首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the high-pressure meta-ophiolites of Western Liguria (Italy), serpentinized ultramafites host bodies of eclogite, metarodingite and Ti-clinohumite ± Ti-chondrodite-bearing rocks. The latter contain relics of augite, ilmenite and apatite, which suggest derivation from pristine Fe-Ti-rich gabbros. The composition of relict mantle clinopyroxene in the host serpentinites indicates primary depleted peridotite compositions. Compared with their inferred protoliths, the Ti-clinohumite dikelets and the host serpentinites display significant changes in their major and trace element concentrations, indicating element exchange between the two rock systems. In particular, the Fe-Ti-rich gabbros were depleted in CaO and FeO and were strongly enriched in MgO. Analogous compositional variations are shown by altered gabbros enclosed in serpentinized peridotites from the obducted ophiolite sequences of the Northern Apennine. This evidence suggests that the observed Mg-enrichment recorded by the Ti-clinohumite metagabbros occurred in oceanic environments as the result of diffusive exchange between ultramafites and gabbros in presence of fluids related to serpentinization of the ultramafic country rocks. Alteration of the gabbro and concomitant Mg-uptake mostly caused extensive chloritization of the igneous plagioclase. Survival of igneous ilmenite and augite and their reaction with the hydrothermal chlorite during high-pressure metamorphism produced the observed Ti-clinohumite and Ti-chondrodite assemblages. The data presented thus indicate that crystallization of Ti-clinohumite assemblages was facilitated by a stage of oceanic alteration leading to Mg-enrichment of original Fe-Ti-rich gabbros. We suggest that during alteration, Mg-metasomatism occurred prior to rodingitization and was related to the earlier stages of peridotite serpentinization. Survival of oceanic chemical heterogeneities in the Ti-clinohumite rocks, indicates that element mobility during high-pressure recrystallization of these rocks was on a limited scale. This allowed preservation of their pre-subduction alteration features. Received: 13 July 1998 / Accepted: 3 November 1998  相似文献   

2.
The oceanic serpentinization of peridotites and the influenceof such an alteration on element cycling during their subductiondewatering are here investigated in a mantle slice (Erro–Tobbioperidotite), first exposed to oceanic serpentinization and laterinvolved in alpine subduction, partial dewatering and formationof a high-pressure olivine + titanian-clinohumite + diopside+ antigorite assemblage in the peridotites and in veins. Previouswork indicates that high-pressure veins include primary brines,representing a residue after crystallization of the vein assemblageand containing recycled oceanic Cl and alkalis. To reconstructthe main changes during oceanic peridotite serpentinizationand subsequent subduction, we analysed samples in profiles fromserpentinized oceanic peridotites to high-pressure serpentinites,and from high-pressure ultramafites to veins. Here we presentresults indicating that the main features of the oceanic serpentinizationare immobility of rare earth elements (REE), considerable waterincrease, local CaO decrease and uptake of trace amounts ofSr, probably as a function of the intensity of alteration. Srentered fine-grained Ca phases associated with serpentine andchlorite. Trace-element analyses of mantle clinopyroxenes andhigh-pressure diopsides (in country ultramafites and veins),highlight the close similarity in the REE compositions of thevarious clinopyroxenes, thereby indicating rock control on thevein fluids and lack of exotic components carried by externallyderived fluids. Presence of appreciable Sr contents in vein-formingdiopside indicates cycling of oceanic Sr in the high-pressurefluid. This, together with the recognition of pre-subductionCl and alkalis in the vein fluid, indicates closed-system behaviourduring eclogitization and internal cycling of exogenic components.Diopside and Ti-clinohumite are the high-pressure minerals actingas repositories for REE and Sr, and for high field strengthelements (HFSE), respectively. The aqueous fluid equilibratedwith such an assemblage is enriched in Cl and alkaline elementsbut strongly depleted in REE and HFSE (less than chondrite abundances).Sr is low [(0·2–1·6) x chondrites], althoughselectively enriched relative to light REE. KEY WORDS: eclogite facies; fluid; trace elements; serpentinite; subduction  相似文献   

