首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   

2.
In-situ zircon U–Pb and Hf isotopic analysis via laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) of samples from Kemp and MacRobertson Lands, east Antarctica suggests that the Kemp Land terrane evolved separately from the rest of the Rayner Complex prior to the ca. 940 Ma Rayner Structural Episode. Several Archaean metamorphic events in rocks from western Kemp Land can be correlated with events previously reported for the adjacent Napier Complex. Recently reported ca. 1,600 Ma isotopic disturbance in rocks from the Oygarden Group may be correlated with a charnockitic intrusion in the Stillwell Hills before ca. 1,550 Ma. Despite being separated by some 200 km, THfDM ages indicate felsic orthogneiss from Rippon Point, the Oygarden Group, Havstein Island and the Stillwell Hills share a ca. 3,660–3,560 Ma source that is indistinguishable from that previously reported for parts of the Napier Complex. More recent additions to this crust include Proterozoic charnockite in the Stillwell Hills and the vicinity of Mawson Station. These plutons have distinct 176Hf/177Hf ratios and formed via the melting of crust generated at ca. 2,150–2,550 Ma and ca. 1,790–1,870 Ma respectively.  相似文献   

3.
Zircons in ultra-high-temperature (UHT) metamorphosed paragneisses from Mt. Riiser-Larsen in the Napier Complex, East Antarctica, were dated by using ion microprobe (SHRIMP) and electron microprobe (EMP). Both SHRIMP and EMP analyses yield consistent 2520–2460 Ma age populations for garnet–orthopyroxene-bearing paragneiss and leucosomes enclosed within. The peak UHT event was dated at 2480 Ma by SHRIMP analyses on metamorphic zircons from the garnet–orthopyroxene paragneiss and those on magmatic zircons from the leucosomes which are interpreted to be formed at syn-UHT. As obtained by SHRIMP, the UHT metamorphic event was terminated no later than 2460 Ma. Minor 2520-Ma SHRIMP age suggests either the onset of prograde metamorphism or another high-grade metamorphic event unrelated to the UHT. EMP analyses on metamorphic zircons from sapphirine–quartz and osumilite-bearing magnesian paragneisses give c. 2500–2450 Ma ages. Inherited igneous zircon cores of the magnesian paragneisses yield relatively scattered EMP ages ranging over c. 3000–2650 Ma, suggesting that igneous materials of these ages sourced the protoliths of the paragneisses and that they were deposited during the interval c. 2650–2520 Ma.  相似文献   

4.
We report here U–Pb electron microprobe ages from zircon and monazite associated with corundum- and sapphirine-bearing granulite facies rocks of Lachmanapatti, Sengal, Sakkarakkottai and Mettanganam in the Palghat–Cauvery shear zone system and Ganguvarpatti in the northern Madurai Block of southern India. Mineral assemblages and petrologic characteristics of granulite facies assemblages in all these localities indicate extreme crustal metamorphism under ultrahigh-temperature (UHT) conditions. Zircon cores from Lachmanapatti range from 3200 to 2300 Ma with a peak at 2420 Ma, while those from Mettanganam show 2300 Ma peak. Younger zircons with peak ages of 2100 and 830 Ma are displayed by the UHT granulites of Sengal and Ganguvarpatti, although detrital grains with 2000 Ma ages are also present. The Late Archaean-aged cores are mantled by variable rims of Palaeo- to Mesoproterozoic ages in most cases. Zircon cores from Ganguvarpatti range from 2279 to 749 Ma and are interpreted to reflect multiple age sources. The oldest cores are surrounded by Palaeoproterozoic and Mesoproterozoic rims, and finally mantled by Neoproterozoic overgrowths. In contrast, monazites from these localities define peak ages of between 550 and 520 Ma, with an exception of a peak at 590 Ma for the Lachmanapatti rocks. The outermost rims of monazite grains show spot ages in the range of 510–450 Ma.While the zircon populations in these rocks suggest multiple sources of Archaean and Palaeoproterozoic age, the monazite data are interpreted to date the timing of ultrahigh-temperature metamorphism in southern India as latest Neoproterozoic to Cambrian in both the Palghat–Cauvery shear zone system and the northern Madurai Block. The data illustrate the extent of Neoproterozoic/Cambrian metamorphism as India joined the Gondwana amalgam at the dawn of the Cambrian.  相似文献   

