首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present the results of an integrated geomorphological, pedological and stratigraphical study carried out along the Ionian coast of northern Calabria (southern Italy). This area is characterised by the occurrence of five orders of alluvial terraces that are striking features of the landscape, where large and steep catchments debouch from the mountain front to the hilly coastal belt.Field investigations indicate that the deposits of all five terraces are suggestive of shallow gravel-bed braided streams.On the basis of the age of the Pleistocene substratum and morphostratigraphic correlation with marine terraces cropping out in the nearby areas, each order has been associated to specific marine oxygen isotope stages.Consequently, we focused on the interplay of allocyclic factors influencing stream aggradation/degradation. Soil features and other climatic proxies suggest that climate didn't play an important role with respect to tectonic and base-level changes in controlling fluvial dynamics.In particular, we recognised that during the middle Pleistocene the study area experienced a period of subaerial landscape modelling, as suggested by the thick and complex alluvial sequence of the highest terrace (T1). The onset of regional uplift marks a change in the geomorphic scenario, with tectonic and eustatically driven changes in base-level working together in causing switches in fluvial aggradational/erosional phases (T2–T5 terraces). Because of the uplift, river dissection occurred during phases of sea level fall, whereas aggradation phases occurred during periods of climate amelioration (sea level rise) just before highstands were attained.As a consequence, the stepped terraces in the study area reflect the interplay between tectonics (uplift) and sea level changes, in which terraces define episodes of relative sea level fall during the late Quaternary.  相似文献   

2.
Staircases of strath terraces and strongly incised valleys are the most typical landscape features of Portuguese rivers. This paper examines the incision achieved during the late Cenozoic in an area crossed by the Tejo river between the border with Spain and the small town of Gavião. In the more upstream reach of this area, the Tejo crosses the Ródão tectonic depression, where four levels of terraces are distinguished. During the late Cenozoic fluvial incision stage, the Ródão depression underwent less uplift than the adjacent areas along the river. This is reflected by the greater thicknesses and spatial extent of the terraces; terrace genesis was promoted by impoundment of alluvium behind a quartzitic ridge and the local presence of a soft substratum. Outside this tectonic depression, the Tejo has a narrow valley incised in the Hercynian basement, with some straight reaches that probably correspond to NE–SW and NNW–SSE faults, the terraces being nearly absent. Geomorphological evidence of tectonic displacements affecting the Ródão dissected terrace remnants is described. Geochronological dating of the two younger and lower terrace levels of this depression suggests a time-averaged incision rate for the Tejo in the Ródão area, of ca. 1.0 m/ka over the last 60 thousand years. A clear discrepancy exists between this rate and the 0.1 m/ka estimated for the longer period since the end of the Pliocene. Although episodes of valley incision may be conditioned by climate and base-level changes, they may also have been controlled by local factors such as movement of small fault-bounded blocks, lithology and structure. Regional crustal uplift is considered to be the main control of the episodes of valley incision identified for this large, long-lived river. A model is proposed in which successive regional uplift events—tectonic phases—essentially determined the long periods of rapid river downcutting that were punctuated by short periods of lateral erosion and later by some aggradation, producing strath terraces.  相似文献   

3.
Mapping in the Galweda-Elayu area of northern Somalia has revealed depositional and erosional marine terraces at elevations of approximately 16 m, 8 m, and 2 m. These terraces vary from 0–2300 m, 200–2200 m, and 0–800 m in width, respectively. Sediments exposed in stream-valley walls demonstrate that the two higher terraces were formed by marine transgressions followed later by regressions to below present sea level. Beach ridges on the terraced alluvial fan at the mouth of togga Galweda imply that sea level and/or land elevation varied by at least 6 m during the formation of the 16-m terrace and by at least 3 m during the formation of the 8-m terrace. 230Th/234U ages of corals suggest that the 8-m terrace was formed during deep-sea isotope substage 5c (105 kyr B.P.) and the 2-m terrace during substage 5a (80 kyr B.P.). A 7-kyr-old coral from above the present storm beach on the outer flanks of the 2-m terrace suggests that sea level in the Gulf of Aden was close to its present level by the middle Holocene. No material suitable for dating was recovered from the 16-m terrace, but on morphological grounds and based on marine-terrace elevations elsewhere in the Red Sea-Gulf of Aden rift zone, we believe that the 16-m terrace was formed during isotope substage 5e (132–120 kyr B.P.), when global sea level was about 6 m above present.  相似文献   