3.
South of the Matterhorn the Valtournanche cuts through Alpine serpentinites, metagabbros, meta-pillowbasalts and metasediments—dismembered remnants of the Jurassic Tethyan oceanic crust, reassembled in the Piemonte ophiolite nappe. This study deals with a serpentinized ultramafic to mafic layered complex stemming from a spreading ridge environment. Cumulus fabrics of various kinds can be read through antigorite pseudomorphs, still allowing the detailed reconstruction of deep oceanic crust. Relics of igneous and metamorphic olivine prove crustal conditions during deformation. Fracturing of cumulus olivine was succeeded by plastic flow that activated low-temperature slip systems. Concomitant recrystallization produced metaperidotite only along shear zones, which are ascribed to subduction of the oceanic crust. At the turning point from subduction to obduction a static metamorphic event resulted in recovery and grain growth of recrystallized olivine. Afterwards serpentinization of the complex took place still under static conditions. Deformation of the serpentinite led to a sequence of four phases, involving non-penetrative cleavage formation, stretching and folding. This deformation is structurally related to obduction of the complex although partly accompanied by subduction zone metamorphism. Final movements of the ophiolites were due to cataclastic thrusting forming subnappe boundaries.  相似文献   

4.
Separated olivine grains from a deeply subducted serpentinized wehrlite (Changawuzi in the western Tianshan ultrahigh-pressure belt, China) were analysed with unpolarized transmission FTIR and the Ti contents were determined using LA-ICP-MS. The major bands in the olivine spectra display striking similarities to Ti-clinohumite and are interpreted as OH in lamellae. The quantification of the water content in lamellae requires calibration of the IR-absorption for such bands. We have obtained a new absorption coefficient for Ti-clinohumite of 0.125+/?0.017 ppm cm2 based on polarized FTIR measurements on three orthogonal sections through a large single crystal of Ti-clinohumite from Val Malenco, which has a known water content of 1.53 wt%. The resulting water content in olivine using this calibration factor ranges from 440 to 2,600 ppm and correlates positively with the Ti content that ranges from 130 to 1,400 ppm. For the quantification of the water content in Ti-chondrodite and Ti-clinohumite that are associated with olivine, we developed a new method using attenuated total reflectance FTIR spectroscopy. Ti-chondrodite and Ti-clinohumite display similar IR bands at ~3,562, 3,525 and ~3,583–3,586 cm?1. As in olivine, the water content and Ti content correlate in both Ti-clinohumite and Ti-chondrodite, indicating an intergrowth of these minerals, which has been confirmed by TEM analyses. Our results confirm previous suggestions that there is a strong correlation between the Ti content of ultramafic rocks and their capacity to transport water to the deeper mantle in subduction zones beyond conditions where hydrous phases are stable.  相似文献   

5.
马雪盈  刘庆  闫方超  何苗  张宏远 《岩石学报》2021,37(8):2562-2578
强亲铁元素与亲石元素具有不同的地球化学行为,因此能够从不同的角度为造山带中超镁铁岩的成因及演化提供重要信息。位于苏鲁造山带东北端的胶东海阳所超镁铁岩主要由橄榄岩和辉石岩组成,它们常以团块状赋存于花岗质片麻岩中。虽然前人对这些超镁铁岩已经开展大量岩石学研究,但关于其成因及构造属性仍存在较大争议。本文开展了海阳所超镁铁岩的全岩主微量元素、强亲铁元素及Re-Os同位素的分析工作,结果显示蛇纹石化橄榄岩具有较高的MgO和Fe2O3T含量,较低的Al2O3、TiO2和CaO含量,明显富集流体迁移元素(U、Pb),亏损高场强元素(Zr、Hf),强亲铁元素没有发生明显分异,但Ru显示正异常,表明海阳所蛇纹石化橄榄岩是经历了低-中等程度部分熔融及熔/流体交代作用影响的残余地幔橄榄岩。海阳所辉石岩的主量元素表现出明显的结晶分异特征,稀土元素较原始地幔富集,铂族元素(PGEs)含量较低且发生了明显的分异,表明辉石岩的地幔源区经历过高程度的部分熔融和硫化物的分离。海阳所蛇纹石化橄榄岩的Os同位素地球化学特征表现出大洋亲和性,与辉石岩不具有熔体-残留体的关系。由于该地区发育较深层次的韧性剪切带,蛇纹石化橄榄岩中的橄榄石与辉石表现出韧性变形的特征,同时有辉石岩侵入到橄榄岩的现象,表明该地区的蛇纹石化地幔橄榄岩与辉石岩既不同时,也不同源,因此,暗示了该套岩石组合可能形成于大洋核杂岩(OCC)与洋脊型蛇绿岩(MOR)堆晶岩交互发育环境。  相似文献   

