首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We infer information about the nature of groundwater flow within a karst aquifer from the physical and chemical response of a spring to storm events. The spring discharges from the Maynardville Limestone in Bear Creek Valley, Tennessee. Initially, spring discharge peaks approximately 1–2 h from the midpoint of summer storms. The initial peak is likely due to surface loading, which pressurizes the aquifer and results in water moving out of storage. All of the storms monitored exhibited recessions that follow a master recession curve very closely, indicating that storm response is fairly consistent and repeatable, independent of the time between storms and the configuration of the rain event itself. Electrical conductivity initially increases for 0.5–2.9 days (longer for smaller storms), the result of moving older water out of storage. This is followed by a 2.1–2.5 day decrease in conductivity, resulting from an increasing portion of low conductivity recharge water entering the spring. Stable carbon isotope data and the calcite saturation index of the spring water also support this conceptual model. Spring flow is likely controlled by displaced water from the aquifer rather than by direct recharge through the soil zone.  相似文献   

2.
Rapid changes in spring water quality in karst areas due to rapid recharge of bacterially contaminated water are a major concern for drinking water suppliers and users. The main objective of this study was to use field experiments with fecal indicators to verify the vulnerability of a karst spring to pathogens, as determined by using a numerical modeling approach. The groundwater modeling was based on linear storage models that can be used to simulate karst water flow. The vulnerability of the karst groundwater is estimated using such models to calculate criteria that influence the likelihood of spring water being affected by microbial contamination. Specifically, the temporal variation in the vulnerability, depending on rainfall events and overall recharge conditions, can be assessed and quantified using the dynamic vulnerability index (DVI). DVI corresponds to the ratio of conduit to diffuse flow contributions to spring discharge. To evaluate model performance with respect to predicted vulnerability, samples from a spring were analyzed for Escherichia coli, enterococci, Clostridium perfringens, and heterotrophic plate count bacteria during and after several rainfall events. DVI was shown to be an indication of the risk of fecal contamination of spring water with sufficient accuracy to be used in drinking water management. We conclude that numerical models are a useful tool for evaluating the vulnerability of karst systems to pathogens under varying recharge conditions  相似文献   

3.
Comparison of flowpaths to a well and spring in a karst aquifer   总被引:3,自引:0,他引:3  
Toran L  Herman EK  White WB 《Ground water》2007,45(3):281-287
The permeability of some karst aquifers consists of networks of poorly integrated conduits and dissolution-widened fractures. The flow includes conduit flow, especially during storm recharge, but lacks the focused recharge into single master conduits that occurs in more highly developed karst systems. The proportions of conduit and dispersed flow are difficult to quantify in such systems. This study examines the flowpaths in a small karst watershed, based on comparing the physical and chemical response to storm flow at both a spring and a well. By conducting continuous monitoring at both locations, a better understanding of the flowpaths in a poorly integrated network was obtained. A more permeable flowpath to the spring leads to faster storm response and lower ion concentrations. The flowpath to and from the well is more complicated. The higher ion content and slower storm response suggest slower, more dispersed flowpaths. However, the well has greater variation in ion chemistry. Periodic recharge may dilute well concentrations due to faster (conduit or fracture) flowpaths. Although karst systems such as this are difficult to characterize, applying a variety of geochemical and physical monitoring techniques at multiple locations illustrates that the flowpaths can vary in both space and time.  相似文献   