4.
海岸阶地的形成通常是海准面变动、地壳变动或两者共同作用之结果.研究海阶不仅可印证推论古气候、往昔海准面变化及地壳变动状况,更可藉以了解各区域间变动的差异,全盘了解大地构造的意义,而且小规模的海阶变动,时常与地震活动伴生,因此,研究海阶更可作为判读地震周期的依据之一,所以,世界各地位于地壳活动带的国家对于海阶的型态与演育过程均作详细的调查及研究.本研究以淡水河以南至大安溪以北之海阶作为研究范围,发现台湾西北部位于观音山北部沿海、新竹山子顶沿海、客雅溪口南岸、后龙溪口南岸等4个地区,都有零星的海阶分布.经过阶地分布、地形特征与阶序对比,并利用世界海阶对比基图求出该地区的地壳隆升率与海阶可能形成的年代,藉以了解各区域间变动的差异.台湾西北部海岸地区的海阶大致上可划分为高位及低位2群阶:也,高位海阶分布的高度在15~275m之间,阶面覆盖着红壤层,为晚更新世时所造成;低位海阶分布的范围与高度较小,在海滩与高位阶地末端阶崖之间,沿着海岸成带状分布,阶面无红壤掩覆,海拔大多在10m以下.低位海阶构成的物质多以砾石及砂为主,属全新世海阶,即第四纪最后一次冰期结束后,近1万年以来全球高海水位时期所形成.利用海阶对比基图与已有的定年数据,辅以地形地貌及堆积物特征比较,获得各段阶地之平均隆升率,观音山北部沿海、客雅溪口南岸、后龙溪口南岸3个地区,经过比对,分别是2.1mm/a、2.2mm/a、2.15mm/a,数值相近,显示该区之地盘隆升率及海准面变动状况大致相同;仅新竹山子顶沿海地盘隆升率较小,为1.4mm/a.此表示,台湾岛的海阶变化不仅受到海准面变动的影响,尚受到区域性地壳隆升的控制.  相似文献   

5.
海岸阶地的形成通常是海准面变动、地壳变动或两者共同作用之结果.研究海阶不仅可印证推论古气候、往昔海准面变化及地壳变动状况,更可藉以了解各区域间变动的差异,全盘了解大地构造的意义,而且小规模的海阶变动,时常与地震活动伴生,因此,研究海阶更可作为判读地震周期的依据之一,所以,世界各地位于地壳活动带的国家对于海阶的型态与演育...  相似文献   

6.
The New River crosses three physiogeologic provinces of the ancient, tectonically quiescent Appalachian orogen and is ideally situated to record variability in fluvial erosion rates over the late Cenozoic. Active erosion features on resistant bedrock that floors the river at prominent knickpoints demonstrate that the river is currently incising toward base level. However, thick sequences of alluvial fill and fluvial terraces cut into this fill record an incision history for the river that includes several periods of stalled downcutting and aggradation. We used cosmogenic 10Be exposure dating, aided by mapping and sedimentological examination of terrace deposits, to constrain the timing of events in this history. 10Be concentration depth profiles were used to help account for variables such as cosmogenic inheritance and terrace bioturbation. Fill-cut and strath terraces at elevations 10, 20, and 50 m above the modern river yield model cosmogenic exposure ages of 130, 600, and 600–950 ka, respectively, but uncertainties on these ages are not well constrained. These results provide the first direct constraint on the history of alluvial aggradation and incision events recorded by New River terrace deposits. The exposure ages yield a long-term average incision rate of 43 m/my, which is comparable to rates measured elsewhere in the Appalachians. During specific intervals over the last 1 Ma, however, the New River's incision rate reached 100 m/my. Modern erosion rates on bedrock at a prominent knickpoint are between 28 and 87 m/my, in good agreement with rates calculated between terrace abandonment events and significantly faster than 2 m/my rates of surface erosion from ancient terrace remnants. Fluctuations between aggradation and rapid incision operate on timescales of 104− 105 year, similar to those of late Cenozoic climate variations, though uncertainties in model ages preclude direct correlation of these fluctuations to specific climate change events. These second-order fluctuations appear within a longer-term signal of dominant aggradation (until 2 Ma) followed by dominant incision. A similar signal is observed on other Appalachian rivers and may be the result of sediment supply fluctuations driven by the increased frequency of climate changes in the late Cenozoic.  相似文献   