5.
Mineralogy and Petrology - A transmission electron microscope (TEM) study of Paleoproterozoic zircon that has experienced ultra-high temperature (UHT) metamorphism at ca. 570&nbsp;Ma in the...  相似文献   

6.
The Napier Complex of Enderby and Kemp Lands forms the north-western part of the East Antarctic Shield and consists predominantly of gneisses and granulites metamorphosed during a ca. 2.8 Ga high-grade and a ca. 2.5 Ga ultra-high temperature event. The western segment of the Napier Complex includes coastal outcrops, islands and nunataks around Amundsen and Casey Bays, and the Tula Mountains. This region records some of the highest metamorphic temperatures measured on Earth, affecting a variety of gneisses as old as ca. 3.8 Ga. Five samples of orthogneiss from the less-studied eastern Tula Mountains, including three granitic, one trondhjemitic and one dioritic gneiss, were dated by zircon U-Pb Secondary Ion Mass Spectrometry (SIMS). The three orthogneisses yield protolith ages of 3750 ± 35 Ma (granitic), 3733 ± 21 (trondhjemitic) Ma and 3560 ± 42 Ma (dioritic), whereas the two other granitic orthogneisses record ages of 2903 ± 14 Ma and 2788 ± 24 Ma. Zircon growth during metamorphism occurred at 2826 ± 10 Ma, and also between 2530 Ma and 2480 Ma. Samples from the Tula Mountains can be geochemically subdivided into Y-HREE-Nb-Ta depleted and undepleted groups. Eoarchean granitoids are included in both geochemical groups, as are Meso- and Neoarchean granitoids. The Y-HREE-Nb-Ta depleted granitoids can be generated by medium- to high-pressure melting of mafic crust, whereas undepleted granitoids can be generated by low-pressure melting. However, relatively high potassium contents in most samples, and the presence of xenocrystic/inherited zircon in some, reflect the likely involvement of felsic crustal sources. This diversity in granitoid composition occurs across the Napier Complex. The lack of a simple correlation between protolith age and geochemical type is an indication that magmatism during the Eoarchean (and later) involved diverse sources and processes, including re-melting and recycling of various crustal components, rather than just the formation of juvenile crust.  相似文献   

7.
Cathodoluminescence-controlled radiometric dating (U–Pb SHRIMP) was carried out on zircon domains from metabasic rocks of the Chiavenna unit, a major mafic/ultramafic-bearing unit in the Central Alps. Co-magmatic zircon domains from amphibolites near Chiavenna and Prata areas yielded weighted mean 206Pb/238U ages at 93.0±2.0 and 93.9±1.8 Ma, respectively, interpreted as the age of crystallization of the magmatic protoliths. These ages fit well with the time of late spreading in the Valais Ocean, as suggested by previous paleogeographic reconstructions. Inherited zircon grains and/or core domains (Permo-Triassic, Carboniferous, Proterozoic) are abundant, indicating proximity of the Chiavenna unit to thinned continental crust. This is in line with the origin of this unit from subcontinental mantle sources, as suggested previously on petrological and structural grounds. Metamorphic zircon domains from one amphibolite near Chiavenna yielded a weighted mean 206Pb/238U age at 37.1±0.9 Ma, identical to the 38.5±0.9 Ma SHRIMP age of an amphibolitized eclogite of the Antrona ophiolites (Valais domain, Western Alps). Precise metamorphic ages were difficult to obtain from the composite (poly)metamorphic rim domains of the Prata amphibolite. This is attributed to the location of the Prata area close to the granulite-facies Gruf unit (metamorphosed at ca. 33 Ma) and to the 24–25 Ma old Novate granite, where metamorphic/fluid events probably caused multiple resetting to various degrees. The ca. 93 Ma old magmatism, identified for the first time in the Chiavenna unit, is the youngest basic oceanic magmatism reported in the Alps. The 37.1±0.9 Ma old metamorphism in the Chiavenna unit, attributed to the Valais domain, confirms the model suggesting stepwise younging of metamorphic ages from the south (Adriatic plate) to the north (European plate). It is older than metamorphism in the European margin (ca. 35–31 Ma) lying to the north of the Valais domain and younger than that in the Piemont–Ligurian Ocean (ca. 44–45 Ma) lying to the south of the Valais domain.Editorial responsibility: W. Schreyer  相似文献   