4.
Anomalous behaviour of specific electrical conductivity (SEC) was observed at a karst spring in Slovenia during 26 high‐flow events in an 18‐month monitoring period. A conceptual model explaining this anomalous SEC variability is presented and reproduced by numerical modelling, and the practical relevance for source protection zoning is discussed. After storm rainfall, discharge increases rapidly, which is typical for karst springs. SEC displays a first maximum during the rising limb of the spring hydrograph, followed by a minimum indicating the arrival of freshly infiltrated water, often confirmed by increased levels of total organic carbon (TOC). The anomalous behaviour starts after this SEC minimum, when SEC rises again and remains elevated during the entire high‐flow period, typically 20–40 µS/cm above the baseflow value. This is explained by variable catchment boundaries: When the water level in the aquifer rises, the catchment expands, incorporating zones of groundwater with higher SEC, caused by higher unsaturated zone thickness and subtle lithologic changes. This conceptual model has been checked by numerical investigations. A generalized finite‐difference model including high‐conductivity cells representing the conduit network (“discrete‐continuum approach”) was set up to simulate the observed behaviour of the karst system. The model reproduces the shifting groundwater divide and the nearly simultaneous increase of discharge and SEC during high‐flow periods. The observed behaviour is relevant for groundwater source protection zoning, which requires reliable delineation of catchment areas. Anomalous behaviour of SEC can point to variable catchment boundaries that can be checked by tracer tests during different hydrologic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The Sarabkalan Spring serves as a primary water supply to irrigation and domestic use in the Sirvan Region, Iran. As it has a highly variable discharge, understanding its teleconnections with large-scale climate variability is crucial. In this study, we first characterize the springshed and its corresponding karst aquifer system using genetic algorithm analysis on the spring discharge, water balance calculations, temporal variations of physicochemical parameters, and stable isotopes along with considering its geological settings. Then, the large-scale climate indices teleconnections with precipitation and spring discharge are studied using wavelet analysis. Results reveal that the springshed contains two karst subaquifers resulting from geological and morphological settings. Unlike most developed karst systems in Zagros, which show one peak, the spring has two principal flow peaks over most hydrological years where the second peak occurs over the dry season. It takes ∼99 d (from lag correlation over 2008-2019) and ∼145 d (from δ18O measurements over 2018-2019) for rain water to reach the Sarabkalan Spring. Moreover, intense precipitations would result in an increase in discharge and a decrease in electrical conductivity, Ca + Mg, HCO3, SO4, Cl, ionic strength, and δ18O of the spring because of the developed karst conduit(s). It is further found that a positive Pacific Decadal Oscillation phase coupled with El Niño causes an increase in both the precipitation and spring discharge, signifying the influence of the atmospheric circulations of the Pacific Ocean on the spring behavior.  相似文献   

6.
Using nitrate to quantify quick flow in a karst aquifer   总被引:3,自引:0,他引:3  
Mahler BJ  Garner BD 《Ground water》2009,47(3):350-360
In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with δ18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The δ18O-based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems.  相似文献   

7.
The present study examined groundwater recharge/discharge mechanisms in the regional Central Sudan Rift Basins (CSRB). Aquifers in CSRB constitute poorly sorted silisiclastics of sand, clay and gravels deposited in closed hydrologic systems of the Cretaceous–Pleistocene fluviolacustrine environments. CSRB are bounded to the north by the highlands of the Central African Shear Zone (CAZS) that represents the surface and groundwater divides. Sporadic recharge in the peripheries of the basins along the CASZ occurs subsequent to decadal and centennial storm events. Inflow from the Nile into the aquifers represents an additional source of recharge. Thus, groundwater resources cannot be labelled fossil nor can they be readily recharged. Closed hydrologic troughs located adjacent to the influent Nile system mark areas of main groundwater discharge characterized by lower hydraulic heads. This study has examined mechanisms that derive the discharge of the groundwater in these closed basins and concluded that only evapotranspirative discharge can provide a plausible explanation. Groundwater abstraction is mainly through deep‐rooted trees and effective evaporation. The increase of TDS along the flow indicates local recharge at the peripheries of basins and shows the influence of evaporation and rock/water interaction. The decline in groundwater level along a flow path was calculated using Darcy's law to estimate average recharge and evapotranspirative discharge, which are equal under natural equilibrium and make the only fluxes in CSRB. Steady‐state 2D flow modelling has demonstrated that an average recharge of 4–8 mm yr?1 and evapotranspirative discharge of 1–22 mm yr?1 will maintain natural equilibrium in CSRB. Sporadic storms provide recharge in the highlands to preserve the current hydraulic gradient and maintain aquifer dynamics. Simulated recharge from the Nile totals about 17·5 mm yr?1 and is therefore a significant contributor to the water balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Karst aquifers consist of complex networks of conduits in which groundwater flows and recharge/discharge processes are generally more dynamic than in other types of aquifers. Due to their intrinsic heterogeneity and anisotropy, monitoring, quantifying, and analysing natural responses of karst springs is an efficient tool. Unlike Cenozoic and Mesozoic rocks, in Neoproterozoic karst systems, groundwater circulates and stores generally in dissolution features known as tertiary porosity, as the rock's primary porosity is recrystallized, considered negligible. This article studies the hydrodynamics of a karst portion of the São Miguel River basin, southwest of the state of Minas Gerais, Brazil. The region is predominantly composed of Neoproterozoic carbonate rocks, dating from about 570 to 540 million years ago. During a hydrological year (2019–2020), three karst springs (S1, S2, and S3) were daily monitored through their natural responses (variations of electrical conductivity, EC, temperature, T, and discharge, Q) to rainfall episodes. The data were interpreted based on the analysis of spring hydrographs, time series, recession curves (seasonal and intra-annual), and statistics of EC, T, and Q variations. The results show the three springs generally exhibit quick flow, typically karstic, in the case of hydrosystems with a well-structured and functional underground drainage network. The time series indicate the hydrosystem drained by S1 presents slower circulation and a lower degree of linearity, resulting from the higher sinuosity of the system, while the hydrosystems of S2 and S3 have similar behaviours, of quick water circulations immediately after a rainy episode. The degrees of karstification classify S1 and S2 as complex and extensive karst systems consisting of several subsystems, and S3 as a system in which the conduit network is more developed at the upper epiphreatic zone than near the outlet.  相似文献   

