首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Microrater frequencies caused by fast (? 3 km s?1) ejecta have been determined using secondary targets in impact experiments. A primary projectile (steel sphere, diam 1.58 mm, mass 1.64 × 10?2 g) was shot in Duran glass with a velocity of 4.1 km s?1 by means of a light gas gun. The angular distribution of the secondary crater number densities shows a primary maximum around 25°, and a secondary maximum at about 60° from the primary target surface. The fraction of mass ejected at velocities of ? 3 km s?1 is only a factor of 7.5 × 10?5 of the primary projectile mass. A conservative calculation shows that the contribution of secondary microcraters (caused by fast ejecta) to primary microcrater densities on lunar rock surfaces (caused by interplanetary particles) is on the statistical average below 1% for any lunar surface orientation. Calculation of the interplanetary dust flux enhancement caused by Moon ejecta turned out to be in good agreement with Lunar Explorer 35in situ measurements.  相似文献   

2.
Abstract– Planetary surfaces are subjected to meteorite bombardment and crater formation. Rocks forming these surfaces are often porous and contain fluids. To understand the role of both parameters on impact cratering, we conducted laboratory experiments with dry and wet sandstone blocks impacted by centimeter‐sized steel spheres. We utilized a 40 m two‐stage light‐gas gun to achieve impact velocities of up to 5.4 km s?1. Cratering efficiency, ejection velocities, and spall volume are enhanced if the pore space of the sandstone is filled with water. In addition, the crater morphologies differ substantially from wet to dry targets, i.e., craters in wet targets are larger, but shallower. We report on the effects of pore water on the excavation flow field and the degree of target damage. We suggest that vaporization of water upon pressure release significantly contributes to the impact process.  相似文献   

3.
Abstract– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s?1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.  相似文献   

4.
This study introduces an experimental approach using direct laser irradiation to simulate the virtually instantaneous melting of target rocks during meteorite impacts. We aim at investigating the melting and mixing processes of projectile (iron meteorite; steel) and target material (sandstone) under idealized conditions. The laser experiments (LE) were able to produce features very similar to those of impactites from meteorite craters and cratering experiments, i.e., formation of lechatelierite, partial to complete melting of sandstone, and injection of projectile droplets into target melts. The target and projectile melts have experienced significant chemical modifications during interaction of these coexisting melts. Emulsion textures, observed within projectile‐contaminated target melts, indicate phase separation of silicate melts with different chemical compositions during quenching. Reaction times of 0.6 to 1.4 s could be derived for element partitioning and phase‐separation processes by measuring time‐depended temperature profiles with a bolometric detector. Our LE allow (i) separate melting at high temperatures to constrain primary melt heterogeneities before mixing of projectile and target, (ii) quantification of element partitioning processes between coexisting projectile and target melts, (iii) determination of cooling rates, and (iv) estimation of reaction times. Moreover, we used a thermodynamic approach to calculate the entropy gain during laser melting. The entropy changes for laser‐melting of sandstone and iron meteorite correspond to shock pressures and particle velocities produced during the impact of an iron projectile striking a quartz target at a minimum impact velocity of ~6 km s?1, inducing peak shock pressures of ~100 GPa in the target.  相似文献   

5.
In this paper we show that by modifying a conventional lined hollow charge, such that the explosive is asymmetrically distributed, it is possible to form projectiles of controllable mass (up to ~1 g) moving in the forward direction with speeds of the order of 10 km s?1. Measurements of the projectile speed and estimates of its mass are found to agree well with the predictions of the one dimensional theory of Carleone and Chou (1974). A comparison is made of the crater formation obtained by firing both modified and unmodified lined hollow charges at basalt. We indicate how it should be possible to increase the velocity of the projectile up to ~14 km s?1 and the application that such a technique would have to problems in both cratering physics and planetary studies.  相似文献   

6.
Abstract– Within the frame of the MEMIN research unit (Multidisciplinary Experimental and Numerical Impact Research Network), impact experiments on sandstone targets were carried out to systematically study the influence of projectile mass, velocity, and target water saturation on the cratering and ejection processes. The projectiles were accelerated with two‐stage light‐gas guns (Ernst‐Mach‐Institute) onto fine‐grained targets (Seeberger sandstone) with about 23% porosity. Collection of the ejecta on custom‐designed catchers allowed determination of particle shape, size distribution, ejection angle, and microstructures. Mapping of the ejecta imprints on the catcher surface enabled linking of the different patterns to ejection stages observed on high‐speed videos. The increase in projectile mass from 0.067 to 7.1 g correlates with an increase in the total ejected mass; ejecta angles, however, are similar in range for all experiments. The increase in projectile velocity from 2.5 to 5.1 km s?1 correlates with a total ejecta mass increase as well as in an increase in comminution efficiency, and a widening of the ejecta cone. A higher degree of water saturation of the target yields an increase in total ejecta mass up to 400% with respect to dry targets, higher ejecta velocity, and a steeper cone. These data, in turn, suggest that the reduced impedance contrast between the quartz grains of the target and the pores plays a primary role in the ejecta mass increase, while vaporization of water determines the ejecta behavior concerning ejecta velocity and particle distribution.  相似文献   