8.
SHRIMP U–Pb ages have been obtained for zircon in granitic gneisses from the aureole of the Rogaland anorthosite–norite intrusive complex, both from the ultrahigh temperature (UHT; >900 °C pigeonite‐in) zone and from outside the hypersthene‐in isograd. Magmatic and metamorphic segments of composite zircon were characterised on the basis of electron backscattered electron and cathodoluminescence images plus trace element analysis. A sample from outside the UHT zone has magmatic cores with an age of 1034 ± 7 Ma (2σ, n = 8) and 1052 ± 5 Ma (1σ, n = 1) overgrown by M1 metamorphic rims giving ages between 1020 ± 7 and 1007 ± 5 Ma. In contrast, samples from the UHT zone exhibit four major age groups: (1) magmatic cores yielding ages over 1500 Ma (2) magmatic cores giving ages of 1034 ± 13 Ma (2σ, n = 4) and 1056 ± 10 Ma (1σ, n = 1) (3) metamorphic overgrowths ranging in age between 1017 ± 6 Ma and 992 ± 7 Ma (1σ) corresponding to the regional M1 Sveconorwegian granulite facies metamorphism, and (4) overgrowths corresponding to M2 UHT contact metamorphism giving values of 922 ± 14 Ma (2σ, n = 6). Recrystallized areas in zircon from both areas define a further age group at 974 ± 13 Ma (2σ, n = 4). This study presents the first evidence from Rogaland for new growth of zircon resulting from UHT contact metamorphism. More importantly, it shows the survival of magmatic and regional metamorphic zircon relics in rocks that experienced a thermal overprint of c. 950 °C for at least 1 Myr. Magmatic and different metamorphic zones in the same zircon are sharply bounded and preserve original crystallization age information, a result inconsistent with some experimental data on Pb diffusion in zircon which predict measurable Pb diffusion under such conditions. The implication is that resetting of zircon ages by diffusion during M2 was negligible in these dry granulite facies rocks. Imaging and Th/U–Y systematics indicate that the main processes affecting zircon were dissolution‐reprecipitation in a closed system and solid‐state recrystallization during and soon after M1.  相似文献   

9.
SHRIMP U–Pb analyses are reported for a detrital zircon population from a sample of sillimanite-bearing quartzite from the Narryer sedimentary succession in the Narryer Terrane of the northwestern Yilgarn Craton. The detrital zircons define two distinctive age groups, an older group from 4000 Ga to 4280 Ma and a younger group from 3750 to 3250 Ma. The abundance of older group zircons of about 12% far exceeds the abundance of about 2% reported in the first discovery of ancient zircons in a quartzite from the Narryer metasediments, and is equivalent to the abundance of >3900 Ma zircons in metaconglomerate sample W74 from the Jack Hills, confirmed by new measurements reported in this paper. Most analyses of the Narryer and the Jack Hills detrital zircon populations are discordant. The Jack Hills zircon analyses are dominated by strong recent Pb loss whereas the Narryer zircon analyses have had a more complex history and have experienced at least one Pb loss event, possibly associated with the high-grade metamorphism at ca. 2700 Ma, and a further disturbance of the U–Pb systems during relatively recent times. Although the number of analyses is limited and many of the zircon analyses are discordant, the age distributions of the older (>3900 Ma) zircons from the Narryer and Jack Hills samples are different, suggesting a complex provenance for the ancient zircons. The distribution of ages in the younger population of Mt Narryer zircons is similar to that reported for zircons from the surrounding Meeberrie gneiss, supporting previous suggestions that zircons from the gneisses or their precursors were a major contributor to the detrital zircon suite. The younger zircon population from Jack Hills sample (W74), lacks the strong age peak from 3600 to 3750 Ma present in the Narryer zircon population, and conversely the strong zircon age group at ca. 3350–3500 Ma in the Jack Hills population is only weakly represented in the Narryer zircon population. The age distributions for the Narryer and the Jack Hills zircon populations are taken as benchmarks for comparing zircon populations from quartzite occurrences elsewhere in the Yilgarn Craton.  相似文献   

