首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
2.
3.
CO2浓度增加对植物生长和农业生产的影响   总被引:10,自引:1,他引:9  
王馥棠 《气象》1993,19(7):8-13
评述了近年来国内外有关大气中CO_2含量的增加趋势及其对植物生长和农业生产影响的研究进展。指出,无论是“直接效应”还是“间接影响”都有有利和不利两方面的影响;虽然,目前有“弊大于利”的趋向性认识,但由于科学理论上的许多不确定性,如何进行综合评估是今后要大力深入研究的重要课题。  相似文献   

4.
In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10–18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24–36 % of total cropland by 2100.  相似文献   

5.
The seasonal cycle of atmospheric CO2 at surface observation stations in the northern hemisphere is driven primarily by net ecosystem production (NEP) fluxes from terrestrial ecosystems. In addition to NEP from terrestrial ecosystems, surface fluxes from fossil fuel combustion and ocean exchange also contribute to the seasonal cycle of atmospheric CO2. Here the authors use the Goddard Earth Observing System-Chemistry (GEOS-Chem) model (version 8-02-01), with modifications, to assess the impact of these fluxes on the seasonal cycle of atmospheric CO2 in 2005. Modifications include monthly fossil and ocean emission inventories. CO2 simulations with monthly varying and annual emission inventories were carried out separately. The sources and sinks of monthly averaged net surface flux are different from those of annual emission inventories for every month. Results indicate that changes in monthly averaged net surface flux have a greater impact on the average concentration of atmospheric CO2 in the northern hemisphere than on the average concentration for latitudes 30-90°S in July. The concentration values differ little between both emission inventories over the latitudinal range from the equator to 30°S in January and July. The accumulated impacts of the monthly averaged fossil and ocean emissions contribute to an increase of the total global monthly average of CO2 from May to December.An apparent discrepancy for global average CO2 concentration between model results and observation was because the observation stations were not sufficiently representative. More accurate values for monthly varying net surface flux will be necessary in future to run the CO2 simulation.  相似文献   

6.
本文基于中尺度区域模式WRF,开展模式层顶高度变化对高空气象要素,特别是高空风场数值模拟影响的研究。通过设计模式顶高45、5 hPa两个试验,同化来源于NOAA-15、NOAA-18、NOAA-19和METOP-2的AMSU-A辐射计高通道数据,表明提高模式层顶能够使卫星更多的高通道样本数量进入同化系统,达到减小背景场误差,同时减小高于层顶通道辐射能量对低层通道影响的目的,一定程度上改进了同化效果,从而改善高空气象要素,特别是风场的模拟效果,与观测值的均方根误差减小了约0.4~0.5 m·s-1。  相似文献   

7.
8.
While most long-term mitigation scenario studies build on a broad portfolio of mitigation technologies, there is quite some uncertainty about the availability and reduction potential of these technologies. This study explores the impacts of technology limitations on greenhouse gas emission reductions using the integrated model IMAGE. It shows that the required short-term emission reductions to achieve long-term radiative forcing targets strongly depend on assumptions on the availability and potential of mitigation technologies. Limited availability of mitigation technologies which are relatively important in the long run implies that lower short-term emission levels are required. For instance, limited bio-energy availability reduces the optimal 2020 emission level by more than 4 GtCO2eq in order to compensate the reduced availability of negative emissions from bioenergy and carbon capture and storage (BECCS) in the long run. On the other hand, reduced mitigation potential of options that are used in 2020 can also lead to a higher optimal level for 2020 emissions. The results also show the critical role of BECCS for achieving low radiative forcing targets in IMAGE. Without these technologies achieving these targets become much more expensive or even infeasible.  相似文献   

9.
Climate scenarios for the Netherlands are constructed by combining information from global and regional climate models employing a simplified, conceptual framework of three sources (levels) of uncertainty impacting on predictions of the local climate. In this framework, the first level of uncertainty is determined by the global radiation balance, resulting in a range of the projected changes in the global mean temperature. On the regional (1,000–5,000 km) scale, the response of the atmospheric circulation determines the second important level of uncertainty. The third level of uncertainty, acting mainly on a local scale of 10 (and less) to 1,000 km, is related to the small-scale processes, like for example those acting in atmospheric convection, clouds and atmospheric meso-scale circulations—processes that play an important role in extreme events which are highly relevant for society. Global climate models (GCMs) are the main tools to quantify the first two levels of uncertainty, while high resolution regional climate models (RCMs) are more suitable to quantify the third level. Along these lines, results of an ensemble of RCMs, driven by only two GCM boundaries and therefore spanning only a rather narrow range in future climate predictions, are rescaled to obtain a broader uncertainty range. The rescaling is done by first disentangling the climate change response in the RCM simulations into a part related to the circulation, and a residual part which is related to the global temperature rise. Second, these responses are rescaled using the range of the predictions of global temperature change and circulation change from five GCMs. These GCMs have been selected on their ability to simulate the present-day circulation, in particular over Europe. For the seasonal means, the rescaled RCM results obey the range in the GCM ensemble using a high and low emission scenario. Thus, the rescaled RCM results are consistent with the GCM results for the means, while adding information on the small scales and the extremes. The method can be interpreted as a combined statistical–dynamical downscaling approach, with the statistical relations based on regional model output.  相似文献   