9.
Karst spring responses examined by process-based modeling   总被引:8,自引:0,他引:8  
Birk S  Liedl R  Sauter M 《Ground water》2006,44(6):832-836
Ground water in karst terrains is highly vulnerable to contamination due to the rapid transport of contaminants through the highly conductive conduit system. For contamination risk assessment purposes, information about hydraulic and geometric characteristics of the conduits and their hydraulic interaction with the fissured porous rock is an important prerequisite. The relationship between aquifer characteristics and short-term responses to recharge events of both spring discharge and physicochemical parameters of the discharged water was examined using a process-based flow and transport model. In the respective software, a pipe-network model, representing fast conduit flow, is coupled to MODFLOW, which simulates flow in the fissured porous rock. This hybrid flow model was extended to include modules simulating heat and reactive solute transport in conduits. The application of this modeling tool demonstrates that variations of physicochemical parameters, such as solute concentration and water temperature, depend to a large extent on the intensity and duration of recharge events and provide information about the structure and geometry of the conduit system as well as about the interaction between conduits and fissured porous rock. Moreover, the responses of solute concentration and temperature of spring discharge appear to reflect different processes, thus complementing each other in the aquifer characterization.  相似文献   

10.
Groundwater is a very significant water source used for irrigation and drinking purposes in the karst region, and therefore understanding the hydrogeochemistry of karst water is extremely important. Surface water and groundwater were collected, and major chemical compositions and environmental isotopes in the water were measured in order to reveal the geochemical processes affecting water quality in the Gaoping karst basin, southwest China. Dominated by Ca2+, Mg2+, HCO3? and SO42?, the groundwater is typically characterized by Ca? Mg? HCO3 type in a shallow aquifer, and Ca? Mg? SO4 type in a deeper aquifer. Dissolution of dolomite aquifer with gypsiferous rocks and dedolomitization in karst aquifers are important processes for chemical compositions of water in the study basin, and produce water with increased Mg2+, Ca2+ and SO42? concentrations, and also increased TDS in surface water and groundwater. Mg2+/Ca2+ molar ratios in groundwater decrease slightly due to dedolomitization, while the mixing of discharge of groundwater with high Mg2+/Ca2+ ratios may be responsible for Mg2+/Ca2+ ratios obviously increasing in surface water, and Mg2+/Ca2+ ratios in both surface water and groundwater finally tending to a constant. In combination with environmental isotopic analyses, the major mechanism responsible for the water chemistry and its geochemical evolution in the study basin can be revealed as being mainly from the water–rock interaction in karst aquifers, the agricultural irrigation and its infiltration, the mixing of surface water and groundwater and the water movement along faults and joints in the karst basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The deeply buried river‐connected Xishan karst aquifer (XKA) in western Beijing, China, has been suffering from diminishing recharge for several decades, which in turn leads to the disappearing of spring water outflows and continuously lowering of groundwater level in the area. Thus, it is important to correctly recognize the groundwater recharge and flow paths for the sustainable development of the XKA. To investigate these issues, the hydrochemical and isotopic compositions are analysed for both surface water and groundwater samples collected over an area of about 280 km2. Results show that (a) the river water is characterized by high Na contents; (b) the δ2H and δ18O values in the river water are distinctively higher than those of groundwater samples, after experiencing the long‐time evaporative enrichment in the upstream reservoir; (c) the