10.
New SHRIMP U–Pb zircon geochronology and fieldwork integrated with reappraisal of earlier mapping demonstrates that the so-called ‘southern region’ of the mainland Lewisian Gneiss Complex comprises a package of distinct tectono-stratigraphic units. From south to north these are the Rona (3135–2889 Ma), Ialltaig (c. 2000 Ma) and Gairloch (ca. 2200 Ma) terranes. These terranes were metamorphosed and deformed separately until ca. 1670 Ma by which time they had been juxtaposed and were integral with terranes to the north. The northern boundary of the Palaeoproterozoic Gairloch terrane is a shear zone, north of which is the Archaean Gruinard terrane with 2860–2800 Ma protoliths and ca. 2730 Ma granulite facies metamorphism. In contrast, south of the Gairloch terrane, the Archaean gneisses of the Rona terrane have older protolith ages, underwent an anatectic event at ca. 2950 Ma and show no evidence of 2730 Ma granulite facies metamorphism. In current structural interpretations the Gruinard terrane forms a structural klippe over the intervening Gairloch terrane. However, the Rona and Gruinard terranes cannot be equivalent on age grounds, and are interpreted as unrelated different entities. Contained within the southern margin of the Gairloch terrane is the Ialltaig terrane, shown here to comprise an exotic slice of granulite facies Palaeoproterozoic crust, rather than Archaean basement as previously thought. The ca. 1877 Ma granulite facies metamorphism of the Ialltaig terrane is the youngest event that is unique to a single terrane in the mainland Complex, making it an upper estimate for the timing of amalgamation with surrounding tectonic units. U–Pb titanite ages of 1670 ± 12 Ma and ca. 1660 Ma for low-strain zones at Diabaig are interpreted to be cooling through the titanite closure temperature after the amphibolite facies reworking of these southern terranes and the southern margin of the Gruinard Terrane. These new data have implications for the tectonic setting of the mainland in relation to the Outer Hebrides and in the wider evolution of the basement in the North Atlantic.  相似文献   

11.
Zircon fission-track (FT) and U–Pb analyses were performed on zircon extracted from a pseudotachylyte zone and surrounding rocks of the Asuke Shear Zone (ASZ), Aichi Prefecture, Japan. The U–Pb ages of all four samples are  67–76 Ma, which is interpreted as the formation age of Ryoke granitic rocks along the ASZ. The mean zircon FT age of host rock is 73 ± 7 (2σ) Ma, suggesting a time of initial cooling through the zircon closure temperature. The pseudotachylyte zone however, yielded a zircon FT age of 53 ± 9 (2σ) Ma, statistically different from the age of the host rock. Zircon FTs showed reduced mean lengths and intermediate ages for samples adjacent to the pseudotachylyte zone. Coupled with the new zircon U–Pb ages and previous heat conduction modeling, the present FT data are best interpreted as reflecting paleothermal effects of the frictional heating of the fault. The age for the pseudotachylyte coincides with the change in direction of rotation of the Pacific plate from NW to N which can be considered to initialize the NNE–SSW trending sinistral–extensional ASZ before the Miocene clockwise rotation of SW Japan. The present study demonstrates that a history of fault motions in seismically active regions can be reconstructed by dating pseudotachylytes using zircon FT thermochronology.  相似文献   

12.
The U–Pb age determinations of zircon and rutile from the Aar massif reveal a complex evolution of the Central Alpine basement. The oldest components are found in zircons of metasediments, which bear cores of Archean age; the U–Pb age of discordant prismatic zircons of the same rocks ranges between 580 and 680 Ma, an age that is typical for Pan-African metamorphism. The zircons are interpreted as Pan-African detritus with Archean inheritance. The provenance region of the Pan-African zircons is assumed to be a terrane of Gondwana-affinity, i.e. the W. African craton or the Pentevrian microplate. The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on the rocks of the Aar massif; it is dated at 456±2 and 445 Ma by zircons of a layered migmatitic gneiss and a migmatitic leucosome, respectively, both occurring in the northernmost zones of the massif. Hercynian metamorphism never exceeded greenschist-facies conditions and is recorded by zircon in a garnet-amphibolite and by rutile in a meta-psammite that yield an age of 330 Ma. Both zircon and rutile are considered to be products of retrograde mineral reactions and therefore do not date the peak conditions of Hercynian metamorphism. The Gastern granite at the western end of the Aar massif is a contaminated granite that intruded at 303±4 Ma, contemporaneously with the wide-spread late Hercynian post-collisional I-type magmatism. The study demonstrates the potential of isotope dilution U–Pb dating of single grains and microfractions in deciphering complex evolutionary histories of polymetamorphic terrains.  相似文献   