7.
ABSTRACT

Agricultural terraces are important for agricultural production and soil-and-water conservation. They comprise treads and risers that require manual construction and maintenance. If managed improperly, risers will collapse, causing soil loss, gully erosion, and cultivation threats. However, mapping terrace risers remains a challenge. This study presents a novel approach to automatically map terrace risers by combining remote sensing images and digital elevation models (DEMs). First, a terraced hillslope was extracted via a hill-shading method and edges in the image were detected using a Canny edge detector. Next, the DEM was used to generate the contour direction, and edges along this direction were searched and coded as candidate terrace risers via directional detection. Finally, the results of directional detection and the edge image obtained from the Canny detector were overlaid to backtrack complete terrace risers. The approach was validated using four study areas with different topographic characteristics in the Loess Plateau, China. The results verify that the approach achieves outstanding performance and robustness in mapping terrace risers. The precision, recall, and F-measure were 90.81%–97.57%, 88.53%–94.10%, and 90.13%–95.80%, respectively. This approach is flexible and applicable with freely available images and DEM sources.  相似文献   

8.
《Geomorphology》1988,1(3):191-220
Many features reported in the Appalachian region have been assigned a paleoperiglacial origin based on field relationships and their similarities with analogs active in present day actuoperiglacial environments. These forms include, but are not limited to, sorted and nonsorted varieties of patterned ground, grèzes litées, block fields, block slopes, and block streams, cryoplanation terraces, and hillslope and river terrace landscapes. Although very small-scale features (generally less than 1 m in plan or section dimension) and some larger forms on steep hillslopes are known to be at least sporadically active today, the large-scale features discussed here are interpreted as either inactive or truly fossil periglacial phenomena. Thus they hav implications for paleoclimatic reconstruction and significance as indicators of relative landscape stability since the time(s) of their development. This paper briefly reviews the historical dimension of early researchs' work, present selected examples of recent results, and gives authors' conclusions.  相似文献   

9.
A detailed geomorphologic and morphostratigraphic investigation of raised marine terraces at Cape Cuvier, Western Australia, reveals two morphologically distinct units. A lower, well-developed accretional reef terrace between 3 and 5.5 m above MLWS (mean low-water springs; hereafter denoted as “+”) represents an extended interval of stable sea level. An upper erosional terrace and incipient coralgal rim between + 8.5 to 10.5 m represents a brief sea-level stillstand at this higher elevation. These features suggest the lower and upper terraces developed during discrete sea-level events. In an attempt to better define the timing of emplacement of each marine unit, 20 coral samples collected along vertical and lateral reef growth axis from both terraces were analysed with U-series dating. Unfortunately, all coral samples exhibited elevated δ234Uinitial values, suggesting that pervasive uptake of 234U-enriched uranium and 230Th thorium had occurred. Despite the shortcomings of absolute dating, a succession of events can be resolved though morphostratigraphic relationships. Comparison of the facies relationships, coral growth, and morphostratigraphic features between the lower and upper terraces indicates that an early to mid MIS 5e stillstand at + 3 to 5 m was followed by a late rise to + 8.5 to 10.5 m. This agrees with an emerging global view of MIS 5e sea-level history derived from stable carbonate platforms, rejecting the hypothesis that these higher sea-level benchmarks are an artefact of localized tectonic processes.  相似文献   