7.
Abstract– We present initial results from hydrocode modeling of impacts on Al‐1100 foils, undertaken to aid the interstellar preliminary examination (ISPE) phase for the NASA Stardust mission interstellar dust collector tray. We used Ansys’ AUTODYN to model impacts of micrometer‐scale, and smaller projectiles onto Stardust foil (100 μm thick Al‐1100) at velocities up to 300 km s?1. It is thought that impacts onto the interstellar dust collector foils may have been made by a combination of interstellar dust particles (ISP), interplanetary dust particles (IDP) on comet, and asteroid derived orbits, β micrometeoroids, nanometer dust in the solar wind, and spacecraft derived secondary ejecta. The characteristic velocity of the potential impactors thus ranges from <<1 to a few km s?1 (secondary ejecta), approximately 4–25 km s?1 for ISP and IDP, up to hundreds of km s?1 for the nanoscale dust reported by Meyer‐Vernet et al. (2009) . There are currently no extensive experimental calibrations for the higher velocity conditions, and the main focus of this work was therefore to use hydrocode models to investigate the morphometry of impact craters, as a means to determine an approximate impactor speed, and thus origin. The model was validated against existing experimental data for impact speeds up to approximately 30 km s?1 for particles ranging in density from 2.4 kg m?3 (glass) to 7.8 kg m?3 (iron). Interpolation equations are given to predict the crater depth and diameter for a solid impactor with any diameter between 100 nm and 4 μm and density between 2.4 and 7.8 kg m?3.  相似文献   

8.
The Experimental Projectile Impact Chamber (EPIC) is a specially designed facility for the study of processes related to wet‐target (e.g., “marine”) impacts. It consists of a 7 m wide, funnel‐shaped test bed, and a 20.5 mm caliber compressed N2 gas gun. The target can be unconsolidated or liquid. The gas gun can launch 20 mm projectiles of various solid materials under ambient atmospheric pressure and at various angles from the horizontal. To test the functionality and quality of obtained results by EPIC, impacts were performed into dry beach sand targets with two different projectile materials; ceramic Al2O3 (max. velocity 290 m s?1) and Delrin (max. velocity 410 m s?1); 23 shots used a quarter‐space setting (19 normal, 4 at 53° from horizontal) and 14 were in a half‐space setting (13 normal, 1 at 53°). The experiments were compared with numerical simulations using the iSALE code. Differences were seen between the nondisruptive Al2O3 (ceramic) and the disruptive Delrin (polymer) projectiles in transient crater development. All final crater dimensions, when plotted in scaled form, agree reasonably well with the results of other studies of impacts into granular materials. We also successfully validated numerical models of vertical and oblique impacts in sand against the experimental results, as well as demonstrated that the EPIC quarter‐space experiments are a reasonable approximation for half‐space experiments. Altogether, the combined evaluation of experiments and numerical simulations support the usefulness of the EPIC in impact cratering studies.  相似文献   

9.
Abstract— We conducted impact experiments into SiO2‐based aerogel of uniform density (0.02 g cm?3) with spherical corundum projectiles. The highly refractory nature and mechanical strength of corundum minimizes projectile deformation and continuous mass loss by ablation that might have affected earlier experiments with soda‐lime glass (SLG) impactors into aerogel targets. We find that corundum is a vastly superior penetrator producing tracks a factor of 2.5 longer, yet similar in diameter to those made by SLG. At velocities <4 km s?1 a cylindrical “cavity” forms, largely by melting of aerogel. The diameter and length of this cavity increase with velocity and impactor size, and its volume dominates total track volume. A continuously tapering, exceptionally long and slender “stylus” emerges from this cavity and makes up some 80–90% of the total track length; this stylus is characterized by solid‐state deformations. Tracks formed below 4 km s?1 lack the molten cavity and consist only of a stylus. Projectile residues recovered from a track's terminus substantially resemble the initial impactors at V > 4 km s?1, yet they display two distinct surfaces at higher velocities, such as a blunt, forward face and a well‐preserved, hemispherical trailing side; a pronounced, circumferential ridge of compressed and molten aerogel separates these two surfaces. Stringers and patches of melt flow towards the impactor's rear where they accumulate in a characteristic melt tip. SEM‐EDS analyses indicate the presence of Al in these melts at velocities as low as 5.2 km s?1, indicating that the melting point of corundum (2054 °C) was exceeded. The thermal model of aerogel impact by Anderson and Cherne (2008) suggests actual aerogel temperatures <5000 K at comparable conditions. We therefore propose that projectile melting occurs predominantly at those surfaces that are in contact with this very hot aerogel, at the expense of viscous heating and associated ablation. Exposure to superheated aerogel may be viewed as extreme form of “flash heating.” This seems consistent with observations from the Stardust mission to comet Wild 2, such as relatively pristine interiors of rather large, terminal particles, yet total melting of most fine‐grained dust components.  相似文献   