13.
New U–Pb SHRIMP ages in zircon, Ar–Ar ages in micas and amphiboles, Nd–Sr isotopes, and major and REE geochemical analyses in granitic gneisses and granitic stocks of the Central Cordillera of Colombia indicate the presence of a collisional orogeny in Permo-Triassic times in the Northern Andes related to the construction of the Pangea supercontinent. The collision is recorded by metamorphic U–Pb SHRIMP ages in inherited zircons around 280 Ma and magmatic U–Pb SHRIMP ages in neoformed zircons around 250 Ma within syntectonic crustal granitic gneisses. Magmatic U–Pb SHRIMP and Ar–Ar Triassic ages around 228 Ma in granitic stocks indicate the presence of late tectonic magmatism related to orogenic collapse and the beginning of the breakup of the supercontinent. During this period, the Central Cordillera of Colombia would have been located between the southern United States and northern Venezuela, in the leading edge of the Gondwana supercontinent.  相似文献   

14.
Ion microprobe U-Th-Pb analyses of zircons from a granulite-grade orthogneiss from Mount Sones, Enderby Land, Antarctica, record the ages of four principal events in the history of the gneiss, three of which already have been recognized through previous isotopic dating of other samples. The structure of the zircons indicates at least four different stages of growth. The several zircon ages were obtained by grouping the analyses according to the stage they represented in the observed stratigraphic succession of growth and thereby defining separate U-Pb discordance patterns for each stage. The stratigraphically oldest zircon (rare discrete cores) is indistinguishable in age from the most common, euhedrally zoned zircon. Both crystallized when the tonalitic precursor of the orthogneiss was emplaced into the crust 3927±10 Ma ago, making the orthogneiss currently the oldest known terrestrial rock. The outer parts of most grains and some whole grains recrystallized at 2948±31/–17 Ma, during or immediately after possibly 100 Ma of high granulite grade metamorphism. The recrystallized zircon was isotopically disturbed by tectonism associated with reactivation of the southern margin of the Napier Complex at 1000 Ma. In the intervening time, at 2479±23 Ma, the cores and zoned zircon suffered a major isotopic disturbance involving movement of radiogenic Pb which left most of the crystals with radiogenic Pb deficiencies, but produced local radiogenic Pb excesses in others. A new generation of zircon, characterized by very high Th/U and low U, grew at that time. That event — deformation and possibly a minor rise in temperature — produced widespread perturbations of other isotopic systems throughout the Napier Complex.  相似文献   

