首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To remove chromate from a wastewater, a porous permeable reactive barrier system (PRBS), using pyrite and biotite, was adapted. This study included bench‐scale column experiments to evaluate the efficiency of the PRBS and investigate the reaction process. The total chromium concentration of the effluent from the biotite and pyrite columns reached the influent concentration of 0·10 mM after passing through more than 150 pore volumes (PVs) and 27 PVs respectively, and remained constant thereafter. The CrVI concentration in the effluent from the biotite column became constant at about 0·08 mM , accounting for approximately 80% of the influent concentration, after passing through 200 PVs. Moreover, in the pyrite column, the CrVI concentration remained at about 0·01 mM , 10% of the input level, after passing through 116 PVs. This shows that both columns maintained their levels of chromate reduction once the CrVI breakthrough curves (BTCs) had reached the steady state, though the steady‐state output concentration of total chromium had reached the influent level. The variances of the iron concentration closely followed those of the chromium. The observed data for both columns were fitted to the predicted BTCs calculated by CXTFIT, a program for estimating the solute transport parameters from experimental data. The degradation coefficient µ of the total chromium BTCs for both columns was zero, suggesting the mechanisms for the removal of chromate limit the µ of the CrVI BTCs. The CrVI degradation of the pyrite column (6·60) was much greater than that of the biotite column (0·27). In addition, the CrVI retardation coefficient R of the pyrite column (253) was also larger than that of the biotite column (125). The R values for the total chromium BTCs from both columns were smaller than those of the CrVI BTC. Whereas the total chromium BTC for the pyrite column showed little retardation (1·5), the biotite column showed considerable retardation (80). The results for the 900 °C heat‐treated biotite column were analogous to those of the control column (quartz sand). This suggests that the heat‐treated biotite played no role in the retardation and removal of hexavalent chromium. The parameters of the heat‐treated biotite were calculated to an R of 1·2 and µ of 0·01, and these values confirmed quantitatively that the heated biotite had little effect on the transport of CrVI. These solute transport parameters, calculated by CXTFIT from the data obtained from the column tests, can provide quantitative information for the evaluation of bench‐ or field‐scale columns as a removal technology for CrVI in wastewater or contaminated groundwater. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The newly developed Fractional Advection-Dispersion Equation (FADE), which is FADE was extended and used in this paper for modelling adsorbing contaminant transport by adding an adsorbing term. A parameter estimation method and its corresponding FORTRAN based program named FADEMain were developed on the basis of Nonlinear Least Square Algorithm and the analytical solution for one-dimensional FADE under the conditions of step input and steady state flow. Data sets of adsorbing contaminants Cd and NH4+-N transport in short homogeneous soil columns and conservative solute NaCI transport in a long homogeneous soil column, respectively were used to estimate the transport parameters both by FADEMain and the advection-dispersion equation (ADE) based program CXTFIT2.1. Results indicated that the concentration simulated by FADE agreed well with the measured data. Compared to the ADE model, FADE can provide better simulation for the concentration in the initial lower concentration part and the late higher concentration part of the breakthrough curves for both adsorbing contaminants. The dispersion coefficients for ADE were from 0.13 to 7.06 cm2/min, while the dispersion coefficients for FADE ranged from 0.119 to 3.05 cm1.856/min for NaCI transport in the long homogeneous soil column. We found that the dispersion coefficient of FADE increased with the transport distance, and the relationship between them can be quantified with an exponential function. Less scale-dependent was also found for the dispersion coefficient of FADE with respect to ADE.  相似文献   

