首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
One‐km resolution MODIS‐based mean annual evapotranspiration (ET) estimates in combination with PRISM precipitation rates were correlated with depth to groundwater (d) values in the wide alluvial valley of the Platte River in Nebraska for obtaining a net recharge (Rn) vs. d relationship. MODIS cells with irrigation were excluded, yielding a mixture of predominantly range, pasture, grass, and riparian forest covers on sandy soils with a shallow groundwater table. The transition depth (dt) between negative and positive values of the net groundwater recharge was found to be at about 2 (±1) m. Within 1 (±1) m of the surface and at a depth larger than about 7 to 8 (±1) m, the mean annual net recharge became independent of d at a level of about ?4 (±12)% and 13 (±10)%, respectively, of the mean annual precipitation rate. The obtained Rn(d) relationship is based on a calibration‐free ET estimation method and may help in obtaining the net recharge in shallow groundwater areas of negligible surface runoff where sufficient groundwater‐depth data exist.  相似文献   

2.
Regional estimation of total recharge to ground water in Nebraska   总被引:4,自引:0,他引:4  
Naturally occurring long-term mean annual recharge to ground water in Nebraska was estimated by a novel water-balance approach. This approach uses geographic information systems (GIS) layers of land cover, elevation of land and ground water surfaces, base recharge, and the recharge potential in combination with monthly climatic data. Long-term mean recharge > 140 mm per year was estimated in eastern Nebraska, having the highest annual precipitation rates within the state, along the Elkhorn, Platte, Missouri, and Big Nemaha River valleys where ground water is very close to the surface. Similarly high recharge values were obtained for the Sand Hills sections of the North and Middle Loup, as well as Cedar River and Beaver Creek valleys due to high infiltration rates of the sandy soil in the area. The westernmost and southwesternmost parts of the state were estimated to typically receive < 30 mm of recharge a year.  相似文献   

3.
Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.  相似文献   

4.
Future extreme precipitation (EP, daily rainfall amount over certain thresholds) is projected to increase with global climate change; however, its effect on groundwater recharge has not been fully explored. This study specifically investigates the spatiotemporal dynamics of groundwater recharge and the effects of extreme precipitation (daily rainfall amount over the 95th percentile, which is tagged by ranking the percentiles in each season for a base period) on groundwater recharge from 1950 to 2010 over the Northern High Plains (NHP) Aquifer using the Soil Water Balance Model. The results show that groundwater recharge significantly (p < 0.05) increased in the eastern NHP from 1950 to 2010, where the highest annual average groundwater recharge occurs compared to the central and the western NHP. In the eastern NHP, 45.1% of the annual precipitation fell as EP, which contributed 56.8% of the annual total groundwater recharge. In the western NHP, 30.9% of the annual precipitation fell as extreme precipitation, which contributed 62.5% of the annual total groundwater recharge. In addition, recharge by extreme precipitation mainly occurred in late spring and early summer, before the maximum evapotranspiration rate, which usually occurs in mid‐summer until late fall. A dry site in the western NHP and a wet site in the eastern NHP were analysed to indicate how recharge responds to EP with different precipitation regimes. The maximum daily recharge at the dry site exceeded the wet site when there was EP. When precipitation fell as non‐extreme rainfall, most recharge was less than 5 mm at both the dry and wet sites, and the maximum recharge at the dry site became lower than the wet site. This study shows that extreme precipitation plays a significant role in determining groundwater recharge. © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