15.
Abstract New isotopic (Rb–Sr, U–Pb zircon and Sm–Nd) and petrological data are presented for part of an extensive Proterozoic mobile belt (locally known as the Rayner Complex) in East Antarctica. Much of the belt is the product of Mid-Proterozoic (∼ 1800–2000 Ma) juvenile crustal formation. Melting of this crust at about 1500 Ma ago produced the felsic magmas from which the dominant orthogneisses of this terrain were subsequently derived. Deformation and transitional granulite-amphibolite facies conditions (which peaked at 750 ± 50°C and 7–8 kbar (0.7–0.8 GPa) produced open to tight folding about E–W axes and syn-tectonic granitoids about 960 Ma ago. Subsequent felsic magmatism occurred at about 770 Ma and not, as has been widely advocated, at 500–550 Ma, which appears to have been a time of widespread upper greenschist facies (400–500°C) metamorphism, localized shearing and faulting. Sm-Nd model ages of 1.65–2.18 Ga disprove a previously favoured hypothesis that the Rayner Complex mostly represents reworked Archaean rocks from the neighbouring craton (Napier Complex). Models that involve rehydration of the Napier Complex are no longer required, since the Rayner Complex was its own source of water. Two episodes of Proterozoic crustal growth are identified, the later of which occurred between about 1200 Ma and 1000 Ma, and was relatively minor. Sedimentation took place only shortly before Late Proterozoic orogenesis. The multiphase history of the Rayner Complex has resulted in complex isotopic behaviour. Three temporally discrete episodes of Pb loss from zircon have been identified, the earliest two of which are responses to the c. 960 Ma and 540 Ma tectonothermal events. Fluid leaching was operative during the later event for there is a good correlation between degree of isotopic discordance and secondary mineral growth. Pb loss during the high-grade event was probably governed by the same process or by lattice annealing. Some zircon suites also document recent Pb loss. Most lower concordia intercepts have no direct geological meaning and are explicable as mixed ages produced by incomplete Pb loss during two or more secondary events. Whereas all zircon separates from the orthogneisses produce U–Pb isotopic alignments, zircons from the only analysed paragneiss produce scattered data, in part reflecting a range of provenance. The 960 Ma event was also associated with the growth of a characteristically low U zircon (∼ 300 μg/g) in rocks of inferred high Zr content. There is ubiquitous evidence for the resetting of Rb–Sr total-rock isochrons. Even samples separated by up to 10 km fail to produce igneous crystallization ages. Minor mineralogical changes produced by the 540 Ma upper greenschist-facies metamorphism were sufficient to almost completely reset some Rb–Sr isochrons and to produce open system conditions on outcrop scale, at least in one location.  相似文献   

16.
Zircon crystals from a locally charnockitized Paleoproterozoic high-K metagranite from the Kerala Khondalite Belt (KKB) of southern India have been investigated by high-spatial resolution secondary ion mass spectrometry analysis of U–Th–Pb and rare earth elements (REE), together with scanning ion imaging and scanning ion tomography (depth-profiled ion imaging). The spot analyses constrain the magmatic crystallization age of the metagranite to ca. 1,850 Ma, with ultrahigh-temperature (UHT) metamorphism occurring at ca. 570 Ma and superimposed charnockite formation at ca. 520–510 Ma, while the ion imaging reveals a patchy distribution of radiogenic Pb throughout the zircon cores. Middle- to heavy-REE depletion in ca. 570 Ma zircon rims suggests that these grew in equilibrium with garnet and therefore date the UHT metamorphism in the KKB. The maximum apparent 207Pb/206Pb age obtained from the unsupported radiogenic Pb concentrations is also consistent with formation of the Pb patches during this event. The superimposed charnockitization event appears to have caused additional Pb-loss in the cores and recrystallization of the rims. The results of depth-profiling of the scanning ion tomography image stack show that the Pb-rich domains range in size from <5 nm to several 10 nm (diameter if assumed to be spherical). The occurrence of such patchy Pb has previously been documented only from UHT metamorphic zircon, where it likely results from annealing of radiation-damaged zircon. The formation of a discrete, heterogeneously distributed and subsequently immobile Pb phase effectively arrests the normal Pb-loss process seen at lower grades of metamorphism.  相似文献   

17.
《Gondwana Research》2009,15(4):624-643
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   