Sr concentrations and 87Sr/86Sr ratios of groundwater clearly indicated the interaction between water and carbonate minerals but excluded the water–silicate interaction; and (d) the groundwater samples in the direct recharge area of the XKA have the lowest Na concentrations and the δ2H and δ18O values. Based on the large differences in the Na contents and 18O values of groundwater and surface water, a simple two‐component mixing model is developed for the study area and the fractions of the river water are estimated for groundwater samples. We find that the distribution pattern of the river water fractions in the XKA clearly shows a change of directions in the preferential flow path of the groundwater from its source zone to the discharge area. Overall, our results suggest that the recharged surface water can be a useful evidence for delineating the groundwater flow path in river‐connected karst aquifer. This study improves our understanding of the heterogeneity in karst groundwater systems.  相似文献   

12.
Spatial heterogeneity in the subsurface of karst environments is high, as evidenced by the multiphase porosity of carbonate rocks and complex landform features that result in marked variability of hydrological processes in space and time. This includes complex exchange of various flows (e.g., fast conduit flows and slow fracture flows) in different locations. Here, we integrate various “state‐of‐the‐art” methods to understand the structure and function of this poorly constrained critical zone environment. Geophysical, hydrometric, and tracer tools are used to characterize the hydrological functions of the cockpit karst critical zone in the small catchment of Chenqi, Guizhou Province, China. Geophysical surveys, using electrical resistivity tomography (ERT), inferred the spatial heterogeneity of permeability in the epikarst and underlying aquifer. Water tables in depression wells in valley bottom areas, as well as discharge from springs on steeper hillslopes and at the catchment outlet, showed different hydrodynamic responses to storm event rainwater recharge and hillslope flows. Tracer studies using water temperatures and stable water isotopes (δD and δ18O) could be used alongside insights into aquifer permeability from ERT surveys to explain site‐ and depth‐dependent variability in the groundwater response in terms of the degree to which “new” water from storm rainfall recharges and mixes with “old” pre‐event water in karst aquifers. This integrated approach reveals spatial structure in the karst critical zone and provides a conceptual framework of hydrological functions across spatial and temporal scales.  相似文献   

13.
It is important to understand the link between land surface/soil properties and shallow groundwater quality. To that end, soil properties and near‐water‐table groundwater chemistry of a shallow, unconfined aquifer were measured on a 100‐m grid on a 64‐ha irrigated field in southeastern North Dakota. Soil properties and hydrochemistry were compared via multivariate analysis that included product‐moment correlations and factor analysis/principal component analysis. Topographic low areas where the water table was in close proximity to the soil surface generally had higher apparent electrical conductivity (ECa) and higher percent silt and clay than higher positions on the landscape. The majority of the groundwater was characterized by Ca‐ and Mg‐HCO3 type water and was associated with topographic high areas with lower ECa and net groundwater recharge. Small topographic depressions were areas of higher ECa (net groundwater discharge) where salts that precipitated via evapotranspiration and evaporative discharge dissolved and leached to the groundwater during short‐term depression‐focused recharge events. At this site, groundwater quality and soil ECa were related to surface topography. High‐resolution topography and ECa measurements are necessary to characterize the land surface/soil properties and surficial groundwater quality at the field‐scale and to delineate areas where the shallow groundwater is most susceptible to contamination.  相似文献   