5.
Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi‐year water budget (2004–2010) and quantified environmental controls on an evapotranspiration (ET) in a 70‐year‐old mixed‐oak woodland forest in northwest Ohio, USA. ET was measured using the eddy‐covariance technique along with precipitation (P), soil volumetric water content (VWC), and shallow groundwater table fluctuation. Three biophysical models were constructed and validated to calculate potential ET (PET) for developing predictive monthly ET models. We found that the annual variability in ET was relatively stable and ranged from 578 mm in 2009 to 670 mm in 2010. In contrast, ET/P was more variable and ranged from 0.60 in 2006 to 0.96 in 2010. Mean annual ET/PET_FAO was 0.64, whereas the mean annual PET_FAO/P was 1.15. Annual ET/PET_FAO was relatively stable and ranged from 0.60 in 2005 to 0.72 in 2004. Soil water storage and shallow groundwater recharge during the non‐growing season were essential in supplying ET during the growing season when ET exceeded P. Spring leaf area index (LAI), summer photosynthetically active radiation, and autumn and winter air temperatures (Ta) were the most significant controls of monthly ET. Moreover, LAI regulated ET during the whole growing season and higher temperatures increased ET even during dry periods. Our empirical modelling showed that the interaction of LAI and PET explained >90% of the variability in measured ET. Altogether, we found that increases in Ta and shifts in P distribution are likely to impact forest hydrology by altering shallow groundwater fluctuations, soil water storage, and ET and, consequently, alter the ecosystem functions of temperate forests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A previously published regional groundwater‐flow model in north‐central Nebraska was sequentially linked with the recently developed soil‐water‐balance (SWB) model to analyze effects to groundwater‐flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater‐level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root‐mean‐squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB‐generated recharge, the RMS difference between simulated and estimated base‐flow target values for the groundwater‐flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater‐level and base‐flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.  相似文献   