18.
East Greenland forms one of the least understood of the orogenic belts formed during the amalgamation of Rodinia during late Mesoproterozoic times. Recent U–Pb zircon SHRIMP dating on the widespread Krummedal supracrustal succession and associated granites from central East Greenland has shown that metamorphism and intrusion affected the region at around 0.95–0.92 Ga, approximately 150 m.y. later than the main phase of Grenvillian orogenesis (s.s.). These early Neoproterozoic ages may indicate a link with metamorphism and igneous activity in the Sveconorwegian Belt of Scandinavia rather than true ‘Grenvillian’ events on the eastern margin of Laurentia. Previous plate tectonic reconstructions which link Laurentia and Baltica by a collisional margin extending through central East Greenland at 1.1 Ga were based on early conventional U–Pb zircon dating in central East Greenland, and can no longer be considered viable. Instead, new detrital zircon SHRIMP U–Pb dating studies show that the Krummedal supracrustal succession was deposited between ca. 1.0 Ga and no later than 0.95 Ga, during a time of major sediment deposition widely preserved elsewhere in the North Atlantic region. Erosion associated with post-1.1 Ga collapse of the Grenville–Sunsas orogeny is the most likely source for the majority of the detritus, since the corresponding Baltic margin was dominated by A-type magmatism for much of the period 1.4–1.1 Ga material, which is the age of the bulk of detrital zircons in the Krummedal supracrustal succession. We suggest that the Krummedal supracrustal succession was deposited east or south-east of its present location, and was thrust onto Archaean–Palaeoproterozoic orthogneisses, which in turn were displaced across the parautochthonous foreland during the Caledonian orogeny. The early Neoproterozoic orogenic events recorded in central East Greenland therefore involved the metamorphism of a metasedimentary package of Laurentian–Amazonian affinity during the Sveconorwegian orogeny in the final stages of the collision of Baltica and Laurentia.  相似文献   

19.
The Madurai Block in the Southern Granulite Terrane(SGT)of Peninsular India is one of the largest crustal blocks within the Neoproterozoic Gondwana assembly.This block is composed of three sub-blocks:the Neoarchean Northern Madurai block,Paleoproterozoic Central Madurai block and the dominantly Neoproterozoic Southern Madurai Block.The margins of these blocks are well-known for the occurrence of ultrahigh-temperature(UHT)granulite facies rocks mostly represented by Mg-Al metasediments.Here we report a dismembered layered mafic–ultramafic intrusion occurring in association with Mg-Al granulites from the classic locality of Ganguvarpatti in the Central Madurai Block.The major rock types of the layered intrusion include spinel orthopyroxenite,garnet-bearing gabbro,gabbro and gabbroic anorthosite showing rhythmic stratification and cumulate texture.The orthopyroxene-cordierite granulite from the associated Mg-Al layer is composed of spinel,cordierite and orthopyroxene.The pyroxene in both rock units is high-Al orthopyroxene formed under UHT metamorphic conditions.Conventional thermobarometry yields near-peak metamorphic conditions of 9.5–10 kbar pressure and a minimum temperature of 980℃.We computed P–T pseudosections and contoured for the compositional as well as modal isopleths of the major mineral phases,which yield temperature above 1000℃.FMAS petrogenetic grid,Al-in-orthopyroxene isopleth,conventional thermobarometry and calculated pseudosection reveal a clockwise pressure–temperature(P–T)path and near isothermal decompression.The U–Pb data on zircon grains from the layered magmatic suite indicate emplacement of the protolith at ca.2.0 Ga and the metamorphic overgrowths yield weighted 206Pb/238U mean ages ca.520 Ma.Monazite from the garnet-bearing gabbro and Opx-Crd granulite yielded 206Pb/238U weighted mean ages of ca.532 Ma and 523 Ma marking the timing of metamorphism.We correlate the layered intrusion to a Paleoproterozoic suprasubduction zone setting,defining the Ganguvarpatti area as part of a collisional suture assembling the Northern and Central Madurai Blocks.The Paleoproterozoic magmatism and late Neoproterozoic-Cambrian UHT metamorphism can be linked to the tectonics of the Columbia and Gondwana supercontinents.  相似文献   

20.
The Deh-Salm metamorphic Complex (DMC) of the Lut block in East Iran consists of metapelites, amphibolites, marbles, and metasandstones intruded by granite and pegmatites. U–Pb dating of zircon, monazite, xenotime, and titanite by ID-TIMS show that the granitic rocks were emplaced at 166–163 Ma, confirming that the high temperature metamorphism was synchronous with the intrusive activity, and that the region cooled rapidly thereafter. Late- to post-magmatic hydrothermal activity was probably responsible for the late crystallization, at 159.5 Ma, of zircon and titanite in an amphibolite and of monazite in granite. Xenocrystic zircons yield indications for a Carboniferous component in the source, together with a variety of Precambrian ages, which indicate a provenance of the sedimentary protolith from mature continental crust. The timing and rapidity of the events are consistent with evolution of the DMC in a back-arc environment during the Jurassic subduction of the Neotethys Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号