10.
Ozone is well documented as the air pollutant most damaging to agricultural crops and other plants.It is reported that tropospheric O3 concentration increases rapidly in recent 20 years. Evaluating and predicting impacts of ozone concentration changes on crops are drawing great attention in the scientific community. In China, main study method about this filed is controlled experiments, for example, Open Top Chambers. But numerical simulation study about impacts of ozone on crops with crop model was developed slowly, what is more, the study about combined impacts of ozone and carbon dioxide has not been reported.The improved agroecosystem model is presented to evaluate simultaneously impacts of tropospheric O3 and CO2 concentration changes on crops in the paper by integrating algorithms about impacts of ozone on photosynthesis with an existing agroecosystem biogeochemical model (named as DNDC). The main physiological processes of crop growth (phenology, leaf area index, photosynthesis, respiration, assimilated allocation and so on) in the former DNDC are kept. The algorithms about impacts of ozone on photosynthesis and winter wheat leaf are added in the modified DNDC model in order to reveal impacts of ozone and carbon dioxide on growth, development, and yield formation of winter wheat by coupling the simulation about impacts of carbon dioxide on photosynthesis of winter wheat which exists in the former DNDC. In the paper, firstly assimilate allocation algorithms and some genetic parameters (such as daily thermal time of every development stage) were modified in order that DNDC can be applicable in North China. Secondly impacts of ozone on crops were simulated with two different methods-one was impacts of ozone on light use efficiency , and the other was direct effects of ozone on leaves photosynthesis. The latter simulated results are closer to experiment measurements through comparing their simulating results. At last the method of direct impacts of ozone on leaf growth is adopted and the coe cients about impacts of ozone on leaf growth and death are ascertained. Effects of climate changes, increasing ozone, and carbon dioxide concentration on agroecosystem are tried to be simulated numerically in the study which is considered to be advanced and credible.  相似文献   

11.
12.
The increase of atmospheric carbon dioxide has positive effects on agricultural productivity (photosynthesis stimulation), but in some regions it has negative effects (drought due to the temperature rise) as well. The central part of the United States in summer is predicted to be one of such regions, where the influence of the CO2 increase should be assessed considering both the effects. Such calculations have been made for spring wheat, soybean and corn in a series of papers, a summary of which is presented here. Since the CO2 emission rate depends on fossil fuel consumption, energy scenarios with different fossil fuel consumption are assumed. Positive effects of CO2 are expressed by a model which simulates actual data. In the absence of an appropriate model negative effects are assumed to be proportional to the temperature rise, which is shown to be unexpectedly good. The difference between C3 (soybean and wheat) and C4 (corn) plants is also considered. Changes of their yields in the next century are calculated. Results show that in this region (probably up to 42–45° N) in summer an unlimited increase of atmospheric CO2 is not desirable for the above three crops even if positive effects of CO2 are taken into account. This work is not intended to give prediction of future crop production, but to show illustrative examples for the above argument. Thus assumptions are made so as to overestimate positive effects and underestimate negative effects, but results show that even in such cases an unlimited increase of CO2 is not necessarily desirable for the specified regions.All inquiries about this paper should be made to K. Okamoto.  相似文献   