10.
云南省红河州哈尼梯田已成为世界重要农业文化遗产之一,哈尼梯田作为传统农业具有丰富的农业甚至生态知识和深厚的文化底蕴,很值得关注和研究。从哈尼梯田自然地理特征及形成、生物多样性、生态系统与景观方面、水资源、哈尼梯田文化与旅游5个方面总结了目前关于哈尼梯田的研究。在回顾相关研究的基础上,展望哈尼梯田方面今后的研究,对现有研究表明关于哈尼梯田的研究还有很大的发展空间。哈尼梯田的进一步研究,将对促进哈尼梯田的遗产价值和文化多样性的保护具有重要意义。  相似文献   

11.
The southern foreland basin of the Pyrenees (Ebro basin) is an exorheic drainage basin since Late Miocene times. Remnants of an early exorheic Ebro drainage system are not preserved, but morphology provides evidence for the Pliocene–Quaternary drainage development. The incision history of the Ebro system is denoted by (i) extensive, low gradient pedimentation surfaces which are associated with the denudation of the southern Pyrenean piedmont around the Pliocene–Quaternary transition and (ii) deeply entrenched Quaternary river valleys. Presumably since the Middle Pleistocene fluvial incision intensified involving the formation of extensive terrace staircase in the Ebro basin. Terrace exposure dating in major Ebro tributary rivers indicates climate‐triggered terrace formation in response to glacial–interglacial climate and glacier fluctuations in the Pyrenean headwaters. The overall (semi)parallel longitudinal terrace profiles argue for progressive base level lowering for the whole Ebro drainage network. The landscape evolution model, TISC, is used to evaluate climatic, tectonic and base level scenarios for terrace staircase formation in the Ebro drainage system. Model simulations are compared with morpho‐climatic, tectonic and chronologic data. Results show that climatic fluctuations cause terrace formation, but the incision magnitudes and convergent terrace profiles predicted by this climate model scenario are not consistent with the (semi)parallel terraces in the Ebro basin. A model including previous (late Pliocene) uplift of the lower Ebro basin results in rapid base‐level lowering and erosion along the drainage network, small late stage incision magnitudes and terrace convergence, which are not in agreement with observations. Instead, continuous Quaternary uplift of both the Pyrenees and the Ebro foreland basin triggers (semi)parallel terrace staircase formation in southern Pyrenean tributary rivers in consistency with the observed longitudinal terrace profiles and Middle–Late Pleistocene incision magnitudes. Forward model simulations indicate that the present Ebro drainage system is actively incising, providing further evidence for uplift.  相似文献   

12.
对贵州清水江上游马寨、翁东、三江、施洞沿江4个剖面的阶地特征、年代学结果进行了综合分析。发现以凯里断层为界,上游地区的马寨和翁东2个剖面的T2阶地形成时代约为51~57 ka B.P.,T1阶地的形成时代约为25 ka B.P.,下游地区的三江和施洞2个剖面的T2阶地形成时代约为122~102 ka B.P.,T1阶地的形成时代约为78 ka B.P.。选取各剖面的T2阶地的基座高度来计算了河流下切速率,发现上游地区2个剖面(马寨、翁东)的河流下切速率较接近,约为0.41~0.34 m/ka,明显高于下游地区的2个剖面(三江、施洞)的0.16~0.20 m/ka,表现为上游下切速率高,越往下游方向下切速率逐渐降低。这表明自晚更新世以来,清水江上游区域受到构造作用的影响而发生差异抬升,具体表现为西部构造抬升幅度大,阶地下切速率快;东部构造抬升幅度小,阶地下切速率慢。  相似文献   