3.
Time nonlocal transport models such as the time fractional advection‐dispersion equation (t‐fADE) were proposed to capture well‐documented non‐Fickian dynamics for conservative solutes transport in heterogeneous media, with the underlying assumption that the time nonlocality (which means that the current concentration change is affected by previous concentration load) embedded in the physical models can release the effective dispersion coefficient from scale dependency. This assumption, however, has never been systematically examined using real data. This study fills this historical knowledge gap by capturing non‐Fickian transport (likely due to solute retention) documented in the literature (Huang et al. 1995) and observed in our laboratory from small to intermediate spatial scale using the promising, tempered t‐fADE model. Fitting exercises show that the effective dispersion coefficient in the t‐fADE, although differing subtly from the dispersion coefficient in the standard advection‐dispersion equation, increases nonlinearly with the travel distance (varying from 0.5 to 12 m) for both heterogeneous and macroscopically homogeneous sand columns. Further analysis reveals that, while solute retention in relatively immobile zones can be efficiently captured by the time nonlocal parameters in the t‐fADE, the motion‐independent solute movement in the mobile zone is affected by the spatial evolution of local velocities in the host medium, resulting in a scale‐dependent dispersion coefficient. The same result may be found for the other standard time nonlocal transport models that separate solute retention and jumps (i.e., displacement). Therefore, the t‐fADE with a constant dispersion coefficient cannot capture scale‐dependent dispersion in saturated porous media, challenging the application for stochastic hydrogeology methods in quantifying real‐world, preasymptotic transport. Hence improvements on time nonlocal models using, for example, the novel subordination approach are necessary to incorporate the spatial evolution of local velocities without adding cumbersome parameters.  相似文献   

4.
Hydraulic conductivity distribution and plume initial source condition are two important factors affecting solute transport in heterogeneous media. Since hydraulic conductivity can only be measured at limited locations in a field, its spatial distribution in a complex heterogeneous medium is generally uncertain. In many groundwater contamination sites, transport initial conditions are generally unknown, as plume distributions are available only after the contaminations occurred. In this study, a data assimilation method is developed for calibrating a hydraulic conductivity field and improving solute transport prediction with unknown initial solute source condition. Ensemble Kalman filter (EnKF) is used to update the model parameter (i.e., hydraulic conductivity) and state variables (hydraulic head and solute concentration), when data are available. Two-dimensional numerical experiments are designed to assess the performance of the EnKF method on data assimilation for solute transport prediction. The study results indicate that the EnKF method can significantly improve the estimation of the hydraulic conductivity distribution and solute transport prediction by assimilating hydraulic head measurements with a known solute initial condition. When solute source is unknown, solute prediction by assimilating continuous measurements of solute concentration at a few points in the plume well captures the plume evolution downstream of the measurement points.  相似文献   

5.
B. Lennartz  S. K. Kamra 《水文研究》1998,12(12):1939-1949
The heterogeneity of the solute flux field in the horizontal plane at the field scale has been documented in several field studies. On the other hand, little information is available on the persistence of certain solute transport scenarios over consecutive infiltration cycles. This study was initiated to analyse the recurrence of solute leaching behaviour as estimated in two soil column tests emphasizing the preferential flow phenomenon. Twenty-four small-sized soil samples were subjected to two consecutive unsaturated steady-state flow leaching experiments with bromide as tracer. Observed breakthrough curves (BTCs) were analysed by the method of moments and by the advection–dispersion equation (ADE) to classify solute behaviour. Frequency distributions of the parameters indicating the solute velocity were heavily skewed or bimodal, reflecting the broad variability of the leaching scenarios, including some with pronounced preferential solute breakthrough. Exclusion of the preferential flow columns from our calculations revealed an average amount of 37% of immobile water. The large-scale BTCs derived from assembling the individual concentration courses of each run showed similar features, such as an early bromide breakthrough. However, two distinct apices, viz. one preferential and one matrix, were observed only in the first run, whereas the concentration decrease between the peaks was missing from the second run. A change in soil structure with continuous leaching was presumed to modify the interplay of the various flow domains, thereby altering the spreading of the BTCs. Correlation analysis between parameters of both tests suggests that preferential transport conditions are likely to occur at the same locations in the field over several infiltration cycles, whereas the ‘classical’ or expected matrix flow is time variant and therefore seems to be hardly predictable. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
I. Haltas 《水文研究》2012,26(22):3448-3458
Recognizing the spatial heterogeneity of hydraulic parameters, many researchers have studied the solute transport by both groundwater and channel flow in a stochastic framework. One of the methodologies used to up‐scale the stochastic solute transport equation, from a point‐location scale to a grid scale, is the cumulant expansion method combined with the calculus for the time‐ordered exponential and the calculus for the Lie operator. When the point‐location scale transport equation is scaled up to the grid scale, using the cumulant expansion method, a new dispersion coefficient emerges in the dispersive term of the solute transport equation in addition to the molecular dispersion coefficient. This velocity driven dispersion is called ‘macrodispersion’. The macrodispersion coefficient is the integral function of the time‐ordered covariance of the random velocity field. The integral is calculated over a Lagrangian trajectory of the flow. The Lagrangian trajectory depends on the following: (i) the spatial origin of the particle; (ii) the time when the macrodispersion is calculated; and (iii) the mean velocity field along the trajectory itself. The Lagrangian trajectory is a recursive function of time because the location of the particle along the trajectory at a particular time depends on the location of the particle at the previous time. This recursive functional form of the Lagrangian trajectory makes the calculation of the macrodispersion coefficient difficult. Especially for the unsteady, spatially non‐stationary, non‐uniform flow field, the macrodispersion coefficient is a highly complex expression and, so far, calculated using numerical methods in the discrete domains. Here, an analytical method was introduced to calculate the macrodispersion coefficient in the discrete domain for the unsteady and steady, spatially non‐stationary flow cases accurately and efficiently. This study can fill the gap between the theory of the ensemble averaged solute transport model and its numerical implementations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A new tracer experiment (referred to as MADE‐5) was conducted at the well‐known Macrodispersion Experiment (MADE) site to investigate the influence of small‐scale mass‐transfer and dispersion processes on well‐to‐well transport. The test was performed under dipole forced‐gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late‐time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field‐experimental data were also used to evaluate two transport models: a stochastic advection‐dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual‐domain single‐rate (DDSR) mass‐transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high‐resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.  相似文献   