6.
Regions of Agane and Gouérarate represent an ancient fragment of ophiolitic suture localized in the axial area of the Mauritanides Belt. These two regions are characterized by the abundance of completely serpentinized formations. In this study, we present the first use of Raman spectroscopy for identifying the species of serpentine present in the Mauritanides Belt. Serpentinites of Agane are derived from refractory peridotites composed of dunites–harzburgites; however, there are also rare serpentinites derived from ultramafic cumulates. Antigorite represents the dominant species in the serpentinite. Furthermore, chrysotile is found as post-antigorite veins. These veins are post-obduction and mark the final phase of serpentinization. The abundance of antigorite and the absence of lizardite confirm that subduction was the environment of serpentinization in these two regions, and that “the oceanic opening” responsible for the formation of ophiolitic sutures in the Mauritanides Belt was limited. The term “serpentinite” is no longer applicable to the formations of Gouérarate. As a result, these formations correspond to old serpentinites transformed to birbirites which are in phase of transformation into laterites.  相似文献   

7.
The nitrogen concentrations [N] and isotopic compositions of ultramafic mantle rocks that represent various dehydration stages and metamorphic conditions during the subduction cycle were investigated to assess the role of such rocks in deep-Earth N cycling. The samples analyzed record low-grade serpentinization on the seafloor and/or in the forearc wedge (low-grade serpentinites from Monte Nero/Italy and Erro Tobbio/Italy) and two successive stages of metamorphic dehydration at increasing pressures and temperatures (high-pressure (HP) serpentinites from Erro Tobbio/Italy and chlorite harzburgites from Cerro del Almirez/Spain) to allow for the determination of dehydration effects in ultramafic rocks on the N budget. In low-grade serpentinites, δ15Nair values (?3.8 to +3.5 ‰) and [N] (1.3–4.5 μg/g) are elevated compared to the pristine depleted MORB mantle (δ15Nair ~ ?5 ‰, [N] = 0.27 ± 0.16 μg/g), indicating input from sedimentary organic sources, at the outer rise during slab bending and/or in the forearc mantle wedge during hydration by slab-derived fluids. Both HP serpentinites and chlorite harzburgites have δ15Nair values and [N] overlapping with low-grade serpentinites, indicating no significant loss of N during metamorphic dehydration and retention of N to depths of 60–70 km. The best estimate for the δ15Nair of ultramafic rocks recycled into the mantle is +3 ± 2 ‰. The global N subduction input flux in serpentinized oceanic mantle rocks was calculated as 2.3 × 108 mol N2/year, assuming a thickness of serpentinized slab mantle of 500 m. This is at least one order of magnitude smaller than the N fluxes calculated for sediments and altered oceanic crust. Calculated global input fluxes for a range of representative subducting sections of unmetamorphosed and HP-metamorphosed slabs, all incorporating serpentinized slab mantle, range from 1.1 × 1010 to 3.9 × 1010 mol N2/year. The best estimate for the δ15Nair of the subducting slab is +4 ± 1 ‰, supporting models that invoke recycling of subducted N in mantle plumes and consistent with general models for the volatile evolution on Earth. Estimates of the efficiency of arc return of subducted N are complicated further by the possibility that mantle wedge hydrated in forearcs, then dragged to beneath volcanic fronts, is capable of conveying significant amounts of N to subarc depths.  相似文献   

8.
The studied serpentinites occur as isolated masses, imbricate slices of variable thicknesses and as small blocks or lenses incorporated in the sedimentary matrix of the mélange. They are thrusted over the associated island arc calc-alkaline metavolcanics and replaced by talc-carbonates along shear zones. Lack of thermal effect of the serpentinites upon the enveloping country rocks, as well as their association with thrust faults indicates their tectonic emplacement as solid bodies. Petrographically, they are composed essentially of antigorite, chrysotile and lizardite with subordinate amounts of carbonates, chromite, magnetite, magnesite, talc, tremolite and chlorite. Chrysotile occurs as cross-fiber veinlets traversing the antigorite matrix, which indicate a late crystallization under static conditions. The predominance of antigorite over other serpentine minerals indicates that the serpentinites have undergone prograde metamorphism or the parent ultramafic rocks were serpentinized under higher pressure. The parent rocks of the studied serpentinites are mainly harzburgite and less commonly dunite and wehrlite due to the prevalence of mesh and bastite textures. The serpentinites have suffered regional metamorphism up to the greenschist facies, which occurred during the collisional stage or back-arc basin closure, followed by thrusting over a continental margin. The microprobe analyses of the serpentine minerals show wide variation in SiO2, MgO, Al2O3, FeO and Cr2O3 due to different generations of serpentinization. The clinopyroxene relicts, from the partly serpentinized peridotite, are augite and similar to clinopyroxene in mantle-derived peridotites. The chromitite lenses associated with the serpentinites show common textures and structures typical of magmatic crystallization and podiform chromitites. The present data suggest that the serpentinites and associated chromitite lenses represent an ophiolitic mantle sequence from a supra-subduction zone, which were thrust over the continental margins during the collisional stage of back-arc basin.  相似文献   