7.
This paper describes the application of environmental isotopes and injected tracer techniques in estimating the contribution of storms as well as annual precipitation to groundwater recharge and its circulation, in the semi‐arid region of Bagepalli, Kolar district, Karnataka. Environmental isotopes 2H, 18O and 3H were used to study the effect of storms on the hydrological system, and an isotope balance was used to compute the contribution of a storm component to the groundwater. Some of the groundwater samples collected during the post‐storm periods were highly depleted in stable isotope content with higher deuterium excess relative to groundwater from the pre‐storm periods. Significant variation in deuterium excess in groundwater from the same area, collected in two different periods, indicates the different origin of air masses. The estimated recharge component of a storm event of 600 mm to the groundwater was found to be in the range of 117–165 mm. There was no significant variation in environmental tritium content of post‐storm and pre‐storm groundwater, indicating the fast circulation of groundwater in the system. After completion of the environmental isotope work, an injected radiotracer 3H technique was applied to estimate the direct recharge of total precipitation to the groundwater. The estimated recharge to the groundwater is 33 mm of the 550 mm annual precipitation during 1992. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Groundwater recharge studies in semi‐arid areas are fundamental because groundwater is often the only water resource of importance. This paper describes the water balance method of groundwater recharge estimation in three different hydro‐climatic environments in eastern Mediterranean, in northwest Greece (Aliakmonas basin/Koromilia basin), in Cyprus (Kouris basin and Larnaka area) and in Jordan (northern part of Jordan). For the Aliakmonas basin, groundwater recharge was calculated for different sub‐catchments. For the Upper Aliakmonas basin (Koromilia basin), a watershed‐distributed model was developed and recharge maps were generated on a daily basis. The mean annual recharge varied between 50 and 75 mm/year (mean annual rainfall 800 mm/year). In Cyprus, the mean groundwater recharge estimates yielded 70 mm/year in the Kouris basin. In the Larnaka area, groundwater recharge ranged from 30 mm/year (lowland) to 200 mm/year (mountains). In Jordan, the results indicated recharge rates ranging from 80 mm/year for very permeable karstified surfaces in the upper part of the Salt basin, where rainfall reaches 500 mm/year to less than 10 mm/year and to only about 1 mm/year in the southernmost part of the basin. For the north part of Jordan, a watershed‐distributed model was developed and recharge maps were generated. This water balance model was used for groundwater recharge estimations in many regions with different climatic conditions and has provided reliable results. It has turned out to be an important tool for the management of the limited natural water resources, which require a detailed understanding of regional hydro(geo)logical processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Quantifying of direct recharge derived from precipitation is crucial for assessing sustainability of well‐irrigated agriculture. In the North China Plain, the land use is dominated by groundwater‐irrigated farmland where the direct recharge derived from precipitation and irrigation. To characterize the mean rate and historical variance of direct recharge derived from precipitation, unsaturated zone profiles of chloride and δ18O in the dry river bed of the Beiyishui River were employed. The results show that archival time scale of the profile covers the duration from 1980 to 2002 (corresponding to depths from 5 to 2 m) which is indicated by matching the δ18O peaks in the isotope profile with the aridity indexes gained by instrumental records of annual precipitation and annual potential evaporation. Using the chloride mass balance method, the mean rate of the direct recharge corresponding to the archival time scale is estimated to be 3·8 ± 0·8 mm year?1, which accounts for about 0·7% of the long‐term average annual precipitation. Further, the direct recharge rates vary from 2·1 to 6·8 mm year?1 since 1980. Despite the subhumid climate, the estimate of recharge rates is in line with other findings in semiarid regions. The low rate of direct recharge is considered as a result of the relative dry climate in recent decades. In dry river bed, unsaturated zone profiles of chloride and δ18O combined with instrumental records could offer valuable information about the direct recharge derived from precipitation during droughts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Reliable estimates of groundwater recharge are required for the sustainable management of surface and ground water resources in semi‐arid regions particularly in irrigated regions. In this study, groundwater recharge was estimated for an irrigated catchment in southeast Australia using a semi‐distributed hydrological model (SWAT). The model was calibrated under the dry climatic conditions for the period from August 2002 to July 2003 using flow and remotely sensed evapotranspiration (ET). The model was able to simulate observed monthly drain flow and spatially distributed remotely sensed ET. Recharge tended to be higher for irrigated land covers, such as perennial pasture, than for non‐irrigated land. On average, the estimated annual catchment recharge ranged between 147 and 289 mm which represented about 40% of the total rainfall and irrigation inputs. The optimized soil parameters indirectly reflected flow bypassing the soil matrix that could be responsible for this substantial amount of recharge. Overall, the estimated recharge was much more than that previously estimated for the wetter years. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Groundwater recharge estimation is a critical quantity for sustainable groundwater management. The feasibility and robustness of recharge estimation was evaluated using physical‐based modeling procedures, and data from a low‐cost weather station with remote sensor techniques in Southern Abbotsford, British Columbia, Canada. Recharge was determined using the Richards‐based vadose zone hydrological model, HYDRUS‐1D. The required meteorological data were recorded with a HOBOTM weather station for a short observation period (about 1 year) and an existing weather station (Abbotsford A) for long‐term study purpose (27 years). Undisturbed soil cores were taken at two locations in the vicinity of the HOBOTM weather station. The derived soil hydraulic parameters were used to characterize the soil in the numerical model. Model performance was evaluated using observed soil moisture and soil temperature data obtained from subsurface remote sensors. A rigorous sensitivity analysis was used to test the robustness of the model. Recharge during the short observation period was estimated at 863 and 816 mm. The mean annual recharge was estimated at 848 and 859 mm/year based on a time series of 27 years. The relative ratio of annual recharge‐precipitation varied from 43% to 69%. From a monthly recharge perspective, the majority (80%) of recharge due to precipitation occurred during the hydrologic winter period. The comparison of the recharge estimates with other studies indicates a good agreement. Furthermore, this method is able to predict transient recharge estimates, and can provide a reasonable tool for estimates on nutrient leaching that is often controlled by strong precipitation events and rapid infiltration of water and nitrate into the soil.  相似文献   

13.
This paper proposes an approach to estimate groundwater recharge using an optimization‐based water‐table fluctuation method combined with a groundwater balance model in an arid hardrock‐alluvium region, located at the Oman–United Arab Emirates border. We introduce an “effective hardrock thickness” term to identify the percentage of the considered hardrock thickness in which effective groundwater flow takes place. The proposed method is based upon a Thiessen polygon zoning approach. The method includes subpolygons to represent specific geologic units and to enhance the confidence of the estimated groundwater recharge. Two linear and 1 nonlinear submodels were developed to evaluate the model components for the calibration (October 1996 to September 2008) and validation (October 2008 to September 2013) periods. Long‐term annual groundwater recharge from rainfall and return flow over the model domain are estimated as 24.62 and 5.71 Mm3, respectively, while the effective groundwater flow circulation is found to occur in the upper 7% of the known hardrock thickness (42 m), confirming conclusions of previous field studies. Considering a total difference in groundwater levels between eastern and western points of the study area of the order of 220 m and a 12‐year monthly calibration period, a weighted root mean squared error in predicted groundwater elevation of 2.75 m is considered quite reasonable for the study area characterized by remarkable geological and hydrogeological diversity. The proposed approach provides an efficient and robust method to estimate groundwater recharge in regions with a complex geological setting in which interaction between fractured and porous media cannot be easily assessed.  相似文献   