8.
We present an analytical expression for the shear dispersion during solute transport in a coupled fracture–matrix system. The dispersion coefficient is obtained in a fracture with porous walls by taking into account an accurate boundary condition at the interface between the matrix and fracture, and the results were compared with those in a non-coupled system. The analysis presented identifies three regimes: diffusion-dominated, transition, and advection-dominated. The results showed that it is important to consider the exchange of solute between the fracture and matrix in development of the shear dispersion coefficient for the transition and advection-dominated regimes. The new dispersion coefficient is obtained by imposing the continuity of concentrations and mass fluxes along the porous walls. The resulting equivalent transport equation revealed that the effective velocity in a fracture increases while the dispersion coefficient decreases due to mass transfer between the matrix and fracture. A larger effective advection term leads to greater storage of mass in the matrix as compared with the classical double-porosity model with a non-coupled dispersion coefficient. The findings of this study can be used for modeling of tracer tests as well as fate, transport, and remediation of groundwater contaminants in fractured rocks.  相似文献   

9.
In the dispersion theory, a linear relationship has been verified between the coefficient of hydrodynamic dispersion and water velocity, both in saturated and in unsaturated porous media. But for unsaturated soils the variability of flow directions and microscopic velocities can be larger than in saturated soils because of the lower degree of water saturation. This leads to an increased dispersion. Therefore, relationships between water content and relative water velocity fluctuations and water content together with the coefficient of dispersivity in unsaturated porous media respectively have been investigated systematically by displacement experiments in glass beads and coarse-textured sandy soil columns. The breakthrough curves (BTCs) of chloride showed that an increase of solute mixing with a decrease of water content was caused by an increase of flow velocity fluctuations for different pathways. In order to explain the observed tailing effect in unsaturated flow, two mathematical models were used to fit theoretically derived nonlinear functions of water content dependent dispersivities for both porous media. The close agreement between the observed and computed results suggests that the theoretical model of hydrodynamic dispersion can be extended to transport in unsaturated porous media, providing that BTCs of the effluent water are used to estimate representative dispersivity parameters of soils.  相似文献   