10.
The SMART‐1 end‐of‐life impact with the lunar surface was simulated with impacts in a two stage light‐gas gun onto inclined basalt targets with a shallow surface layer of sand. This simulated the probable impact site, where a loose regolith will have overlaid a well consolidated basaltic layer of rock. The impact angles used were at 5° and 10° from the horizontal. The impact speed was ~2 km s?1 and the projectiles were 2.03 mm diameter aluminum spheres. The sand depth was between approximately 0.8 and 1.8 times the projectile diameter, implying a loose lunar surface regolith of similar dimensions to the SMART‐1 spacecraft. A crater in the basement rock itself was only observed in the impact at 10° incidence, and where the depth of loose surface material was less than the projectile diameter, in which case the basement rock also contained a small pit‐like crater. In all cases, the projectile ricocheted away from the impact site at a shallow angle. This implies that at the SMART‐1 impact site the crater will have a complicated structure, with exposed basement rock and some excavated rock displaced nearby, and the main spacecraft body itself will not be present at the main crater.  相似文献   

11.
Abstract— In this paper, we present numerical simulations aimed at reproducing the Baptistina family based on its properties estimated by observations. A previous study by Bottke et al. (2007) indicated that this family is probably at the origin of the K/T impactor, is linked to the CM meteorites and was produced by the disruption of a parent body 170 km in size due to the head‐on impact of a projectile 60 km in size at 3 km s?1. This estimate was based on simulations of fragmentation of non‐porous materials, while the family was assumed to be of C taxonomic type, which is generally interpreted as being formed from a porous body. Using both a model of fragmentation of non‐porous materials, and a model that we developed recently for porous ones, we performed numerical simulations of disruptions aimed at reproducing this family and at analyzing the differences in the outcome between those two models. Our results show that a reasonable match to the estimated size distribution of the real family is produced from the disruption of a porous parent body by the head‐on impact of a projectile 54 km in size at 3 km s?1. Thus, our simulations with a model consistent with the assumed dark type of the family requires a smaller projectile than previously estimated, but the difference remains small enough to not affect the proposed scenario of this family history. We then find that the break‐up of a porous body leads to different outcomes than the disruption of a non‐porous one. The real properties of the Baptistina family still contain large uncertainties, and it remains possible that its formation did not involve the proposed impact conditions. However, the simulations presented here already show some range of outcomes and once the real properties are better constrained, it will be easy to check whether one of them provides a good match.  相似文献   

12.
Abstract— The Stardust sample return capsule returned to Earth in January 2006 with primitive debris collected from comet 81P/Wild‐2 during the flyby encounter in 2004. In addition to the cometary particles embedded in low‐density silica aerogel, there are microcraters preserved in the aluminum foils (1100 series; 100 μm thick) that are wrapped around the sample tray assembly. Soda lime spheres (?49 μm in diameter) have been accelerated with a light gas gun into flight‐grade aluminum foils at 6.35 km s?1 to simulate the capture of cometary debris. The experimental craters have been analyzed using scanning electron microscopy (SEM) and X‐ray energy dispersive spectroscopy (EDX) to locate and characterize remants of the projectile material remaining within the craters. In addition, ion beam‐induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high‐precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact. This has enabled further detailed elemental characterization that is free from the background contamination of the aluminum foil substrate. The ability to recover “pure” melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the aluminum foils returned by Stardust.  相似文献   