14.
Jordan is classified as an arid to semi‐arid country with a population according to 1999 estimates of 4·8 millions inhabitants and a growth rate of 3·4%. Efficient use of Jordan's scarce water is becoming increasingly important as the urban population grows. This study was carried out within the framework of the joint European Research project ‘Groundwater recharge in the eastern Mediterranean’ and describes a combined methodology for groundwater recharge estimation in Jordan, the chloride method, as well as isotopic and hydrochemical approaches. Recharge estimations using the chloride method range from 14 mm year?1 (mean annual precipitation of 500 mm) for a shallow and stony soil to values of 3·7 mm year?1 for a thick desert soil (mean annual precipitation of 100 mm) and values of well below 1 mm year?1 for thick alluvial deposits (mean annual rainfall of 250 mm). Isotopically, most of the groundwater in the Hammad basin, east Jordan, falls below the global meteoric water line and far away from the Mediterranean meteoric water line, suggesting that the waters are ancient and were recharged in a climate different than Mediterranean. Tritium levels in the groundwater of the Hammad basin are less than the detection limit (<1·3 TU). However, three samples in east Hammad, where the aquifer is unconfined, present tritium values between 1 and 4 TU. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Transformations of precipitation into groundwater and streamflow are fundamental hydrological processes, critical to irrigated agriculture, hydroelectric power generation, and ecosystem health. Our understanding of the timing of groundwater recharge and streamflow generation remains incomplete, limiting our ability to predict fresh water, nutrient, and contaminant fluxes, especially in large basins. Here, we analyze thousands of rain, snow, groundwater, and streamflow δ18O and δ2H values in the Nelson River basin, which covers 1.2 million km2 of central Canada. We show that the fraction of precipitation that recharges aquifers is ~1.3–5 times higher for precipitation falling during cold months with subzero mean monthly temperatures than for precipitation falling during warmer months. The near‐ubiquity of cold‐season‐biased groundwater recharge implies that changes to winter water balances may have disproportionate impacts on annual groundwater recharge rates. We also show that young streamflow—defined as precipitation that enters a river in less than ~2.3 months—comprises ~27% of annual streamflow but varies widely among tributaries in the Nelson River basin (1–59%). Young streamflow fractions are lower in steep catchments and higher in flatter catchments such as the transboundary Red River basin. Our findings imply that flat, lower permeability, heavily tiled landscapes favor more rapid transmission of precipitation into rivers, possibly mobilizing excess soluble fertilizers and exacerbating eutrophication events in Lake Winnipeg.  相似文献   

16.
17.
The topography and geomorphology of the sand dunes and interdunal valleys in the Nebraska Sand Hills play important roles in regional water cycle by influencing groundwater recharge and evapotranspiration (ET). In this study, groundwater recharge, associated with precipitation and ET as well as soil hydraulics, and its spatial variations owing to the topography of dunes and valleys are examined. A method is developed to describe the recharge as a function of the storage capacity of dunes of various heights. After the method is tested using observations from a network of wells in the Sand Hills, it is used in the MODFLOW model to simulate and describe recharge effects on groundwater table depth at two different dune-valley sites. Analysis of modeled groundwater budget shows that the groundwater table depth in the interdunal valleys is critically influenced by vertical groundwater flows from surrounding dunes. At the site of higher dunes there are steadier and larger vertical groundwater flows in the dunes from their previous storage of precipitation. These vertical flows change to be horizontal converging groundwater flows and create upwelling in the interdunal valleys, where larger ET loss at the surface further enhances groundwater upwelling. Such interdunal valley is the major concentration area of the surface water and groundwater flow in the Sand Hills. At the site of shallow dunes and a broad interdunal valley the supply of groundwater from the dunes is trivial and inadequate to support upwelling of groundwater in the valley. The groundwater flows downward in the valley, and the valley surface is dry. Weak ET loss at the surface has a smaller effect on the groundwater storage than the precipitation recharge, making such area a source for groundwater.  相似文献   