9.
The studied serpentinites occur as isolated masses, imbricate slices of variable thicknesses and as small blocks or lenses incorporated in the sedimentary matrix of the mélange. They are thrusted over the associated island arc calc-alkaline metavolcanics and replaced by talc-carbonates along shear zones. Lack of thermal effect of the serpentinites upon the enveloping country rocks, as well as their association with thrust faults indicates their tectonic emplacement as solid bodies. Petrographically, they are composed essentially of antigorite, chrysotile and lizardite with subordinate amounts of carbonates, chromite, magnetite, magnesite, talc, tremolite and chlorite. Chrysotile occurs as cross-fiber veinlets traversing the antigorite matrix, which indicate a late crystallization under static conditions. The predominance of antigorite over other serpentine minerals indicates that the serpentinites have undergone prograde metamorphism or the parent ultramafic rocks were serpentinized under higher pressure. The parent rocks of the studied serpentinites are mainly harzburgite and less commonly dunite and wehrlite due to the prevalence of mesh and bastite textures. The serpentinites have suffered regional metamorphism up to the greenschist facies, which occurred during the collisional stage or back-arc basin closure, followed by thrusting over a continental margin. The microprobe analyses of the serpentine minerals show wide variation in SiO2, MgO, Al2O3, FeO and Cr2O3 due to different generations of serpentinization. The clinopyroxene relicts, from the partly serpentinized peridotite, are augite and similar to clinopyroxene in mantle-derived peridotites. The chromitite lenses associated with the serpentinites show common textures and structures typical of magmatic crystallization and podiform chromitites. The present data suggest that the serpentinites and associated chromitite lenses represent an ophiolitic mantle sequence from a supra-subduction zone, which were thrust over the continental margins during the collisional stage of back-arc basin.  相似文献   

10.
A great variety of platinum group mineral, sulfide and silicate inclusions in chrome spinel from Hochgrössen and Kraubath ultramafic massifs, and platinum group element contents of three different rock types have been investigated. Both ultramafic massifs are tectonically isolated bodies, variably serpentinized and metamorphosed (greenschist to lower amphibolite facies), and show ophiolitic geochemical affinities. The chromite from massive chromitites and disseminated in serpentinized dunites and serpentinites, exhibits compositional zonation as the result of alteration during serpentinization and metamorphism. Three distinctive alteration stages are indicated in the chrome-spinels from the Hochgrössen, whereas alteration is less significant in chromites from Kraubath: The core of chrome spinel represents the least altered part, surrounded by an inner rim characterized by slight compositional differences in Cr, Mn, Fe2+ and Al with respect to the core. The outer rim is formed by ferritchromite with a sharp boundary to the inner rim and shows a significant decrease of Al, Mg, Cr and increase of Fe2+, Fe3+ and Ni compared to the core. Two different groups of inclusions in chrome-spinel are present: the first group occurs within the chromite core, and comprises olivine, orthopyroxene, amphibole, sulfides and platinum-group minerals, i.e. dominated by Ru-Os-Ir-sulfides. The second group is formed by chlorite, serpentine, galena, pyrite, arsenopyrite, Pt-Pd-Rh-dominated sulfarsenides and sperrylite. In particular the abundance of Pt-Pd-Rh-sulfarsenides and arsenides is typical of both ultramafic massifs and is very unusual for chromitites from ophiolites. Morphology, paragenesis and chemical composition indicate a different origin for these two groups of inclusions. The first group is intimately related to the crystallisation of the chromite host. The second group of inclusions clearly displays a secondary formation during serpentinization and metamorphism, closely related to the alteration of chrome-spinel and the development of ferritchromite. The distribution patterns of the platinum group elements from massive chromitites, disseminated chrome-spinel bearing serpentinites and serpentinites exhibit variable enrichment of Rh, Pt and Pd, Rh, Pt for the Hochgrössen and Kraubath massifs, respectively. These results are in accordance with the occurrence and distribution of platinum-group mineral phases. A remobilisation of Pt, Pd, and Rh, together with Ni, Cu and possibly Fe as bisulfide and/or hydroxide complexes and deposition of metals by the reaction of the metal bearing hydrothermal fluid with chromite is proposed.  相似文献   