10.
Discrete-fracture and dual-porosity models are infrequently used to simulate solute transport through fractured unconsolidated deposits, despite their more common application in fractured rock where distinct flow regimes are hypothesized. In this study, we apply four fracture transport models--the mobile-immobile model (MIM), parallel-plate discrete-fracture model (PDFM), and stochastic and deterministic discrete-fracture models (DFMs)--to demonstrate their utility for simulating solute transport through fractured till. Model results were compared to breakthrough curves (BTCs) for the conservative tracers potassium bromide (KBr), pentafluorobenzoic acid (PFBA), and 1,4-piperazinediethanesulfonic acid (PIPES) in a large-diameter column of fractured till. Input parameters were determined from independent field and laboratory methods. Predictions of Br BTCs were not significantly different among models; however, the stochastic and deterministic DFMs were more accurate than the MIM or PDFM when predicting PFBA and PIPES BTCs. DFMs may be more applicable than the MIM for tracers with small effective diffusion coefficients (De) or for short timescales due to differences in how these models simulate diffusion or incorporate heterogeneities by their fracture networks. At large scales of investigation, the more computationally efficient MIM and PDFM may be more practical to implement than the three-dimensional DFMs, or a combination of model approaches could be employed. Regardless of the modeling approach used, fractures should be incorporated routinely into solute transport models in glaciated terrain.  相似文献   

11.
Modelling pollutant transport in water is one of the core tasks of computational hydrology, and various physical models including especially the widely used nonlocal transport models have been developed and applied in the last three decades. No studies, however, have been conducted to systematically assess the applicability, limitations and improvement of these nonlocal transport models. To fill this knowledge gap, this study reviewed, tested and improved the state-of-the-art nonlocal transport models, including their physical background, mathematical formula and especially the capability to quantify conservative tracers moving in one-dimensional sand columns, which represents perhaps the simplest real-world application. Applications showed that, surprisingly, neither the popular time-nonlocal transport models (including the multi-rate mass transfer model, the continuous time random walk framework and the time fractional advection-dispersion equation), nor the spatiotemporally nonlocal transport model (ST-fADE) can accurately fit passive tracers moving through a 15-m-long heterogeneous sand column documented in literature, if a constant dispersion coefficient or dispersivity is used. This is because pollutant transport in heterogeneous media can be scale-dependent (represented by a dispersion coefficient or dispersivity increasing with spatiotemporal scales), non-Fickian (where plume variance increases nonlinearly in time) and/or pre-asymptotic (with transition between non-Fickian and Fickian transport). These different properties cannot be simultaneously and accurately modelled by any of the transport models reviewed by this study. To bypass this limitation, five possible corrections were proposed, and two of them were tested successfully, including a time fractional and space Hausdorff fractal model which minimizes the scale-dependency of the dispersion coefficient in the non-Euclidean space, and a two-region time fractional advection-dispersion equation which accounts for the spatial mixing of solute particles from different mobile domains. Therefore, more efforts are still needed to accurately model transport in non-ideal porous media, and the five model corrections proposed by this study may shed light on these indispensable modelling efforts.  相似文献   

12.
To more accurately predict the migration behavior of pollutants in porous media, we conduct laboratory scale experiments and model simulation. Aniline (AN) is used in one-dimensional soil column experiments designed under various media and hydrodynamic conditions. The advection-dispersion equation (ADE) and the continuous-time random walk (CTRW) were used to simulate the breakthrough curves (BTCs) of the solute transport. The results show that the media and hydrodynamic conditions are two important factors affecting solute transport and are related to the degree of non-Fickian transport. The simulation results show that CTRW can more effectively describe the non-Fickian phenomenon in the solute transport process than ADE. The sensitive parameter in the CTRW simulation process is , which can reflect the degree of non-Fickian diffusion in the solute transport. Understanding the relationship of with velocity and media particle size is conducive to improving the reactive solute transport model. The results of this study provide a theoretical basis for better prediction of pollutant transport in groundwater.  相似文献   

13.
The groundwater remediation field has been changing constantly since it first emerged in the 1970s. The remediation field has evolved from a dissolved‐phase centric conceptual model to a DNAPL‐dominated one, which is now being questioned due to a renewed appreciation of matrix diffusion effects on remediation. Detailed observations about contaminant transport have emerged from the remediation field, and challenge the validity of one of the mainstays of the groundwater solute transport modeling world: the concept of mechanical dispersion (Payne et al. 2008). We review and discuss how a new conceptual model of contaminant transport based on diffusion (the usurper) may topple the well‐established position of mechanical dispersion (the status quo) that is commonly used in almost every groundwater contaminant transport model, and evaluate the status of existing models and modeling studies that were conducted using advection‐dispersion models.  相似文献   

