首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Abstract The Santiago Schists are located in the Basal Unit of the Ordenes Complex, one of the allochthonous complexes outcropping in the inner part of the Hercynian Belt in the north-west of the Iberian Peninsula. Their tectonothermal evolution is characterized by the development of an eo-Hercynian metamorphic episode (c. 374 Ma) of high-P, low- to intermediate-T. The mineral assemblage of the high-P episode is preserved as a very thin Si= S1 foliation included in albite porphyroblasts, being composed of: albite + garnet-I + white mica-1 + chlorite-1 + epidote + quartz + rutile ± ilmenite. The equilibrium conditions for this mineral assemblage have been estimated by means of different thermobarometers at 495 ± 10 °C and 14.7 ± 0.7 kbar (probably minimum pressure). The later evolution (syn-D2) of the schists defines a decompressive and slightly prograde P-T path which reached its thermal peak at c. 525 ± 10 °C and 7 kbar. Decompression of the unit occurred contemporaneously with an inversion of the metamorphic gradient, so that the zones of garnet-II, biotite (with an upper subzone with chloritoid) and staurolite developed from bottom to top of the formation. The estimated P-T path for the Santiago Schists suggests that the Basal Unit, probably a fragment of the Gondwana continental margin, was uplifted immediately after its subduction at the beginning of the Hercynian Orogeny. It also suggests that the greater part of the unroofing history of the unit took place in a context of ductile extension, probably related to the continued subduction of the Gondwana continental margin and the contemporaneous development of compensatory extension above it. The inverted metamorphic gradient seems related to conductive heat transferred from a zone of the mantle wedge above the subducted continental margin, when it came into contact with the upper parts of the schists along a detachment, probably of extensional character. The general metamorphic evolution of the Santiago Schists, with the development of high-P assemblages with garnet prior to decompressive and prograde parageneses with biotite, is unusual in the context of the European Hercynian Belt, and shows a close similarity to the tectonothermal evolution of several high-P, low- to intermediate-T circum-Pacific belts.  相似文献   

2.
The allochthonous Cabo Ortegal Complex (NW Iberian Massif) contains a ~500 m thick serpentinite‐matrix mélange located in the lowest structural position, the Somozas Mélange. The mélange occurs at the leading edge of a thick nappe pile constituted by a variety of terranes transported to the East (present‐day coordinates; NW Iberian allochthonous complexes), with continental and oceanic affinities, and represents a Variscan suture. Among other types of metaigneous (calcalkaline suite dated at 527–499 Ma) and metasedimentary blocks, it contains close‐packed pillow‐lavas and broken pillow‐breccias with a metahyaloclastitic matrix formed by muscovite–paragonite–margarite–garnet–chlorite–kyanite–hematite–epidote–quartz–rutile. Pseudosection modelling in the MnCNTKFMASHO system indicates metamorphic peak conditions of ~17.5–18 kbar and ~550 °C followed by near‐isothermal decompression. This P–T evolution indicates subduction/accretion of an arc‐derived section of peri‐Gondwanan transitional crust. Subduction below the Variscan orogenic wedge evolved to continental collision with important dextral component. Closure of the remaining oceanic peri‐Gondwanan domain and associated release of fluid led to hydration of the overlying mantle wedge and the formation of a low‐viscosity subduction channel, where return flow formed the mélange. The submarine metavolcanic rocks were deformed and detached from the subducting transitional crust and eventually incorporated into the subduction channel, where they experienced fast exhumation. Due to the cryptic nature of the high‐P metamorphism preserved in its tectonic blocks, the significance of the Somozas Mélange had remained elusive, but it is made clear here for the first time as an important tectonic boundary within the Variscan Orogen formed during the late stages of the continental convergence leading to the assembly of Pangea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号