11.
The Lanzo peridotite massif is a fragment of oceanic lithosphere generated in an ocean–continent transition context and eclogitized during alpine collision. Despite the subduction history, the massif has preserved its sedimentary oceanic cover, suggesting that it may have preserved its oceanic structure. It is an exceptional case for studying the evolution of a fragment of the lithosphere from its oceanization to its subduction and then exhumation. We present a field and petrological study retracing the different serpentinization episodes and their impact on the massif structure. The Lanzo massif is composed of slightly serpentinized peridotites (<20% serpentinization) surrounded by an envelope of foliated serpentinites (100% serpentinization) bordered by oceanic metabasalts and metasedimentary rocks. The limit between peridotites and serpentinites defines the front of serpentinization. This limit is sharp: it is marked by the presence of massive serpentinites (80% serpentinization) and, locally, by dykes of metagabbros and mylonitic gabbros. The deformation of these gabbros is contemporaneous with the emplacement of the magma. The presence of early lizardite in the peridotites testifies that serpentinization began during the oceanization, which is confirmed by the presence of meta‐ophicarbonates bordering the foliated serpentinite envelope. Two additional generations of serpentine occur in the ultramafic rocks. The first is a prograde antigorite that partially replaced the lizardite and the relict primary minerals of the peridotite during subduction, indicating that serpentinization is an active process at the ridge and in the subduction zone. Locally, this episode is followed by the deserpentinization of antigorite at peak P–T (estimated in eclogitized metagabbros at 2–2.5 GPa and 550–620 °C): it is marked by the crystallization of secondary olivine associated with chlorite and/or antigorite and of clinopyroxene, amphibole and chlorite assemblages. A second antigorite formed during exhumation partially to completely obliterating previous textures in the massive and foliated serpentinites. Serpentinites are an important component of the oceanic lithosphere generated in slow to ultraslow spreading settings, and in these settings, there is a serpentinization gradient with depth in the upper mantle. The seismic Moho limit could correspond to a serpentinization front affecting the mantle. This partially serpentinized zone constitutes a less competent level where, during subduction and exhumation, deformation and fluid circulation are localized. In this zone, the reaction kinetics are increased and the later steps of serpentinization obliterate the evidence of this progressive zone of serpentinization. In the Lanzo massif, this zone fully recrystallized into serpentinite during alpine subduction and collision. Thus, the serpentinite envelope represents the oceanic crust as defined by geophysicists, and the sharp front of serpentinization corresponds to an eclogitized seismic palaeo‐Moho.  相似文献   

12.
We consider a hypothesis for the origin of PGE-bearing ultramafic rocks of the Inagli massif (Central Aldan) through fractional crystallization from ultrabasic high-potassium magma. We studied dunites and wehrlites of the Inagli massif and olivine lamproites of the Ryabinovy massif, which is also included into the Central Aldan high-potassium magmatic area. The research is focused on the chemistry of Cr-spinels and the phase composition of Cr-spinel-hosted crystallized melt inclusions and their daughter phases. Mainly two methods were used: SEM-EDS (Tescan Mira-3), to establish different phases and their relationships, and EPMA, to obtain precise chemical data on small (2-100 μm) phases. The obtained results show similarity in chromite composition and its evolutionary trends for the Inagli massif ultramafites and Ryabinovy massif lamproites. The same has been established for phlogopite and diopside from crystallized melt inclusions from the rocks of both objects. Based on the results of the study, the conclusion is drawn that the ultramafic core of the Inagli massif resulted from fractional crystallization of high-potassium melt with corresponding in composition to low-titanium lamproite. This conclusion is consistent with the previous hypotheses suggesting an ultrabasic high-potassium composition of primary melt for the Inagli ultramafites.  相似文献   

13.
The serpentinized ultramafic body of La Cocha is located in the Sierra Chica of Córdoba (31° 36′ 40″ South and 64° 32′ 40″ West). The body is a spinel harzburgite composed of olivine, enstatite and spinel, almost completely hydrated to associations of serpentine minerals. The rock is dark green, foliated, rich in serpentinized olivine and grains or aggregates of enstatite, partially to totally altered to bastite, with spinel as inclusions and a general porphyritic appearance. The S2 metamorphic foliation was determined by a compositional layering defined by the lengthening and concentration of irregular pyroxene layers that alternate with olivine layers. This foliation is affected by S3, composed of serpentine, which is parallel or cut sharply with low angles to S2. The main structure of La Cocha ultramafic body is a low cylindrical recumbent fold interpreted as an “a”-type domal structure which is part of a major sheath fold, currently cut off by erosion. La Cocha ultramafic body is interpreted as an obducted slice of oceanic mantle, probably part of a basal tectonite of an ophiolitic complex. This slice, after its emplacement, was metamorphosed and deformed together with the country rocks.  相似文献   