14.
This article outlines analytical solutions to quantify the length scale associated with “upstream dispersion,” the artificial movement of solutes in the opposite direction to groundwater flow, in solute transport models. Upstream dispersion is an unwanted artifact in common applications of the advection-dispersion equation (ADE) in problems involving groundwater flow in the direction of increasing solute concentrations. Simple formulae for estimating the one-dimensional distance of upstream dispersion are provided. These show that under idealized conditions (i.e., steady-state flow and transport, and a homogeneous aquifer), upstream dispersion may be a function of only longitudinal dispersivity. The scale of upstream dispersion in a selection of previously presented situations is approximated to highlight the utility of the presented formulae and the relevance of this ADE anomaly in common transport problems. Additionally, the analytical solution is applied in a hypothetical scenario to guide the modification of dispersion parameters to minimize upstream dispersion.  相似文献   

15.
Simultaneous measurement of coupled water, heat, and solute transport in unsaturated porous media is made possible with the multi-functional heat pulse probe (MFHPP). The probe combines a heat pulse technique for estimating soil heat properties, water flux, and water content with a Wenner array measurement of bulk soil electrical conductivity (ECbulk). To evaluate the MFHPP, we conducted controlled steady-state flow experiments in a sand column for a wide range of water saturations, flow velocities, and solute concentrations. Flow and transport processes were monitored continuously using the MFHPP. Experimental data were analyzed by inverse modeling of simultaneous water, heat, and solute transport using an adapted HYDRUS-2D model. Various optimization scenarios yielded simultaneous estimation of thermal, solute, and hydraulic parameters and variables, including thermal conductivity, volumetric water content, water flux, and thermal and solute dispersivities. We conclude that the MFHPP holds great promise as an excellent instrument for the continuous monitoring and characterization of the vadose zone.  相似文献   