13.
This paper examines the millennial-scale evolution of the longitude profile of Nahal (Wadi) Zin in the Dead Sea basin in the northern Arava valley, Israel. Nahal Zin has incised ~ 50 m into relatively soft late Pleistocene Lake Lisan sediments. Incision was forced by the regressive (> 10 km) lake level fall of a total of > 200 m of Lake Lisan from its highest stand at ~ 25 ka and exposure of the lake-floor sediments to fluvial and coastal processes. Alluvial cut terraces of the incising channel are well preserved along the 17.5 km of the lowermost reach of Nahal Zin. At its outlet into the Dead Sea basin, Nahal Zin deposited a Holocene alluvial fan at the base of a 10–80 m high escarpment in unconsolidated sediments. The escarpment is associated with the Amazyahu fault, which forms the southern structural boundary of the present Dead Sea basin. Geomorphic mapping, optically stimulated luminescence (OSL) ages, and soil stratigraphy allowed correlation of terrace remnants and reconstruction of several past longitudinal profiles of Nahal Zin and its incision history. Together with the published lake level chronology, these data provide an opportunity to examine stream incision related to base level lowering at a millennial scale. OSL ages of the terraces fit relatively well with the established lake level chronology and follow its regression and fall. For a few thousands of years the longitudinal profile response to the lake level fall was downstream lengthening onto the exposed former lake bed. Most of the incision (~ 40 m) occurred later, when the lake level reached the top of the Amazyahu fault escarpment and continued to drop. The incision was a relatively short episode at about 17 ka and cut through this escarpment almost to its base. The fast incision, its timing, and the profiles of the incising channels indicate that the escarpment was an underwater feature and was not formed after the lake retreated.This fairly simple scenario of regressive lake level fall and knickpoint exposure and incision is modeled here using a one-dimensional numerical incision model based on a linear diffusion equation. The calculated diffusion coefficient fits earlier results and data obtained from other streams in the area and confirms the upscaling of this simple model to the millennial scale.  相似文献   

14.
The sediment flux generated by postglacial channel incision has been calculated for the 2150 km2, non-glacial, Waipaoa catchment located on the tectonically active Hikurangi Margin, eastern North Island, New Zealand. Sediment production both at a sub-catchment scale and for the Waipaoa catchment as a whole was calculated by first using the tensioned spline method within ARC MAP to create an approximation of the aggradational Waipaoa-1 surface (contemporaneous with the Last Glacial Maximum), and second using grid calculator functions in the GIS to subtract the modern day surface from the Waipaoa-1 surface. The Waipaoa-1 surface was mapped using stereo aerial photography, and global positioning technology fixed the position of individual terrace remnants in the landscape. The recent discovery of Kawakawa Tephra within Waipaoa-1 aggradation gravels in this catchment demonstrates that aggradation was coincidental with or began before the deposition of this 22 600 14C-year-old tephra and, using the stratigraphic relationship of Rerewhakaaitu Tephra, the end of aggradation is dated at ca 15 000 14C years (ca 18 000 cal. years BP). The construction of the Waipaoa-1 terrace is considered to be synchronous and broadly correlated with aggradation elsewhere in the North Island and northern South Island, indicating that aggradation ended at the same time over a wide area. Subsequent downcutting, a manifestation of base-level lowering following a switch to postglacial incision at the end of glacial-age aggradation, points to a significant Southern Hemisphere climatic warming occurring soon after ca 15 000 14C years (ca 18 000 cal. years BP) during the Older Dryas interval. Elevation differences between the Waipaoa-1 (c.15 ka) terrace and the level of maximum channel incision (i.e. before aggradation since the turn of the 20th century) suggest about 50% of the topographic relief within headwater reaches of the Waipaoa catchment has been formed in postglacial times. The postglacial sediment flux generated by channel incision from Waipaoa catchment is of the order of 9.5 km3, of which ~ 6.6 km3 is stored within the confines of the Poverty Bay floodplain. Thus, although the postglacial period represented a time of high terrigenous sediment generation and delivery, only ~ 30% of the sediment generated by channel incision from Waipaoa catchment probably reached the marine shelf and slope of the Hikurangi Margin during this time. The smaller adjacent Waimata catchment probably contributed an additional 2.6 km3 to the same depocentre to give a total postglacial sediment contribution to the shelf and beyond of ~ 5.5 km3. Sediment generated by postglacial channel incision represents only ~ 25% of the total sediment yield from this landscape with ~ 75% of the estimated volume of the postglacial storage offshore probably derived from hillslope erosion processes following base-level fall at times when sediment yield from these catchments exceeded storage.  相似文献   