13.
We present the result of a study on the expansion properties and internal kinematics of round/elliptical planetary nebulae of the Milky Way disk, the halo, and of the globular cluster M 15. The purpose of this study is to considerably enlarge the small sample of nebulae with precisely determined expansion properties (Schönberner et al. 2005b). To this aim, we selected a representative sample of objects with different evolutionary stages and metallicities and conducted highresolution ´echelle spectroscopy. In most cases we succeeded in detecting the weak signals from the outer nebular shell which are attached to the main line emission from the bright nebular rim. Next to the measurement of the motion of the rim gas by decomposition of the main line components into Gaussians, we were able to measure separately, for most objects for the first time, the gas velocity immediately behind the leading shock of the shell, i.e. the post‐shock velocity. We more than doubled the number of objects for which the velocities of both rim and shell are known and confirm that the overall expansion of planetary nebulae is accelerating with time. There are, however, differences between the expansion behaviour of the shell and the rim: The post‐shock velocity is starting at values as low as around 20 km s–1 for the youngest nebulae, just above the AGB wind velocity of ∼ 10–15 km s–1, and is reaching values of about 40 km s–1 for the nebulae around hotter central stars. Contrarily, the rim matter is at first decelerated below the typical AGB‐wind velocity and remains at about 5–10 km s–1 for a while until finally a typical flow velocity of up to 30 km s–1 is reached. This observed distinct velocity evolution of both rim and shell is explained by radiation‐hydrodynamics simulations, at least qualitatively: It is due to the ever changing stellar radiation field and wind‐wind interaction together with the varying density profile ahead of the leading shock during the progress of evolution. The wind‐wind interaction works on the rim dynamics while the radiation field and upstream density gradient is responsible for the shell dynamics. Because of these time‐dependent boundary conditions, a planetary nebula will never evolve into a simple self‐similar expansion. Also the metal‐poor objects behave as theory predicts: The post‐shock velocities are higher and the rim flow velocities are equal or even lower compared to disk objects at similar evolutionary stage. The old nebula around low‐luminosity central stars contained in our sample expand still fast and are dominated by reionisation. We detected, for the first time, in some objects an asymmetric expansion behaviour: The relative expansions between rim and shell appear to be different for the receding and approaching parts of the nebular envelope. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Abstract– A Devonian siltstone from Orkney, Scotland, shows survival of biomarkers in high‐velocity impact experiments. The biomarkers were detected in ejecta fragments from experiments involving normal incidence of steel projectiles at 5–6 km s?1, and in projectile fragments from impact experiments into sand and water at 2–5 km s?1. The associated peak shock pressures were calculated to be in the range of 110–147 GPa for impacts of the steel projectiles into the siltstone target, and hydrocode simulations are used to show the variation of peak pressure with depth in the target and throughout the finite volume projectiles. Thermally sensitive biomarker ratios, including ratios of hopanoids and steranes, and the methylphenanthrene ratio, showed an increase in thermal maturity in the ejecta, and especially the projectile, fragments. Measurement of absolute concentrations of selected biomarkers indicates that changes in biomarker ratios reflect synthesis of new material rather than selective destruction. Their presence in ejecta and projectile fragments suggests that fossil biomarkers may survive hypervelocity impacts, and that experiments using biomarker‐rich rock have high potential for testing survival of organic matter in a range of impact scenarios.  相似文献   

15.
Abstract– We carried out hypervelocity cratering experiments with steel projectiles and sandstone targets to investigate the structural and mineralogical changes that occur upon impact in the projectile and target. The masses of coherent projectile relics that were recovered in different experiments ranged between 58% and 92% of their initial projectile masses. A significant trend between impact energy, the presence of water in the target, and the mass of projectile relics could not be found. However, projectile fragmentation seems to be enhanced if the target contains substantial amounts of water. Two experiments that were performed with 1 cm sized steel projectiles impacting at 3400 and 5300 m s?1 vertically onto dry Seeberger sandstone were investigated in detail. The recovered projectiles are intensely plastically deformed. Deformation mechanisms include dislocation glide and dislocation creep. The latter led to the formation of subgrains and micrometer‐sized dynamically recrystallized grains. In case of the 5300 m s?1 impact experiment, this deformation is followed by grain annealing. In addition, brittle fracturing and friction‐controlled melting at the surface along with melting and boiling of iron and silica were observed in both experiments. We estimated that heating and melting of the projectile impacting at 5300 m s?1 consumed 4.4% of the total impact energy and was converted into thermal energy and heat of fusion. Beside the formation of centimeter‐sized projectile relics, projectile matter is distributed in the ejecta as spherules, unmelted fragments, and intermingled iron‐silica aggregates.  相似文献   