16.
A groundwater flow model has been developed in order to study the chalk aquifer of Paris Basin, based on most of the geological and hydrological available data. The numerical processes are intended to modelling the groundwater flow in the Senonian (Late Cretaceous) formations and to visualize the tracer movement in groundwater resources in the experimental site of LaSalle Beauvais (northern part Paris Basin). Both objectives were achieved as follows: (i) the comprehension of the spatial distribution of the hydraulic conductivity in the chalk aquifer taking into account the characteristics of the hydrogeological system and (ii) the use of the analytical solution for describing one‐dimensional to two‐dimensional solute transport in a unidirectional steady‐state flow tracer with scale‐dependent dispersion. Advection and diffusion mechanisms are taken into account. Comparison between the breakthrough curves of the analytical and the numerical solutions provided an excellent agreement for various ranges of scale‐related transport parameters of interest. The developed power series solution facilitates fast prediction of the breakthrough curves at each observation point. Thus, the derived new solutions are widely applicable and are very useful for the validation of numerical transport. The numerical approach is carried out by MT3DMS, a Modular 3‐D Multi‐Species Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems, and based on total variation‐diminishing method using the ULTIMATE algorithm. The estimation of the infected surface could constitute an approach in water management and allows to prevent the risks of pollution and to manage the groundwater resource from a durable development perspective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrocarbon compounds in aquifers are generally known to show a retardation effect due to sorption onto the surfaces of solid particles. In this study, we investigated the effect of sorption on the transport of benzene in sandy aquifer materials by conducting batch and column tests for both sandy aquifer materials and sandy materials to which had been added 0·5% powdered activated carbon. The batch test was conducted by equilibrating dry materials with benzene solutions of various initial concentrations, and by analysing the concentrations of benzene in the initial and equilibrated solutions using high‐performance liquid chromatography (HPLC). The column test was performed to monitor the concentrations of effluent versus time, known as a breakthrough curve (BTC). We injected KCl and benzene solutions as tracers into the inlet boundary as two different types of square pulse and step, and monitored the effluent concentrations at the exit boundary under a steady‐state condition using an electrical conductivity meter and HPLC. Simulation of benzene transport was performed using the convective–dispersive equation model with the distribution coefficients obtained from the batch test and the transport parameters of the conservative solute KCl from the column test. The observed BTCs of KCl and benzene for pulse injection showed that the arrival times of the peaks of both tracers coincided well, but the relative peak concentration of benzene was much lower than that of KCl. Comparison of the simulated and observed BTCs showed a great discrepancy for all cases of injection mode and material texture, indicating the absence of retardation effect. These results reveal that the predominant process affecting the benzene transport in the sandy aquifer materials is an irreversible sorption rather than retardation. This tentative conclusion was verified by simulation of benzene transport using an irreversible sorption parameter that led to a good agreement between the simulated and observed BTCs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
We investigate effective solute transport in a chemically heterogeneous medium subject to temporal fluctuations of the flow conditions. Focusing on spatial variations in the equilibrium adsorption properties, the corresponding fluctuating retardation factor is modeled as a stationary random space function. The temporal variability of the flow is represented by a stationary temporal random process. Solute spreading is quantified by effective dispersion coefficients, which are derived from the ensemble average of the second centered moments of the normalized solute distribution in a single disorder realization. Using first-order expansions in the variances of the respective random fields, we derive explicit compact expressions for the time behavior of the disorder induced contributions to the effective dispersion coefficients. Focusing on the contributions due to chemical heterogeneity and temporal fluctuations, we find enhanced transverse spreading characterized by a transverse effective dispersion coefficient that, in contrast to transport in steady flow fields, evolves to a disorder-induced macroscopic value (i.e., independent of local dispersion). At the same time, the asymptotic longitudinal dispersion coefficient can decrease. Under certain conditions the contribution to the longitudinal effective dispersion coefficient shows superdiffusive behavior, similar to that observed for transport in s stratified porous medium, before it decreases to its asymptotic value. The presented compact and easy to use expressions for the longitudinal and transverse effective dispersion coefficients can be used for the quantification of effective spreading and mixing in the context of the groundwater remediation based on hydraulic manipulation and for the effective modeling of reactive transport in heterogeneous media in general.  相似文献   

19.
An ensemble Kalman filter (EnKF) is developed to identify a hydraulic conductivity distribution in a heterogeneous medium by assimilating solute concentration measurements of solute transport in the field with a steady‐state flow. A synthetic case with the mixed Neumann/Dirichlet boundary conditions is designed to investigate the capacity of the data assimilation methods to identify a conductivity distribution. The developed method is demonstrated in 2‐D transient solute transport with two different initial instant solute injection areas. The influences of the observation error and model error on the updated results are considered in this study. The study results indicate that the EnKF method will significantly improve the estimation of the hydraulic conductivity field by assimilating solute concentration measurements. The larger area of the initial distribution and the more observed data obtained, the better the calculation results. When the standard deviation of the observation error varies from 1% to 30% of the solute concentration measurements, the simulated results by the data assimilation method do not change much, which indicates that assimilation results are not very sensitive to the standard deviation of the observation error in this study. When the inflation factor is more than 1.0 to enlarge the model error by increasing the forecast error covariance matrix, the updated results of the hydraulic conductivity by the data assimilation method are not good at all. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

Forward–backward solute dispersion with an intermediate point source in one-dimensional semi-infinite homogeneous porous media is studied in this paper. Solute transport under sorption conditions, first-order decay and zero-order production terms are included. The first type of boundary condition is taken as a constant point source at an intermediate point from where forward and backward solute dispersion is examined. The Laplace transform method is adopted to solve the governing equation analytically. All the analytical results are obtained in graphical form to investigate the forward–backward solute transport in porous media for various hydrological input data. The graphical nature of the analytical solution is compared with numerical data taken from existing literature and similar results are obtained. Also, numerical solution of the governing equation is obtained by the Crank-Nicolson finite difference scheme and validated with the analytical solution, which demonstrates good agreement between them. Accuracy of the solution is also observed by using RMSE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号