15.
The formation mechanism of multiple erosional terraces which develop in the dissection process of sedimentary valley fills was investigated by laboratory experiments and computer simulations. Sequences of unpaired terraces were produced on experimental fan-like deposits under conditions of constant water discharge, no base-level change, and no sediment supply. The terraces developed as a result of the repetition of lateral shifting and stillstand of the stream channel at each cross-section during continuous downcutting. This mode of channel migration was caused by meander growth during which amplitude and wavelength increased with time. The terrace formation process was well-reproduced by computer simulations using a meander model having a similar wave mode.  相似文献   

16.
海岸阶地的形成是海平面变动、地壳变动或两者共同作用之结果.研究海阶不仅可印证推论古气候、往昔海平面变化及地壳变动状况,更可藉以了解各区域间变动的差异,全盘了解大地构造的意义,同时,小规模的海阶变动,常与地震活动伴生,研究海阶可作为判读地震周期的依据之一,所以,世界各地位于地壳活动带的国家对于海阶的形态与演育过程均作详细的调查及研究.位于台湾海峡北部两侧的台湾西北部以及马祖、金门等海岸地区,都有海阶的分布.透过阶地分布、地形特征与阶序对比,同时,利用世界海阶对比基图找出该地区的地壳隆升率与海阶可能形成的年代,并藉以了解各区域间变动的差异.前述地区的海阶大致上可分成高位与低位2群,高位海阶分布的高度在15~275m之间,上覆红壤层,为晚更新世时期产物;低位海阶分布的范围较小,高度较矮,大部分分布于海滩与高位阶地末端阶崖问,沿着海岸呈带状分布,阶面大多无红壤层覆盖,海拔在10m以下.组成的物质多以砾石及砂为主,属于全新世时期的产物,即近1万年以来全球高海水位时期(第四纪最后一次冰期结束后)所形成.利用海阶对比基图与已有的定年数据,辅以地形地貌及堆积物特征比较,获得各段阶地之平均隆升率,台湾西北部之观音山北部沿海、客雅溪口南岸、后龙溪口南岸3个地区,分别是2.1mm/a、2.2mm/a、2.15mm/a,数值相近,显示该区之地盘隆升率及海平面变动状况大致相同;仅新竹山子顶沿海地盘隆升率较小,为1.4mm/a.此表示,台湾岛的海阶变化不仅受到海平面变动的影响,尚受到区域性地壳隆升的控制.马祖与金门地区的隆升率则分别为1.6mm/a、1.3mm/a,由于该区仅受新华夏断裂构造的控制,因此,其活动的幅度相对而言较台湾为小.  相似文献   

17.
在城镇化和工业化的驱动下,中国丘陵山区耕地逐渐被边际化,耕地撂荒范围也迅速从劣质的坡耕地延展至优质的梯田,大规模梯田撂荒将会引发一系列社会和生态效应,科学评估中国山区梯田的撂荒程度及空间分布将有助于有效地应对耕地撂荒问题。本文通过全国抽样调查的方式对中国梯田的撂荒程度进行了调查,利用获取的中国329个县的560份村问卷测算了中国梯田撂荒规模,并进一步分析了梯田撂荒空间分异特征及驱动因素。结果显示:(1)全国梯田撂荒现象分布广泛,发生梯田撂荒的村庄占总调查村庄的比例为54%,撂荒面积占梯田总面积的比例达到9.79%;(2)梯田撂荒程度呈现“南高北低”的特征,南方丘陵山区较为严重,尤以长江中下游地区为最;(3)梯田撂荒的主要因素可归结为农业劳动力外出务工、梯田耕作机械化程度、灌溉条件、耕作交通条件等。减缓梯田撂荒,应因区精准施策,提高梯田区机械化水平等措施具有普适性,针对质量较差的梯田,可有序“退耕”,对于质量较好的梯田,可采用调整种植结构、加强农业基础设施建设、鼓励流转与规模经营等方式。  相似文献   