13.
14.
With the rapid development of industrialization and urbanization, the enrichment of tropospheric ozone and carbon dioxide concentration at striking rates has caused effects on biosphere, especially on crops. It is generally accepted that the increase of CO2 concentration will have obverse effects on plant productivity while ozone is reported as the air pollutant most damaging to agricultural crops and other plants. The Model of Carbon and Nitrogen Biogeochemistry in Agroecosystems (DNDC) was adapted to evaluate simultaneously impacts of climate change on winter wheat. Growth development and yield formation of winter wheat under different O3 and CO2 concentration conditions are simulated with the improved DNDC model whose structure has been described in another paper. Through adjusting the DNDC model applicability, winter wheat growth and development in Gucheng Station were simulated well in 1993 and 1999, which is in favor of modifying the model further. The model was validated against experiment observation, including development stage data, leaf area index, each organ biomass, and total aboveground biomass. Sensitivity tests demonstrated that the simulated results in development stage and biomass were sensitive to temperature change. The main conclusions of the paper are the following: 1) The growth and yield of winter wheat under CO2 concentration of 500 ppmv, 700 ppmv and the current ozone concentration are simulated respectively by the model. The results are well fitted with the observed data of OTCs experiments. The results show that increase of CO2 concentration may improve the growth of winter wheat and elevate the yield. 2) The growth and yield of winter wheat under O3 concentration of 50 ppbv, 100 ppbv, 200 ppbv and the based concentration CO2 are simulated respectively by the model. The simulated curves of stem, leaf, and spike organs growth as well as leaf area index are well accounted with the observed data. The results reveal that ozone has negative e ects on the growth and yield of winter wheat. Ozone accelerates the process of leaf senescence and causes yield loss. Under very high ozone concentration, crops are damaged dramatically and even dead. 3) At last, by the model possible effects of air temperature change and combined effects of O3 and CO2 are estimated respectively. The results show that doubled CO2 concentration may alleviate negative effect of O3 on biomass and yield of winter wheat when ozone concentration is about 70-80 ppbv. The obverse effects of CO2 are less than the adverse effects of O3 when the concentration of ozone is up to 100 ppbv. Future work should determine whether it can be applied to other species by adjusting the values of related parameters, and whether the model can be adapted to predict ozone e ects on crops in farmland environment.  相似文献   

15.
We assert that the simulation of fine-scale crop growth processes and agronomic adaptive management using coarse-scale climate change scenarios lower confidence in regional estimates of agronomic adaptive potential. Specifically, we ask: 1) are simulated yield responses tolow-resolution climate change, after adaptation (without and with increased atmospheric CO2), significantly different from simulated yield responses tohigh-resolution climate change, after adaptation (without and with increased atmospheric CO2)? and 2) does the scale of the soils information, in addition to the scale of the climate change information, affect yields after adaptation? Equilibrium (1 × CO2 versus 2 × CO2)climate changes are simulated at two different spatial resolutions in the Great Plains using the CSIRO general circulation model (low resolution) and the National Center for Atmospheric Research (NCAR) RegCM2 regional climate model (high resolution). The EPIC crop model is used to simulate the effects of these climate changes; adaptations in EPIC include earlier planting and switch to longer-season cultivars. Adapted yields (without and with additional carbon dioxide) are compared at the different spatial resolutions. Our findings with respect to question 1 suggest adaptation is more effective in most cases when simulated with a higher resolution climate change than its more generalized low resolution equivalent. We are not persuaded that the use of high resolution climate change information provides insights into the direct effects of higher atmospheric CO2 levels on crops beyond what can be obtained with low resolution information. However, this last finding may be partly an artifact of the agriculturally benign CSIRO and RegCM2 climate changes. With respect to question 2, we found that high resolution details of soil characteristics are particularly important to include in adaptation simulations in regions typified by soils with poor water holding capacity.  相似文献   

16.
在全国推崇节能减排,寻求低碳经济发展的大环境下,探究不同收入水平下各影响因子与碳排放的关联性有助于区域异质性碳减排政策的制定。根据2002—2016年的经济发展水平数据,将中国30个省及直辖市(不包含西藏及港、澳、台地区)划分为4个不同收入水平,分别建立面板向量自回归(PVAR)模型,并运用面板格兰杰因果检验、脉冲响应和方差分解探究城市化、产业结构、能源消费、经济增长与碳排放之间的关联性。研究结果表明,处于不同收入水平下的省份各影响因子与碳排放之间的关系存在异质性。收入水平较高的省份当前城市化水平已产生显著的减排效应,而欠发达地区仍处于城市化进程加速碳排放阶段;4个收入水平下能源消费均会长期影响碳排放,但欠发达地区更加需要摆脱能源依赖的经济发展路径,并且提高能源利用率从而降低碳排放;非高收入水平省份产业结构对碳排放造成的影响明显高于高收入水平省份。此外,实证结果表明,中国仍处于碳排放与经济发展的同步增长阶段,减排政策将会对经济增长产生负向反馈,故现有减排路径的选择需要高度审慎的设计与实施。  相似文献   

17.
The Dalton Minimum (1790–1830) was a period with reduced solar irradiance and strong volcanic eruptions. Additionally, the atmospheric CO2 concentrations started to rise from the background level of previous centuries. In this period most empirical climate reconstructions indicate a minimum in global or hemispheric temperatures. Here, we analyse several simulations starting in 1755 with the coupled atmosphere-ocean model ECHO-G driven by different forcing combinations to investigate which external forcing could have contributed most strongly to the reduced temperatures during the Dalton Minimum. Results indicate that on global and hemispheric scales, the volcanic forcing is largely responsible for the temperature drop in this period, especially during its second half, whereas changes in solar forcing and the increasing atmospheric CO2 concentrations were of minor importance. At regional scales, especially the extratropical, the impact of volcanic forcing is much less discernible due to the large regional variability, a finding that agrees with empirical temperature reconstructions.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号