14.
The Coolac Serpentinite, in the Tumut region of southeastern NSW, is one of many Alpine-type, linear ultramafic bodies exposed in the Lachlan Orogen of New South Wales. Despite the significance of such oceanic lithosphere throughout the orogen to tectonic models, few studies on the genesis of these bodies in the Lachlan Orogen have been documented. A significant proportion of the Coolac ultramafic rocks are only partially serpentinised, making them good candidates for detailed petrological and geochemical studies. The Coolac peridotites include harzburgites with mineral compositions and bulk-rock REE concentrations similar to abyssal peridotites. Assuming depleted mantle compositions, HREE concentrations are limited (0.2–0.3 × primitive mantle) implying melt extraction of 15–20%. Conversely, some Cr-spinel data within the harzburgites (Cr# = 0.22–0.27) indicate partial melting of only 9–11%. Adsorbed mantle pyroxenes, excess olivine and LREE enrichment suggest melt–rock interactions led to the refertilisation of the harzburgites. Isotope characteristics of a ca 501 Ma allochthonous tonalite block derived from melting of altered oceanic crust and a ca 439 Ma oceanic granite intrusion indicate an identical source that separated from the fertile mantle at 660 Ma. This places chronological constraints on the harzburgites, which are the result of two-stage melting involving a lherzolite protolith formed during the break-up of Rodinia followed by harzburgite formation during a further melt extraction event within an extensional phase of the Delamerian Orogeny. The harzburgites were enriched via melt–rock interactions soon after formation as well as during phases of the Benambran Orogeny beginning at ca 439 Ma and ending around ca 427 Ma with the emplacement of the North Mooney Complex, a layered ultramafic–gabbro association that has characteristics of Alaskan-style intrusions similar to the Fifield complexes of the central Lachlan Orogen.  相似文献   

15.
Judith B. Moody 《Lithos》1976,9(2):125-138
The common alteration assemblage produced by serpentinization of ultramafic rocks is: lizardite, chrysotile, magnetite±brucite±antigorite. Lizardite-chrysotile serpentinites are more common than antigorite; the presence of antigorite indicates that the serpentinite has undergone prograde metamorphism or that the periootite was serpentinized in a higher P,T regime than lizardite and chrysotile. The iron subsitution into serpentine minerals and brucite is a function of temperature at low fO2, with increased temperature enhancing magnetite formation. The presence of awaruite and native Fe are strong evidence for a locally very reducing environment. Isotopic studies have shown a wide variety of origins for the fluids involved in serpentinization. The increased boron content of serpentinized rocks when compared to boron contents of the parent ultramafic body indicates a possible sea water origin for the fluids. Serpentinization takes place under both constant volume and constant chemical composition conditions. The factors in evaluating the importance of the two processes for an individual serpentinite are: (1) determination of the mineral assemblage and its paragenesis, (2) the structural and tectonic relationship of the ultramafic body to its country rock, (3) fluid access to the rock in duration and amount, and (4) timing of serpentinization - before, during or after emplacement into the crust.  相似文献   

16.
An experiment has been performed reacting seawater with fresh peridotite (80% olivine, Fo90 and ~- 15% enstatitic orthopyroxene En95 and minor clinopyroxene and spinel) at 300°C, 500 bars and water/rock mass ratio of 20. The duration of the experiment was approximately 1500 hr.Seawater chemistry was appreciably modified during the experiment. Mg, Ca, Sr, SO4 and H2O were removed, while H2S(aq), Fe, Mn and Zn were added. H2S(aq) resulted from the inorganic reduction of seawater SO4. pH was initially acid (2.8), but then rose slowly to a value of 5.2. The aqueous concentrations of Na, K, Cl and boron (B) changed little from that in seawater prior to reaction. However, as the solution was cooled to room temperature at the end of the experiment, the B concentration decreased. This suggests that the B content of oceanic serpentinites may be the result of retrograde reactions between a previously serpentinized body and ‘cold’ seawater.The primary minerals in the peridotite were replaced to varying degrees by serpentine (lizardite), magnetite. Mg-hydroxysulfate, anhydrite and possibly pyrite and sphalerite. Mg-hydroxysulfate and much anhydrite dissolved on quench.The alteration mineral assemblage generated during this experiment is consistent with that predicted from equilibrium phase relations and is similar in chemical composition, mineralogy and paragenesis to that reported for oceanic serpentinites.  相似文献   