14.
A combination of hydrometric data and observations of natural isotope (oxygen-18) variations in saturation overland flow and stream discharge were used to investigate the sources of storm run-off in a headwater swamp located in a permanent groundwater discharge zone near Toronto, Canada. The results of a two-component hydrograph separation indicated that pre-event water formed 80–90% of the stream hydrograph volume for six of the seven storms analyzed in June–November 1990. However, the instantaneous event water contribution showed considerable variability, ranging from maximum values of 20–25% for four moderate intensity storms to 63% for a high intensity thunderstorm with a return period of two years. The relative contribution of event and pre-event water to storm run-off from saturated areas and small streamlets within the swamp was similar to the main outlet stream. The dominance of pre-event water during storms could be accounted for by the mixing of a small volume of event water with a large pool of pre-event water on the surface of permanently saturated areas within the swamp. Occasional storms of high intensity or long duration produced a greater shift towards an event water signature in the saturated areas and a larger event water contribution to the outlet stream hydrograph.  相似文献   

15.
For many basins, identifying changes to water quality over time and understanding current hydrologic processes are hindered by fragmented and discontinuous water‐quality and hydrology data. In the coal mined region of the New River basin and Indian Fork sub‐basin, muted and pronounced changes, respectively, to concentration–discharge (C–Q) relationships were identified using linear regression on log‐transformed historical (1970s–1980s) and recent (2000s) water‐quality and streamflow data. Changes to C–Q relationships were related to coal mining histories and shifts in land use. Hysteresis plots of individual storms from 2007 (New River) and the fall of 2009 (Indian Fork) were used to understand current hydrologic processes in the basins. In the New River, storm magnitude was found to be closely related to the reversal of loop rotation in hysteresis plots; a peak‐flow threshold of 25 cubic meters per second (m3/s) segregates hysteresis patterns into clockwise and counterclockwise rotational groups. Small storms with peak flow less than 25 m3/s often resulted in dilution of constituent concentrations in headwater tributaries like Indian Fork and concentration of constituents downstream in the mainstem of the New River. Conceptual two or three component mixing models for the basins were used to infer the influence of water derived from spoil material on water quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes the application of environmental isotopes and injected tracer techniques in estimating the contribution of storms as well as annual precipitation to groundwater recharge and its circulation, in the semi‐arid region of Bagepalli, Kolar district, Karnataka. Environmental isotopes 2H, 18O and 3H were used to study the effect of storms on the hydrological system, and an isotope balance was used to compute the contribution of a storm component to the groundwater. Some of the groundwater samples collected during the post‐storm periods were highly depleted in stable isotope content with higher deuterium excess relative to groundwater from the pre‐storm periods. Significant variation in deuterium excess in groundwater from the same area, collected in two different periods, indicates the different origin of air masses. The estimated recharge component of a storm event of 600 mm to the groundwater was found to be in the range of 117–165 mm. There was no significant variation in environmental tritium content of post‐storm and pre‐storm groundwater, indicating the fast circulation of groundwater in the system. After completion of the environmental isotope work, an injected radiotracer 3H technique was applied to estimate the direct recharge of total precipitation to the groundwater. The estimated recharge to the groundwater is 33 mm of the 550 mm annual precipitation during 1992. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Artificially enhancing recharge rate into groundwater aquifer at specially designed facilities is an attractive option for increasing the storage capacity of potable water in arid and semi‐arid region such as Damascus basin (Syria). Two dug wells (I and II) for water injection and 24 wells for water extraction are available in Mazraha station for artificial recharge experiment. Chemical and stable isotopes (δ2H and δ18O) were used to evaluate artificial recharge efficiency. 400 to 500*103 m3 of spring water were injected annually into the ambient shallow groundwater in Mazraha station, which is used later for drinking purpose. Ambient groundwater and injected spring water are calcium bicarbonate type with EC about 880 ± 60 μS/cm and 300 ± 50 μS/cm, respectively. The injected water is under saturated versus calcite and the ambient groundwater is over saturated, while the recovered water is near equilibrium. It was observed that the injection process formed a chemical dilution plume that improves the groundwater quality. Results demonstrate that the hydraulic conductivity of the aquifer is estimated around 6.8*10?4 m/s. The effective diameter of artificial recharge is limited to about 250 m from the injection wells. Mixing rate of 30% is required in order to reduce nitrate concentration below 50 mg/l which is considered the maximum concentration limit for potable water. Deuterium and oxygen‐18 relationship demonstrates that mixing line between injected water and ambient groundwater has a slope of 6.1. Oxygen‐18 and Cl? plot indicates that groundwater salinity origin is from mixing process, and no dissolution and evaporation were observed. These results demonstrate the efficiency of the artificial recharge experiments to restore groundwater storage capacity and to improve the water quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Storm sewer systems and their associated utility trenches may strongly influence the effects of urbanization on a groundwater system. This study was undertaken to identify the causes of district-wide basement infiltration in an aquitard system. It comprised widespread continuous monitoring of utility trench wells and dye tracing from storm sewer system exfiltration tests. The results indicate that a major effect of urbanization on shallow groundwater is related to storm sewer system exfiltration, which is marked by a characteristic pattern of head variations in the aquitard unrelated to distributed surface infiltration. The aquitard constrains flow from storm sewer system exfiltration to the utility trench, creating an urban flow path for groundwater discharge. Temporary buildup of water levels in the utility trench drives relatively high-velocity flow through the permeable sewer bedding material of the utility trench to a separate foundation drainage collector system, ultimately causing a severe “urban karst” effect that produces system surcharging and widespread basement water infiltration. The main conditions causing the “urban karst” are the large hydraulic conductivity ratio between the utility trench material and the aquitard, and the shallow depth and low gradient of the storm sewer system imposed by a very flat drainage basin.  相似文献   