18.
Wolfgang Rmer 《Geomorphology》2008,100(3-4):312-327
In southern São Paulo the Serra do Mar is characterized by three distinct terrain types: 1) highly dissected areas with closely spaced ridges and accordant summit heights; 2) multiconvex hills; and 3) terrains with highly elevated watershed areas, irregular summit heights, and locally subdued relief. The development of this landscape is considered to be the result of the Cenozoic block-faulting and of the influences that are exerted by the differing lithological and structural setting of block-faulted compartments on weathering and erosion processes.In areas characterized by pronounced accordant summits the close coincidence between hillslope angle and the angle of limiting stability against landsliding points to a close adjustment of hillslope gradients and the mechanical properties of the regolith. The relative height of the hillslopes is functionally related to the spacing of the valleys and the gradient of the hillslopes. In areas with a regular spacing of v-shaped valleys and uniform rocks, this leads to the intersection of valley-side slopes in summits and ridges at a certain elevation. This elevation is determined by the length and steepness of the valley-side slopes. Therefore, the heights of the summits are geometrically constrained and are likely to indicate the upper limit of summit heights or an “upper denudation level” that is adjusted by hillslope processes to the incising streams. Accordant summit heights of this type are poor indicators of formerly more extensive denudation surfaces as it is also likely that they are a result of the long-term adjustment of hillslopes to river incision.The steep mountain flanks of block-faulted compartments on the other hand, comprise regolith-covered hillslopes that are closely adjusted to the maximum stable gradient as well as rock-slopes that are controlled by the rock-mass strength. Their summits are usually not accommodated into uniform summit levels. Highly elevated watershed areas exhibiting a subdued relief are detached from the base level response. On granitoid rocks these areas are often characterized by the rocky hills and domal rock outcrops. However, differences in the elevation of interfluves and summits between rocks of differing resistance and in the elevation of lithologically distinct individual fault-blocks imply that long-term weathering and erosion has transformed and lowered these landscapes. Therefore, these areas cannot be interpreted as a remnant of a pre-uplift topography and it appears to be unlikely that the height of the summits correlates with formerly more widespread planation surfaces in the far hinterland.The studies indicate that concepts such as the parallel retreat of hillslopes cannot account for the observed differences in the landscape. It is suggested that the Serra do Mar is consumed from the Atlantic and the inland side by spatially non-uniform developmental states. These states are determined by local differences in the coupling and distance to the regional base level and sea-level or are due to lithological and structural controls between and within the block-faulted compartments.  相似文献   

19.
河流阶地形成过程及其驱动机制再研究   总被引:4,自引:3,他引:1  
许刘兵  周尚哲 《地理科学》2007,27(5):672-677
河流阶地的形成是在内因(河流内部动力变化)和外因(低频和高频气候变化、构造运动、基准面变化)共同作用下的结果。受单一气候变化制约的河流阶地发育模式可以解释由于沉积物通量和径流量变化引起的河流堆积-侵蚀过程,但它难以解释形成多级阶地的逐步(或间歇性)下切过程。多级阶地的形成可能同时受到构造抬升和周期性气候变化的制约。由于下切过程的滞后效应,侵蚀和冰川均衡抬升、河谷的侧向侵蚀过程等影响,山地的构造抬升与河谷的下切之间并非一种简单的线性关系,应当慎用河谷的下切速率来代表山地的抬升速率。  相似文献   

20.
胡春生  潘保田  苏怀 《地理科学》2012,(9):1131-1135
根据黄土高原地区黄河阶地的形态特征和成因分析,认为其形成主要是地面抬升所致并且在黄河达到均衡状态下形成,可以推断黄土高原的地面抬升。根据对黄土高原地区黄河0.8 Ma阶地的研究并结合相关文献资料,选取兰州段、黑山峡段、晋陕峡谷段和三门峡段作为典型研究区域,得出黄土高原0.8 Ma以来的地面抬升存在显著的时空特征,即空间特征表现为地面抬升量有西大东小的规律,时间特征表现为地面抬升速率有后期加速趋势、特别是晚更新世以来。并认为黄土高原0.8 Ma以来的地面抬升与青藏高原的构造抬升有成因上的联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号