17.
The Bixiling mafic-ultramafic metamorphic complex is a 1•5km2 tectonic block within biotite gneiss in the southern Dabieultrahigh-pressure terrane, central China. The complex consistsof banded eclogites that contain thin layers of garnet-bearingcumulate ultramafic rock. Except for common eclogitic phases(garnet, omphacite, kyanite, phengite, zoisite and rutilc),banded eclogites contain additional talc and abundant coesiteinclusions in omphacite, zoisite, kyanite and garnet. Some metaultramaficrocks contain magnesite and Ti-clinohumite. Both eclogites andmeta-ultramafic rocks have undergone multi-stage metamorphism.Eclogite facies metamorphisrn occurred at 610–700C andP>27 kbar, whereas amphibolite facies retrograde metamorphismis characterized by symplectites of plagioclase and hornblendeafter omphacite and replacement of tremolite after talc at P<6–15kbar and T <600C. The meta-ultramafic assemblages such asolivine + enstatite + diopside + garnet and Ti-clinohumite +diopside + enstatite + garnet + magnesite olivine formed at700–800C and 47–67 kbar. Investigation of the phaserelations for the system CaO-MgO-SiO2-H2O-CO2 and the experimentallydetermined stabilities of talc, magnesite and Ti-clinohumiteindicate that (1) UHP talc assemblages are restricted to Mg-Algabbro composition and cannot be an important water-bearingphase in the ultramafic mantle, and (2) Ti-clinohumite and magnesiteare stable H2O-bearing and CO2-bearing phases at depths >100km. The mafic-ultramafic cumulates were initially emplaced atcrustal levels, then subducted to great depths during the Triassiccollision of the Sine-Korean and Yangtze cratons. KEY WORDS: eclogite; magnesite; meta-ultramafics; talc; ultrahigh-P metamorphism *Corresponding author  相似文献   

18.
Jian-Jun Yang   《Lithos》2003,70(3-4):359-379
A garnet–pyroxene rock containing abundant Ti-clinohumite (ca. 40 vol.%) occurs along with eclogites as small blocks in quartzo-feldsparthic gneiss in the southern end of the Chinese Su-Lu ultrahigh-pressure (UHP) metamorphic terrane. It consists of three aggregates: (1) Ti-clinohumite-dominated aggregate with interstitial garnet and pyroxene, (2) garnet+pyroxene aggregate with Ti-clinohumite inclusions, and (3) Ti-clinohumite-free aggregate dominated by garnet. Apatite, phlogopite, zircon, hematite, pentlandite, and an unknown Ni-Fe-volatile-Si (NFVS) mineral, which is replaced by Ni-greenalite, occur as accessories. Serpentine is the major secondary mineral. Garnet (Prp63.9–64.6Alm25.8–26.9Grs1.4–7.9Uva0.5–7.6Sps1.0) in all three aggregates is pyrope-rich with very low grossular component, with that in the aggregate (2) most enriched in Cr (Cr2O3=2.55 wt.%). Orthopyroxene is depleted in Al (Al2O3=0.16 wt.% in the cores) and Ca (CaO=0.06–0.09 wt.% in the cores), with XMg (Mg/(Mg+Fe)) values at ca. 0.900. Clinopyroxene is chromian diopside with Fe3+≥Fe2+. Matrix clinopyroxene has a lower XMg (0.862) than that (0.887) included in Ti-clinohumite. The rock contains modest amount of heavy rare earth elements (HREE) (10 to 12×C1 chondrite), with significant enrichment in Cr, Co, Ni, V, Sr, and light rare earth elements (LREE) (22 to 33×C1 chondrite). The clinopyroxene is very enriched in Cr (Cr2O3 is up to 2.09 wt.% in the cores) and Sr (ca. 350 ppm) and LREE (CeN/YbN=157.7). Ti-clinohumite is enriched in Ni (1981 ppm), Co (123 ppm), and Nb (85 ppm).