19.
Groundwater is the principal water resource in semi‐arid and arid environments. Therefore, quantitative estimates of its replenishment rate are important for managing groundwater systems. In dry regions, karst outcrops often show enhanced recharge rates compared with other surface and sub‐surface conditions. Areas with exposed karst features like sinkholes or open shafts allow point recharge, even from single rainfall events. Using the example of the As Sulb plateau in Saudi Arabia, this study introduces a cost‐effective and robust method for recharge monitoring and modelling in karst outcrops. The measurement of discharge of a representative small catchment (4.0 · 104 m2) into a sinkhole, and hence the direct recharge into the aquifer, was carried out with a time‐lapse camera. During the monitoring period of two rainy seasons (autumn 2012 to spring 2014), four recharge events were recorded. Afterwards, recharge data as well as proxy data about the drying of the sediment cover are used to set up a conceptual water balance model. The model was run for 17 years (1971 to 1986 and 2012 to 2014). Simulation results show highly variable seasonal recharge–precipitation ratios between 0 and 0.27. In addition to the amount of seasonal precipitation, this ratio is influenced by the interannual distribution of rainfall events. Overall, an average annual groundwater recharge for the doline (sinkhole) catchment on As Sulb plateau of 5.1 mm has estimated for the simulation period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Oxygen and hydrogen isotopes were used in this study to detect a hydraulic connection between a sinkhole lake and a karst spring. In karst areas, surface water that flows to a lake can drain through sinkholes in the lakebed to the underlying aquifer, and then flows in karst conduits and through aquifer matrix. At the study site located in northwest Florida, USA, Lake Miccosukee immediately drains into two sinkholes. Results from a dye tracing experiment indicate that lake water discharges at Natural Bridge Spring, a first-magnitude spring 32 km downgradient from the lake. By collecting weekly water samples from the lake, the spring, and a groundwater well 10 m away from the lake during the dry period between October 2019 and January 2020, it was found that, when rainfall effects on isotopic signature in spring water are removed, increased isotope ratios of spring water can be explained by mixing of heavy-isotope-enriched lake water into groundwater, indicating hydraulic connection between the lake and the spring. Such a detection of hydraulic connection at the scale of tens of kilometers and for a first-magnitude spring has not been previously reported in the literature. Based on the isotope ratio data, it was estimated that, during the study period, about 8.5% the spring discharge was the lake water that drained into the lake sinkholes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号