16.
The dust‐to‐gas ratios in three different samples of luminous, ultraluminous, and hyperluminous infrared galaxies are calculated by modelling their radio to soft X‐ray spectral energy distributions (SED) using composite models which account for the photoionizing radiation from H II regions, starbursts, or AGNs, and for shocks. The models are limited to a set which broadly reproduces the mid‐IR fine structure line ratios of local, IR bright, starburst galaxies. The results show that two types of clouds contribute to the IR emission. Those characterized by low shock velocities and low preshock densities explain the far‐IR dust emission, while those with higher velocities and densities contribute to the mid‐IR dust emission. Clouds with shock velocities of 500 km s–1 prevail in hyperluminous infrared galaxies. An AGN is found in nearly all of the ultraluminous infrared galaxies and in half of the luminous infrared galaxies of the sample. High IR luminosities depend on dust‐to‐gas ratios as high as ∼0.1 by mass, however most hyperluminous IR galaxies show dustto‐gas ratios much lower than those calculated for the luminous and ultraluminous IR galaxies. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Abstract– In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s?1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock‐metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile‐target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni‐ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.  相似文献   

18.
Abstract— Scaling laws describing crater dimensions are defined in terms of projectile velocity and mass, densities of the materials involved, strength of the target, and the local gravity. Here, the additional importance of target porosity and saturation, and an overlying water layer, are considered through 15 laboratory impacts of 1 mm diameter stainless steel projectiles at 5 km s?1 into a) an initially uncharacterized sandstone (porosity ?17%) and b) Coconino Sandstone (porosity ?23%). The higher‐porosity dry sandstone allows a crater to form with a larger diameter but smaller depth than in the lower‐porosity dry sandstone. Furthermore, for both porosities, a greater volume of material is excavated from a wet target than a dry target (by 27–30%). Comparison of our results with Pi‐scaling (dimensionless ratios of key parameters characterizing cratering data over a range of scales) suggests that porosity is important for scaling laws given that the new data lie significantly beneath the current fit for ice and rock targets on a πv versus π3 plot (πv gives cratering efficiency and π3 the influence of target strength). An overlying water layer results in a reduction of crater dimensions, with larger craters produced in the saturated targets compared to unsaturated targets. A water depth of approximately 12 times the projectile diameter is required before craters are no longer observed in the targets. Previous experimental studies have shown that this ratio varies between 10 and 20 (Gault and Sonett 1982). In our experiments ?25% of the original projectile mass survives the impact.  相似文献   

19.
Abstract— Mercury is difficult to observe because it is so close to the Sun. However, when the angle of the ecliptic is near maximum in the northern hemisphere, and Mercury is near its greatest eastern elongation, it can be seen against the western sky for about a half hour after sunset. During these times, we were able to map sodium D2 emission streaming from the planet, forming a long comet‐like tail. On 2001 May 26 (U.T.) we mapped the tail downstream to a distance of ?40 000 km. Sodium velocities in the tail increased to ?11 km s?1 at 40 000 km as the result of radiation pressure acceleration. On 2000 June 5 (U.T.) we mapped the cross‐sectional extent of the tail at a distance of ?17 500 km downstream. At this distance, the half‐power full‐width of the emission was ?20 000 km. We estimated the transverse velocity of sodium in the tail to range from 2 to 4 km s?1. The velocities we observed imply source velocities from the planet surface of the order of 5 km s?1, or 4 eV. Particle sputtering is a likely candidate for production of sodium atoms at these velocities. The total flux of sodium in the tail was ?1 times 1023 atoms s?1, which corresponds to 1 to 10% of the estimated total production rate of sodium on the planet.  相似文献   

20.
Abstract— Hadley Rille is a millimeter-size EH chondrite containing euhedral and acicular enstatite grains, kamacite globules and preferentially aligned silicate aggregates separated by elongated kamacite-rich patches. The Hadley Rille chondrite was significantly impact melted when it accreted to the lunar regolith at relative velocities of ~>3 km s?1; ~65–75% of the chondrules present initially were melted. During the impact, portions of the local regolith were melted and an agglutinate-like rim formed around the chondritic projectile; the rim consists of flow-banded vesicular glass, blebs of troilite and low-Ni metallic Fe, rock fragments, glass(?) shards, and mineral grains. The mineral grains include enstatite (which is otherwise absent from the Moon and must have been derived from the projectile) and poorly characterized, micrometer-size phases enriched in light rare-earth-elements (LREE), which probably formed during the impact. Several of the rock fragments contain <33 mg/g Cl, which was probably derived through impact-induced volatilization of Cl from chondrule mesostases in the EH projectile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号