18.
Groundwater is the principal water resource in semi‐arid and arid environments. Therefore, quantitative estimates of its replenishment rate are important for managing groundwater systems. In dry regions, karst outcrops often show enhanced recharge rates compared with other surface and sub‐surface conditions. Areas with exposed karst features like sinkholes or open shafts allow point recharge, even from single rainfall events. Using the example of the As Sulb plateau in Saudi Arabia, this study introduces a cost‐effective and robust method for recharge monitoring and modelling in karst outcrops. The measurement of discharge of a representative small catchment (4.0 · 104 m2) into a sinkhole, and hence the direct recharge into the aquifer, was carried out with a time‐lapse camera. During the monitoring period of two rainy seasons (autumn 2012 to spring 2014), four recharge events were recorded. Afterwards, recharge data as well as proxy data about the drying of the sediment cover are used to set up a conceptual water balance model. The model was run for 17 years (1971 to 1986 and 2012 to 2014). Simulation results show highly variable seasonal recharge–precipitation ratios between 0 and 0.27. In addition to the amount of seasonal precipitation, this ratio is influenced by the interannual distribution of rainfall events. Overall, an average annual groundwater recharge for the doline (sinkhole) catchment on As Sulb plateau of 5.1 mm has estimated for the simulation period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Groundwater abstraction and depletion were assessed at a 1‐km resolution in the irrigated areas of the Indus Basin using remotely sensed evapotranspiration (ET) and precipitation; a process‐based hydrological model and spatial information on canal water supplies. A calibrated Soil and Water Assessment Tool (SWAT) model was used to derive total annual irrigation applied in the irrigated areas of the basin during the year 2007. The SWAT model was parameterized by station corrected precipitation data (R) from the Tropical Rainfall Monitoring Mission, land use, soil type, and outlet locations. The model was calibrated using a new approach based on spatially distributed ET fields derived from different satellite sensors. The calibration results were satisfactory and strong improvements were obtained in the Nash‐Sutcliffe criterion (0.52 to 0.93), bias (?17.3% to ?0.4%), and the Pearson correlation coefficient (0.78 to 0.93). Satellite information on R and ET was then combined with model results of surface runoff, drainage, and percolation to derive groundwater abstraction and depletion at a nominal resolution of 1 km. It was estimated that in 2007, 68 km3 (262 mm) of groundwater was abstracted in the Indus Basin while 31 km3 (121 mm) was depleted. The mean error was 41 mm/year and 62 mm/year at 50% and 70% probability of exceedance, respectively. Pakistani and Indian Punjab and Haryana were the most vulnerable areas to groundwater depletion and strong measures are required to maintain aquifer sustainability.  相似文献   

20.
Spatially distributed groundwater recharge was simulated for a segment of a semi‐arid valley using three different treatments of meteorological input data and potential evapotranspiration (PET). For the same area, timeframe, land cover characteristics and soil properties, groundwater recharge was estimate using (i) single‐station climate data with monthly PET calculated by the Thornthwaite method; (ii) single‐station climate data with daily PET calculated by the Penman–Monteith method; and (iii) daily gridded climate data with spatially distributed PET calculated using the Penman–Monteith method. For each treatment, the magnitude and distribution of actual evapotranspiration (AET) for summer months compared well with those estimated for a 5‐year crop study, suggesting that the near‐surface hydrological processes were replicated and that subsequent groundwater recharge rates are realistic. However, for winter months, calculated AET was near zero when using the Thornthwaite PET method. Mean annual groundwater recharge varied from ~3·2 to 10·0 mm when PET was calculated by the Thornthwaite method, and from ~1·8 to 7·5 mm when PET was calculated by the Penman–Monteith method. Comparisons of bivariate plots of seasonal recharge rates estimated from single‐station versus gridded surface climate reveal that there is greater variability between the different methods for spring months, which is the season of greatest recharge. Furthermore, these seasonal differences are shown to provide different results when compared to the depth to water table, which could lead to different results of evaporative extinction depth. These findings illustrate potential consequences of using different approaches for representing spatial meteorological input data, which could provide conflicting predictions when modelling the influence of climate change on groundwater recharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号