While it is possible to enrich ultramafites in incompatible elements in a subducted slab, the high Al, Fe, Ti, and low Si, Ca, and Na contents in the Ti-clinohumite rock are difficult to account for by crustal metasomatism of an ultramafite. On the other hand, the similarity in major and trace element compositions and their systematic variations between the Ti-clinohumite-garnet-pyroxene rock of this study and those of Mg-metasomatised Fe–Ti gabbros reported in the literature suggest that crustal metasomatism occurred in a gabbroic protolith, which resulted in addition of Cr, Co, Ni, and Mg and removal of Si, Ca, Na, Al, and Fe. This implies that the rock was in contact with an ultramafite at low pressure. During subsequent subduction, the metagabbro was thrust into the country gneiss, where gneiss-derived hydrous fluids caused enrichment of Sr and LREE in recrystallised clinopyroxene. P–T estimates for the high-pressure assemblage are ca. 4.2 GPa and ca. 760 °C, compatible with those for the eclogites and gneisses in this terrane. It is possible that the Ti-clinohumite-garnet-pyroxene rock and associated eclogites represent remnants of former oceanic crust that was subducted to a great depth.  相似文献   


19.
Bulk-rock chlorine content and isotopic composition (δ37Cl) were determined in oceanic serpentinites, high-pressure metaperidotites and metasediments in order to gain constraints on the global chlorine cycle associated with hydrothermal alteration and subduction of oceanic lithosphere. The distribution of insoluble chlorine in oceanic serpentinites was also investigated by electron microprobe. The hydrothermally-altered ultramafic samples were dredged along the South West Indian Ridge and the Mid-Atlantic Ridge. The high-pressure metamorphic samples were collected in the Western Alps: metaperidotites in the Erro-Tobbio unit and metasediments in the Schistes Lustrés nappe.Oceanic serpentinites show relatively large variations of bulk-rock Cl contents and δ37Cl values with mean values of 1105 ± 596 ppm and −0.7 ± 0.4‰, respectively (n = 8; 1σ). Serpentines formed after olivine (meshes) show lower Cl content than those formed after orthopyroxene (bastites). In bastites of two different samples, Cl is positively correlated with Al2O3 and negatively correlated with SiO2. These relationships are interpreted as reflecting preferential Cl-incorporation into the bastite structure distorted by Al (substituted for Si) rather than different alteration conditions between olivine and orthopyroxene minerals. High-pressure metaperidotites display relatively homogeneous Cl contents and δ37Cl values with mean values of 467 ± 88 ppm and −1.4 ± 0.1‰, respectively (n = 7; 1σ). A macroscopic high-pressure olivine-bearing vein, formed from partial devolatilization of serpentinites at ∼2.5 GPa and 500-600 °C, shows a Cl content and a δ37Cl value of 603 ppm and −1.6‰, respectively. Metasediments (n = 2) show low whole-rock Cl contents (<15 ppm Cl) that did not allow Cl isotope analyses to be obtained.The range of negative δ37Cl values observed in oceanic serpentinites is likely to result from water-rock interaction with fluids that have negative δ37Cl values. The homogeneity of δ37Cl values from the high-pressure olivine-bearing vein and the metaperidotite samples implies that progressive loss of Cl inherited from oceanic alteration throughout subduction did not significantly fractionate Cl isotopes. Chlorine recycled in subduction zones via metaperidotites should thus show a range of δ37Cl values similar to the range found in oceanic serpentinized peridotites.  相似文献   

20.
The island of Cyprus represents an excellent site to assess quantitatively petrologic clastic response to actively obducting oceanic sources in order to define an actualistic reference for ophiolite provenance, in terms of framework composition and heavy mineral suites. An improved methodology, an extension of the classic ternary QFL logic to include a wider spectrum of key indexes and ratios, provides an accurate synthesis of modal data and allows differentiation of three main petrographic provinces and at least seven subprovinces. Diagnostic signatures of detritus from various levels of an oceanic lithospheric source, and criteria for distinguishing provenance from suprasubduction versus mid-oceanic ophiolites are also outlined. Modern sands derived from the Troodos Ophiolite contain variable proportions of largely pelagic carbonate to chert, boninite to basalt, diabase to metabasite, plagiogranite to gabbroic, and cumulate grains supplied from progressively deeper-seated levels of the multilayered oceanic crust. Dense minerals are mainly clinopyroxenes (diopside), prevailing over orthopyroxenes (enstatite, hypersthene, clinoenstatite), hornblende, tremolite/actinolite, and epidote. Where serpentinized mantle harzburgites have been unroofed, detritus is markedly enriched in cellular serpentinite grains and enstatite, with still negligible olivine and spinel. Sedimentaclastic sands dominated by chert (Mamonia Province) or carbonate grains (Kyrenia Province) are deposited along the southern and northern shores of the island, respectively. Compositions of Cyprus sands are virtually unaffected by climatic, sedimentary, or anthropic processes; recycling of sandstones from foreign sources is a major process only in the Karpaz Peninsula. Petrographic analysis also provides an independent mean to identify prevalent directions of longshore sand transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号