of distal ash was transported at a level significantly below the maximum eruption column height (~ 40 km) and at a level below the calculated height of neutral buoyancy (~ 25 km). Simulations showed that distal ash transport was dominated by atmospheric circulation patterns near the regional tropopause. In contrast, the movement of the SO2 cloud occurred at higher levels, along slightly different trajectories, and may have resulted from gas/particle segregations that took place during intrusion of the Pinatubo umbrella cloud as it moved away from source.  相似文献   

18.
It is commonly assumed that the greater explosivity of andesitic volcanoes is due to higher gas contents, but there is no evidence that they are more gas-rich than basaltic volcanoes of oceanic regions. Their higher explosivity results from greater pressures in upper levels of the eruptive vents. The high viscosity of andesitic magmas retards the expansion of gases exsolving from rising magma and results in higher pressures when the magma approaches the surface. Two basic types of explosive mechanisms can be distinguished. One, which is analogous to a fire hose, carries fragments in a high-velocity, low-pressure gas stream. The ejection velocity of individual fragments is the resultant of the gas-stream velocity and the settling velocity of the fragment of given size in a fluid of appropriate density. The size of ejecta diminishes in a regular fashion outward from the vent. In the second type, which is more like a cannon, blocks are suddenly accelerated by high-pressure gas that is contained in cavities and fractures within a slowly rising magma and tend to have a distribution pattern in which large blocks have been projected farther than small ones. There is no theoretical basis for pressures of more than a few hundred bars if gas is exsolved from a rising magma. Higher pressures can be attained by heating meteoric water under conditions that permit little volumetric expansion.  相似文献   

19.
The island of Tenerife is volcanically complex, and its eruptive history predominantly reflects the processes and products of two different eruptive styles: (1) non-explosive effusions of basaltic lavas from fissure vents mostly aligned along two ridges; and (2) less frequent but explosive salic eruptions from central vents associated with the Las Cañadas volcanic edifice and associated summit caldera. We have taken into account this fundamental distinction to develop a volcanic-hazards zonation (for lava flows and ash fall only) that includes: definition of the principal hazards; identification of the areas that have higher probability of containing emission centres; and numerical modelling of the vulnerable areas to be affected by volcanic hazards. Not only does the volcanic-hazards zonation map provide emergency-management officials with an updated assessment of the volcanic hazards, but it also represents a starting point for the preparation of a volcanic risk map for Tenerife. Finally, the hazards-zonation map also furnishes the basis for the design of a proposed volcano surveillance network.  相似文献   

20.
During an explosive volcanic eruption, tephra fall out from the umbrella region of the eruption cloud to the ground surface. We investigated the effect of the intensity of turbulence in the umbrella cloud on dispersion and sedimentation of tephra by performing a series of laboratory experiments and three dimensional (3-D) numerical simulations. In the laboratory experiments, spherical glass-bead particles are mixed in stirred water with various intensities of turbulence, and the spatial distribution and the temporal evolution of the particle concentration are measured. The experimental results show that, when the root-mean-square of velocity fluctuation in the fluid (Wrms) is much greater than the particle terminal velocity (vt), the particles are homogeneously distributed in the fluid, and settle at their terminal velocities at the base of the fluid where turbulence diminishes. On the other hand, when Wrms is as small as or smaller than vt, the particle concentration increases toward the base of the fluid during settling, which substantially increases the rate of particle settling. The results of the 3-D simulations of eruption cloud indicate that Wrms is up to 40 m/s in most of the umbrella cloud even during a large scale plinian eruption with a magma discharge rate of 109 kg/s. These results suggest that relatively coarse pyroclasts (more than a few mm in diameter) tend to concentrate around the base of the umbrella cloud, whereas fine pyroclasts (less than 1/8 mm in diameter) may be distributed homogeneously throughout the umbrella cloud during tephra dispersion. The effect of the gradient of particle concentration in the umbrella cloud explains the granulometric data of the Pinatubo 1991 plinian deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号